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Abstract. A method of image analysis is proposed for detection of local
defects in materials with periodic regular texture. A general improvement
and enlargement of vision system capabilities for versatility, full automa-
tism, computational efficiency, and robustness in their application to the
industrial inspection of periodic textured materials is pursued. In the pro-
posed method, a multiscale and multiorientation Gabor filter scheme that
imitates the early human vision process is applied to the sample under
inspection. The designed algorithm automatically segments defects from
the regular texture. A variety of examples of fabric inspection are pre-
sented. In all of them defects are successfully segmented from the tex-
ture background. © 1998 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(98)01408-1]
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1 Introduction

The interest in reliable, automatic systems for visual
spection of industrial materials such as textile webs, pa
or wood requires the development of image segmenta
techniques based on texture analysis. The surfaces of
materials display complex patterns that appear visu
regular on a large scale. In a local analysis, however,
texture components may vary in their intensity distributio
pattern size, and pattern shape. These local variations m
inspection difficult.

Fourier-domain-based techniques are particularly s
able for materials that exhibit a high degree of periodic
~e.g., most textile webs!. The angular and radial analysis o
the Fourier transform of a web image provide valuable
formation for characterizing carpet patterns1 or common
fabrics.2 Other related operations, such as autocorrela
of a web image, have been proposed in Ref. 1 and use
Ref. 2 to explore the yarn spacing in the weft and wa
directions. Ciamberlini et al.3 describe an optical metho
using Fourier transform and spatial filtering to reveal d
fects in textile materials in real time. Recently, Milla´n and
Escofet4 have proposed Fourier-domain-based angular c
relation for pattern recognition of quasiperiodic textures
has been applied to web inspection for pattern identifica
and classification, and also for the detection and charac
ization of defects that cause an overall distortion of
basic structure of the material, such as shrinking and a
sion.

When defects only alter a small area of the image of
material under inspection, they are calledlocal defects.
Fourier analysis does not provide, in general, enough in
Opt. Eng. 37(8) 2297–2307 (August 1998) 0091-3286/98/$10.00
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mation to detect local defects. Methods that can loca
and analyze features in the spatial as well as in the
quency domain are convenient for detecting local defe
Wavelet transforms, used as multiresolution spectral filte
provide both frequency and spatial local information abo
an image. In fact, different wavelet bases have been use
develop applications of image analysis to local-defect
tection in woven fabrics.5–7 In a preliminary work,7 we
evidenced the feasibility of using Gabor filters8 to the in-
spection of local defects in fabrics.

A Gabor filter consists of a sinusoid of a given fr
quency and orientation, modulated by a Gaussian envel
This Gaussian envelope provides spatial localization.
good reason for the use of Gabor filters is their relations
with current models of early vision in primates; in additio
they have optimal localization in the space and freque
domains9 with an efficient implementation in both
domains.10 The human eye is a highly efficient visual sy
tem and a robust pattern and texture analyzer. Gabor
related wavelets used in visual modeling have been s
cessfully applied to a large variety of early vision tasks10

Specifically, the problem of detecting local defects in
surface can be related to texture segmentation when e
the material, the defect, or both are textured, as in tex
webs. Several authors have proposed different approa
based on Gabor filters for texture segmentation11–15and for
object detection.16

Here we present a new method for automatic detec
of local defects in a regular texture, based on a multisc
and multiorientation Gabor scheme. This scheme imita
the visual coding in the early stages of the human vis
2297© 1998 Society of Photo-Optical Instrumentation Engineers
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Escofet et al.: Detection of local defects in textile webs . . .
system and was proposed as an image represent
model.17 Its usefulness has been demonstrated throug
variety of applications involving local multiscale proces
ing and texture analysis15 and synthesis.18 According to this
Gabor scheme, we build an algorithm that uses the filte
images of the textured material under inspection in orde
locate and isolate their possible defects.

We have successfully applied the method to detec
variety of typical defects in woven fabrics of differen
structure. In this paper, we present and discuss some
amples.

2 Method

In this section we briefly review the multiscale and mul
orientation Gabor scheme for feature extraction, and t
describe the procedure designed to segment defects
the background~regular texture!.

2.1 Multiscale and Multiorientation Gabor Scheme

We use the model proposed in Ref. 17, which seeks
simulate schematically the early visual coding in huma
by applying a set of 434 Gabor filters to digital images
This scheme performs a logarithmic-polar sampling of
frequency spectrum of the image. The sampling yields f
frequency levels distributed in octaves and four orientati
~horizontal, vertical, and the two diagonals!. A low-pass
residual channel~LPR channel!, at the center, covers th
very low frequencies around dc. The general description
the model we consider is contained in Sec. 2 of Ref. 18
particular we recall that a 2-D Gabor function in the spa
domain of coordinates (x,y) is given by

g~x,y!pq5expF2
p

ap
2 ~x21y2!G

3exp @ i2p f p~x cosuq1y sin uq!#, ~1!

where the first factor represents the Gaussian envelope
bandwidth determined by the parameterap , and the second
factor is a complex sinusoid. The parametersf p and uq ,
with p,q51, . . . ,4, represent respectively the frequen
and the orientation of thepq channel. For an input imag
i (x,y) and a Gabor filter given by the complex functio
gpq(x,y) of Eq. ~1!, the magnitude of the filtered image
u i pq(x,y)u, can be computed as

u i pq~x,y!u5$@gpq
e ~x,y!* i ~x,y!#21@gpq

o ~x,y!* i ~x,y!#2%1/2,
~2!

where the symbol* denotes a 2-D convolution, andgpq
e

and gpq
o represent the real~even! and the imaginary~odd!

parts, respectively, of the Gabor filtergpq(x,y).
As described in Ref. 17, an appropriate filter design w

small convolution masks allows an efficient implemen
tion of Gabor filters in the spatial domain. Moreover, t
pyramidal structure and the symmetries of the scheme s
plify its application by using self-similar Gabor wavelet
Instead of scaling the wavelet, it is preferable to und
sample the inputi (x,y) by a factor 242p corresponding to
the channel of frequencyf p . The input is conveniently
2298 Optical Engineering, Vol. 37 No. 8, August 1998
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convolved with a low-pass filter~e.g., a cubic B spline19!
before subsampling in order to remove the high-freque
terms and avoid aliasing artifacts. For the convolution
the spatial domain, we use two masks of 939 pixels that
represent the even and the odd parts of the Gabor fi
gpq(x,y). The magnitudesu i pq(x,y)u of the 434 channels
will constitute the input of the segmentation algorithm.

2.2 Segmentation

This section describes the procedure we propose for de
detection in regular textures. There is an extensive lite
ture suggesting that Gabor channels are good descripto
texture.7,10–12,14,15,18A visible defect will cause a loca
change of visual texture. If the proposed Gabor chann
are able to describe texture accurately, then we can exp
this fact to segment the image automatically and detect
evant defects visually. The presented method must m
three requirements. Firstly, we have to enhance change
the descriptors, which may correspond to a fault in suc
way that a binarization makes possible the segmentatio
defective areas from the textured background. Secon
the process must integrate faults captured at different
entations and resolution levels of the Gabor filters into
single binary map with the locations of defects as the o
put. Thirdly, the procedure must be automatic, robust, a
versatile, easily adaptable to a variety of regular textures
different materials. This third aspect entails that we will n
introduce key parameters, which may require specific
justments of parameters or procedures to a particular k
of defect or texture. In this way, we will avoid problems
overtraining or undertraining that frequently appear wh
optimizing a given method with a limited, incomplete set
training samples.

Figure 1~a! shows a schematic diagram of the procedu
It starts with an image of the sample to inspect:t(x,y). The
set of Gabor filters described in Sec. 2.1 is applied to
input imaget(x,y) to give the moduli of the set of 434
filtered complex images,utpq(x,y)u. The low-pass residua
image, tLPR(x,y) is obtained by subsampling the inpu
t(x,y) four times by a factor 2~including a convolution
with the low-pass filter cubic B spline before each subsa
pling!.

In the second step, our texture descriptors are obtai
by expressing the filtered imagesutpq(x,y)u in contrast
units. This can be accomplished by dividing every filter
image utpq(x,y)u, p,q51, . . . ,4, by thelow-pass residual
image tLPR. Thus, the set$p,q% of featuresTpq(x,y) is
given for each pixel (x,y) by the expression

Tpq~x,y!5
utpq~x,y!u

tLPR~x8,y8!
, ~3!

with ~see Fig. 2!

x8511I S x21

2p D , y8511I S y21

2p D , ~4!

where functionI (z) means the integer part of the argume
z.
 to 161.111.180.157. Terms of Use:  http://spiedl.org/terms



Escofet et al.: Detection of local defects in textile webs . . .
Fig. 1 Schematic diagram of the segmentation procedure: (a) main diagram; (b) detail of the part of
the procedure applied to a faultless sample (prototype), which provides the reference entry to the main
diagram (a) (on the left).
ply
ple

the

t
d
c-
ale

-
ge
Before analyzing the texture to be tested, we first ap
the same procedure to a prototype defect-free sam
r (x,y) and store the mean and standard deviation of
histograms of each feature@the block on the left in Fig.
1~a!, sketched in detail in Figure 1~b!#. We assume tha
both the imaget(x,y) of the texture under inspection an
the imager (x,y) of the faultless reference texture are a
quired under the same experimental conditions of sc
orientation, and resolution. In Fig. 1~b!, the filtered images
in absolute value,ur pq(x,y)u, are again converted to con
trast units, by dividing by the corresponding LPR ima
r LPR(x8,y8):
Downloaded from SPIE Digital Library on 01 Dec 2010
,

Rpq~x,y!5
ur pq~x,y!u

r LPR~x8,y8!
, ~5!

in the same way as in Eq.~3!. The mean value~over all the
pixels! of eachRpq and the standard deviationspq are cal-
culated by the standard expressions

R̄pq5
1

Np
2 (

x51

Np

(
y51

Np

Rpq~x,y!, ~6!
2299Optical Engineering, Vol. 37 No. 8, August 1998
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Escofet et al.: Detection of local defects in textile webs . . .
spq5H (x51
Np (y51

Np @Rpq~x,y!2R̄pq#
2

Np
2 J 1/2

, ~7!

whereNp
2 is the number of pixels of the filtered image

the resolution levelp. The two sets of sixteen (434) val-

ues $R̄pq% and $spq% are the reference entry to the ma
procedure on the left of the scheme in Fig. 1~a!.

The next step is to compare, for each pixel or locati
the features of the sample under study with those of
reference. The closer the values, the higher the likelih
of the sample coinciding with the prototype, and co
versely, the larger the difference, the higher the probab
of there being a defect. Thus, we calculate, for each levp
and orientationq, the magnitude of the difference betwee
features of the sample under analysis and the mean o
prototype

dpq~x,y!5uTpq~x,y!2R̄pqu. ~8!

In order to reduce noise, for each pixel we set to zero th
differencesdpq(x,y) below a threshold, i.e., for those va
ues of the sample with a high likelihood of being like th
prototype. We consider a standard thresholding opera
given by the expression

Spq~x,y!5H dpq~x,y! if dpq~x,y!>tspq ,

0 otherwise,
~9!

where the threshold is proportional to the standard de
tion spq calculated from the reference feature arr
Rpq(x,y). We take a fairly standard constant valuet53
according to a low-risk criterion: only points with differ
ences above three times the standard deviation are elig

Fig. 2 Partial representation of the pyramid distribution used to ex-
press the filtered images utpq(x,y)u in contrast units by dividing by
the low-pass residual tLPR .
2300 Optical Engineering, Vol. 37 No. 8, August 1998
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as defects, which strongly reduces the probability of m
classifying points of the background~regular texture! as
faulty areas. The resulting array of the thresholded feat
differences is represented bySpq(x,y) in the diagram in
Fig. 1~a!.

For each scale levelp and for every pixel (x,y), a vec-
tor of four components,Sp

xy5$(Sp
xy)q% with q51, . . . ,4,

can be built. Each component of the vectorSp
xy is defined

by (Sp
xy)q[Spq(x,y) and coincides with the thresholde

feature difference of pixel (x,y) at the scale levelp and
orientationq. In the next stage an arrayKp(x,y) is calcu-
lated for each scale levelp with the norm of vectorsSp

xy ,
that is,

Kp~x,y!5iSp
xyi5H (

q51

4

@Spq~x,y!#2J 1/2

. ~10!

The definition of Kp , i.e., the norm of the feature
difference vector, is a common metric used in stand
clustering algorithms for segmentation. According to E
~10!, the arrayKp(x,y) concentrates the information on th
likely defective areas obtained in the four orientatio
q51, . . . ,4 in asingle array for the scale levelp. Thus, the
result of this stage is a set of four imagesKp(x,y) with
p51, . . . ,4.

In the next two stages we combine the information co
ing from the four different resolution levelsp. To this end
the decompressed version of each arrayKp(x,y) is pre-
pared. In order to avoid false alarms, we consider tha
defect must appear in at least two adjacent resolution
els. As a simple way to implement a logic ‘‘and,’’ assum
ing thatKp(x,y) is proportional to the probability of there
being a defect, we then calculate the geometric mean
every pair of adjacent levels by the formulas:

K12~x,y!5@K1~x,y!K2~x,y!#1/2,

K23~x,y!5@K2~x,y!K3~x,y!#1/2, ~11!

K34~x,y!5@K3~x,y!K4~x,y!#1/2.

This operation reduces false alarms yet preserves mos
the defective areas. Now we combine the result
K12(x,y), K23(x,y), andK34(x,y) in a logic ‘‘or,’’ simply
as the arithmetic mean, to allow for defects detected
different scales:

K~x,y!5 1
3 @K12~x,y!1K23~x,y!1K34~x,y!#. ~12!

The arrayK(x,y) contains the joint contribution of the six
teenpq channels.

The last stage is the binarization ofK(x,y) to provide an
image B(x,y) where local defects~objects! appear seg-
mented from the regular texture~background!. This is
achieved by thresholdingK(x,y). Values below the thresh
old are considered as belonging to the background,
values above the threshold are considered as belongin
defective areas.
 to 161.111.180.157. Terms of Use:  http://spiedl.org/terms
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Escofet et al.: Detection of local defects in textile webs . . .
This threshold value is not critical and can be estima
in different ways. One possible way is to calibrate the s
tem at the beginning of the process by applying the pro
dure to an additional piece of faultless texture whose im
would be the input imaget0(x,y). In this case the obtaine
arrayK0(x,y) should contain very low values. An estima

tion of the thresholdU asU5K̄01rs0 , with K̄0 being the
mean value ofK0(x,y), s0 its standard deviation, andr a
standard constant of valuer53, provides an appropriat
threshold value for binarization. Alternatively, a simpl
way is to calculateU5(r/16)(p(qspq , which is propor-
tional to the mean value of the sixteen standard deviati
spq with a constant of proportionality equal to a standa
value, for example,r53. An opening operation with a
small mask of 333 pixels helps to remove the remainin
isolated noisy points from the binary output imageB(x,y).

3 Results

We have applied the process described in Sec. 2 to a va
of textile webs with different structures~plain, twill, etc.!
and with yarns of different colors affected by common
cal defects. These defects are caused by missing or br
yarns or by changes in tension during production in
loom. The defects display a variety of shapes: line, sp
band, ladder, hole, etc. In this section we show the res
with representative examples chosen from among th
mentioned. The examples shown below were carried
using a Pulnix TM-765 camera and a MVP-AT Matro
framegrabber for image acquisition in a Pentium PC en
ronment. The implementation of the algorithm involve
Matlab tools.

For industrial application the inspection unit shou
adapt to the conditions of each particular case. The imag
hardware may consist of either one moving camera or s
eral systems working in parallel for time saving, depend
on the surface to be inspected and the speed requirem
In practice, needs can be very different. After the loom,
fabric usually passes through a checking machine wher
inspected visually. When a defect is detected, a person
cides either to mend it manually~if possible!, or to record
its location on a form, or even to cut the fabric from side
side, depending on how severe the defect is. The qua
criteria applied in this checking machine are strongly d
pendent on the type of fabric, the manufacturer’s standa
etc., and therefore the time taken at the checking mac
also varies. We consider that there is generally eno
spare time to apply our method of defect detection betw
the loom and the checking machine.

Before applying the algorithm, it is important to fix th
acquisition conditions, not only in terms of uniformity bu
also in terms of scale and resolution. We consider the m
mum frequencyf max5f451/4 yarn/pixel. This means that
woven yarn is digitized into four pixels on average. If th
yarns in the weft and warp directions are of different thic
ness, the camera is adjusted to fit the thinner yarn to f
pixels. In our experiments this adjustment was made ma
ally. Adjustment of lightness and scale is reasonably e
and only needs to be done once unless we change the
The images of the textile samples we analyzed are
3256 pixels in size.
Downloaded from SPIE Digital Library on 01 Dec 2010
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Figure 3~a! shows a sample of twill fabric containin
some faults. The yarns in the warp are of a different co
from the yarns in the weft. The defect appears as alig
spots, although some isolated spots can also be found.
algorithm for defect detection is applied to the image
Fig. 3~a!, which is taken as the entryt(x,y). Figures 3~b! to
3~e! show the decompressed versions of the arraysKp(x,y)
for resolution levelsp54, . . . ,1. Figure 3~f! is the image
K(x, y) with the joint contribution of all thepq channels,
and Fig. 3~g! is the binary imageB(x,y), which is the
thresholded binary version ofK(x,y) and constitutes the
output image. It can be seen that both the aligned and
isolated defective spots are correctly segmented from
background in Fig. 3~g!.

An interesting case is shown in Fig. 4. A sample of tw
fabric contains a faulty band in the central part of the ima
@Fig. 4~a!#. The defect is called athin place, and is caused
by a lower density of filling yarns in this band. Figures 4~b!
to 4~e! are again the decompressedKp(x,y) with
p54, . . . ,1. Figure 4~f! is the arrayK(x,y) with the joint
contribution of channels, and Fig. 4~g! is the final binarized
image B(x,y). Although the faulty band is clearly seg
mented in the final result, in this case the single resolut
level p53 @Fig. 4~c!# alone provides a better intermedia
result. In this example, channelp53 clearly provides the
best tuning of the defect among the four resolution ch
nels. The later operations~multiplication and addition!, de-
signed for the sake of automatism and robustness
method, to reduce noise and to integrate information fr
the four resolution channels, have the drawback of mix
channels that are very well tuned with the defect with o
ers having no information. As a result, the quality of t
segmentation is not so good as it could be if we chose
best channel alone. However, with this mixing procedu
we gain robustness. The benefits of high robustness
automatism, regardless of the type of web or defect,
much more important than a perfect segmentation.

In the remaining figures we present~a! the input image
of a fabric to inspectt(x,y), together with~b! an image of
the joint contribution channelsK(x,y) and~c! the final out-
put imageB(x,y). Figures 5 and 6 correspond to twill fab
rics with defects along a line: a missing yarn~mispick! and
a double yarn, respectively. In both cases the output ima
contain the defects correctly discriminated from the ba
ground. Figures 7 and 8 correspond to twill samples w
defects in a dotted distribution: several broken yarns an
down heddle defect respectively. The broken yarns are
rectly segmented in Fig. 7~b!. The small size of the defect
in the down heddle defect makes for difficulty in detecti
some dots and discriminating them from the backgrou
Careful observation of the arrayK(x,y) with the joint con-
tribution of channels in Fig. 8~b! allows us to locate all the
faults. The result of the final opening operation is, in th
case, that some points are removed@Fig. 8~c!#. However,
more than 50% of point defects~8 out of 15! are detected
by applying the general method.

The plain fabric in Fig. 9~a! has two spots of very dif-
ferent intensity. The spots are quite big in comparison w
previous dotted defects. Both spots are successfully s
mented in Fig. 9~b! and 9~c!.
2301Optical Engineering, Vol. 37 No. 8, August 1998
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2302 Optica
Fig. 3 (a) Faulty twill fabric (multiple threads broken); (b) to (e) decompressed versions of the arrays
Kp(x,y) for the resolution levels p54, . . . ,1, respectively; (f) array K(x,y) with the joint contribution of
all the pq channels; (g) binary output image B(x,y).
l Engineering, Vol. 37 No. 8, August 1998
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Escofet et al.: Detection of local defects in textile webs . . .
Fig. 4 (a) Thin-place effect in a twill fabric; (b) to (e) decompressed versions of the arrays Kp(x,y) for
the resolution levels p54, . . . ,1, respectively; (f) array K(x,y) with the joint contribution of all the pq
channels; (g) binary output image B(x,y).
2303Optical Engineering, Vol. 37 No. 8, August 1998
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Escofet et al.: Detection of local defects in textile webs . . .
Finally, Fig. 10 contains a fabric with yarns of the sam
color. The defect is due to the crossed breaking of so
yarns in both the warp and weft directions. After proce
ing, the defect in the two perpendicular directions is c
rectly segmented@Figs. 10~b! and 10~c!#.

4 Conclusions

The method proposed for local-defect detection has b
shown to be a useful tool for inspecting industrial materi

Fig. 5 (a) Twill fabric with missing yarn (mispick); (b) K(x,y); (c)
output image B(x,y).
2304 Optical Engineering, Vol. 37 No. 8, August 1998

Downloaded from SPIE Digital Library on 01 Dec 2010
with periodic regular texture. The method is based on
multiscale and multiorientation Gabor filter scheme th
roughly imitates the early human vision process.

As we intended, a general improvement and enlar
ment of the vision system capabilities can be achieved
using the proposed algorithm to detect local defects
regular textures. Versatility, full automatism, computation
efficiency, robustness, and industrial applicability were
pursued properties of the method, and we have dem

Fig. 6 (a) Twill fabric with double yarn defect; (b) K(x,y); (c) output
image B(x,y).
 to 161.111.180.157. Terms of Use:  http://spiedl.org/terms
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Escofet et al.: Detection of local defects in textile webs . . .
strated them through a selection of results obtained fr
textile inspection.

We have built an algorithm for the automatic applicati
of the method to an input image of the sample un
inspection. The algorithm applies the Gabor filter sche
in the spatial domain following a fast pyramid impleme
tation for computational efficiency. An image with the joi
contribution of the complete set of multiresolution a
multi-orientation channels is binarized. In the binary outp

Fig. 7 (a) Twill fabric with broken yarns; (b) K(x,y); (c) output im-
age B(x,y).
Downloaded from SPIE Digital Library on 01 Dec 2010
image local defects appear segmented from the ba
ground.

One of the most important advantages of the metho
that it is multipurpose without requiring any adjustmen
The only considerations that require attention are opt
conditions such as lightness and scale to guarantee opt
performance, and a preliminary analysis of a prototy
defect-free sample to extract the mean and standard de
tion of its texture descriptors. We have avoided the use

Fig. 8 (a) Twill fabric with down heddle defect; (b) K(x,y); (c) out-
put image B(x,y).
2305Optical Engineering, Vol. 37 No. 8, August 1998
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Escofet et al.: Detection of local defects in textile webs . . .
adjustable weighting functions or parameters that mi
make the inspection process too dependent on adjustm
to a particular reduced set of textures or defects. T
method is robust. It is resistant to common input variatio
such as changes of illumination. It works with contra
rather than luminance units, and therefore it should w
well under reasonable changes of brightness level. Furt
more, it can be applied to composite patterns with eleme
of different brightness without any particular adaptation.

Fig. 9 (a) Large defects of different colors in a plain fabric with black
and white threads; (b) K(x,y); (c) output image B(x,y).
2306 Optical Engineering, Vol. 37 No. 8, August 1998

Downloaded from SPIE Digital Library on 01 Dec 2010
t

-

addition, there is no preferred orientation in which the te
ture has to be fixed before applying the method.

In this paper, we have applied this multipurpose meth
to web inspection and noted its capabilities in detect
common local defects in woven fabrics. Although Jasp
et al.6 did not rely on the capability of Gabor filters t
detect local defects, we have demonstrated in this work
they actually can. This fact confirms our preliminary resu
previously reported.7

Fig. 10 (a) White twill fabric with crossed break of multiple threads;
(b) K(x,y); (c) output image B(x,y).
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Escofet et al.: Detection of local defects in textile webs . . .
We have tested the proposed method on a wide var
of defective fabric samples, obtaining, in general, ve
good results. We have presented several represent
cases where different shapes, structures, colors, sizes
of defects and textured background have been corre
segmented.

The versatility of the method has been demonstrated
only by its applicability to different regular textures b
also, for a given texture, by its detecting a variety of d
fects. The method does not need human supervision or
vious knowledge about the texture or defect. In fabric
spection, for example, it does not need information on
repeat pattern, in contrast with the method proposed in R
6.

The results of defect detection in fabrics shown and d
cussed in this paper lead—as a first application—to tex
inspection. Except for minor adaptations to each particu
case, the method is ready to be used in an on-line indus
inspection system.
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