
Chapter 1

A Region-aided Colour
Geometric Snake

1.1 Introduction

Deformable contour models or snakes are commonly used in image processing
and computer vision due to their natural handling of shape variation and inde-
pendence of operation (once initialised). A hypothesised contour, represented as
a curve or surface, evolves under the influence of internal forces, external image
dependent forces, and certain constraints, till it converges on the object(s) of
interest.

Generally, there are two types of snakes, parametric snakes and geometric
snakes. The parametric model minimises a deforming curve towards the pull of
features such as edges and lines. The energy is composed of terms that control
its smoothness and attract it to the object boundary. Although significant
improvements have been made in this field over the last decade, parametric
contours still suffer from imprecise shape representation. The geometric model
of active contours, which avoids the need to parameterize the curve, has been
hailed as the solution to topological problems. Geometric snakes are based on
the theory of curve evolution and are numerically implemented via the level
set algorithm. They are totally intrinsic, which means they can automatically
handle topological changes without resorting to dedicated contour tracking and,
unknown numbers of objects can be detected simultaneously. Furthermore, they
can enjoy much larger capture areas than parametric snakes.

Whilst geometric or geodesic snakes go a long way in improving on para-
metric snakes, they still suffer from two significant shortcomings. First, they
allow leakage into neighbouring image regions when confronted with weak edges;
hereafter we refer to this as the weak-edge leakage problem. Second, they may
rest at local maxima in noisy image regions. In this chapter, both of these
problems are dealt with by introducing diffused region forces into the standard
geometric snake formulation. The proposed method is referred to as the Region-
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aided Geometric Snake or RAGS. It integrates gradient flows with a diffused
region vector flow. The gradient flow forces supplant the snake with local object
boundary information, while the region vector flow force gives the snake a global
view of object boundaries. The diffused region vector flow is derived from the
region segmentation map which in turn can be generated from any image seg-
mentation technique. This chapter demonstrates that RAGS can indeed act as
a refinement of the results of the initial region segmentation. It also illustrates
RAGS’ weak edge leakage improvements and tolerance to noise through various
examples. Using colour edge gradients, RAGS will be shown to naturally extend
to object detection in colour images. The Partial Differential Equations (PDEs)
resulting from the proposed method will be implemented numerically using level
set theory which enables topological changes to be dealt with automatically.

In Section 1.2, we review the geometric snake model, encompassing its
strength and its shortcomings. Section 1.3 provides a brief overview of the
geometric GGVF snake, also outlining its shortcomings. The former section is
essential as RAGS’ theory is built upon it, and the latter is necessary since we
shall make performance comparisons to it. Section 1.4 presents the derivation
of the RAGS snake including its level set representation. Then, in Section 1.5,
the numerical solutions for obtaining the diffused region force and level set im-
plementation of RAGS are introduced. Section 1.6 describes the extension of
RAGS to vector-valued images, again showing the equivalent level set numerical
representation. Since RAGS is independent of any particular region segmenta-
tion method, its description so far is not affected by the fact that no discussion
of region segmentation has yet taken place! This happens next in Section 1.7
where the Mean Shift algorithm is employed as a typical, suitable method for
obtaining a region segmentation map for use with RAGS. Following a brief sum-
mary of the RAGS algorithm in Section 1.8, examples and results illustrating
the improvements obtained on noisy images and images with weak edges are
presented in Section 1.9. This includes an application with quantitative results
comparing the performance of RAGS against the standard geometric snake.

1.2 The Geometric Snake

Geometric active contours were introduced by Caselles et al. [1] and Malladi et
al. [2] and are based on the theory of curve evolution. Using a reaction-diffusion
model from mathematical physics, a planar contour is evolved with a velocity
vector in the direction normal to the curve. The velocity contains two terms: a
constant (hyperbolic) motion term that leads to the formation of shocks1 from
which more varied and precise representations of shapes can be derived, and
a (parabolic) curvature term that smooths the front, showing up significant
features and shortening the curve. The geodesic active contour, hereafter also
referred to as the standard geometric snake, is now introduced. Let C(x, t) be

1A discontinuity in orientation of the boundary of a shape; it can also be thought of as a
zero-order continuity.
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Figure 1.1: Motion under curvature flow: A simple closed curve will (become
smoother and) disappear in a circular shape no matter how twisted it is.

a 2D active contour. The Euclidean curve shortening flow is given by

Ct = κ ~N (1.1)

where t denotes the time, κ is the Euclidean curvature, and ~N is the unit
inward normal of the contour. This formulation has many useful properties.
For example, it provides the fastest way to reduce the Euclidean curve length
in the normal direction of the gradient of the curve. Another property is that
it smooths the evolving curve (see Figure 1.1).

In [3, 4], the authors unified curve evolution approaches with classical energy
minimization methods. The key insight was to multiply the Euclidean arc-length
by a function tailored to the feature of interest in the image.

Let I : [0, a]× [0, b] → <+ be an input image in which the task of extracting
an object contour is considered. The Euclidean length of a curve C is given by

L :=

∮

|C ′(q)|dq =

∮

ds (1.2)

where ds is the Euclidean arc-length. The standard Euclidean metric ds2 =
dx2+dy2 of the underlying space over which the evolution takes place is modified
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Figure 1.2: Plot of the monotonically decreasing function g(x) = 1/(1 + x).

to a conformal metric given by

ds2
g = g(|∇I(C(q))|)2(dx2 + dy2) (1.3)

where g(.) represents a monotonically decreasing function such that g(x) → 0
as x → ∞, and g(x) → 1 as x → 0. A typical function for g(x) can be:

g(x) =
1

1 + x
(1.4)

This is plotted in Figure 1.2. Using this metric, a new length definition in
Riemannian space is given by

L< :=

∫ 1

0

g(|∇I(C(q))|)|C ′(q)|dq. (1.5)

Then the minimum path between two point in this metric is no longer nec-
essary to be a straight line, which is the case in the standard Euclidean metric.
The minimum path is now affected by the weighting function g(.). Two distant
points in the standard Euclidean metric can be considered to be very close to
each other in this metric if there exists a route along which values of g(.) are
nearer to zero. The steady state of the active contour is achieved by searching
for the minimum length curve in the modified Euclidean metric:

min

∫ 1

0

g(|∇I(C(q))|)|C ′(q)|dq (1.6)

Caselles et al. [4] have shown that this steady state is achieved by determining
how each point in the active contour should move along the normal direction in
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Figure 1.3: Motion under constant flow: it causes a smooth curve to evolve to
a singular one.

order to decrease the length. The Euler-Lagrange of (1.6) gives the right-hand
side of (1.7), i.e the desired steady state:

Ct = g(|∇I |)κ ~N − (∇g(|∇I |) · ~N ) ~N (1.7)

Two forces are represented by (1.7). The first is the curvature term multi-
plied by the weighting function g(.) and moves the curve towards object bound-
aries constrained by the curvature flow that ensure regularity during propaga-
tion. In application to shape modelling, the weighting factor could be an edge
indication function that has larger values in homogeneous regions and very small
values on the edges. Since (1.7) is slow, Caselles et al. [4] added a constant in-

flation term to speed up the convergence. The constant flow is given by Ct = ~N
showing each point on the contour moves in the direction of its normal and on
its own can cause a smooth curve to evolve to a singular one (see Figure 1.3).
However, integrating it into the geometric snake model lets the curvature flow
(1.1) remain regular:

Ct = g(|∇I |)(κ + c) ~N − (∇g(|∇I |) · ~N ) ~N (1.8)

where c is a real constant making the contour shrink or expand to the object
boundaries at a constant speed in the normal direction.

The second term of (1.7) or (1.8) depends on the gradient of the conformal
factor and acts like a doublet, which attracts the active contour further to the
feature of interest since the vectors of −∇g point towards the valley of g(.),
the middle of the boundaries. This −∇g increases the attraction of the active
contour towards the boundaries. For an ideal edge, g(.) tends to zero. Thus,
it tries to force the curve to stop at the edge, but the convergence quality still
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Figure 1.4: The doublet effect of the second term of equation (1.7)- The gradient
vectors are all directed towards the middle of the boundary, which forces the
snake into the valley of g(.).

highly depends on this stopping term. If g(.) is not small enough along edges,
there will be an underlying constant force caused by c.

The geodesic or geometric active contour can be numerically implemented
using Level Sets. This is demonstrated later in Section 1.4.4 when we deal with
the extended formulation of the standard geometric snake into RAGS.

1.2.1 Examples of the standard Geometric Snake

The standard geometric snake has been applied successfully in many application
areas, not least in the medical imaging arena. Figure 1.5-left shows an example
of a geometric snake initialised in the stomach region of an abdominal section in
a CT image. The final snake is shown in Figure 1.5-right. In the next example
an extension of the geometric snake for colour images is shown in Figure 1.6, a
thigh slice from the Visible Human Project. The figure on the left shows the
initial snake as before, and the final converged snakes are shown on the right,
demonstrating the topological adaptation of the snake’s level set implementa-
tion. Note, the top snake has failed to fully converge. Hence, while adequate

Figure 1.5: Example of geometric snake segmenting an inner boundary: recovery
of the stomach region of an abdominal CT section - From [5], c©2003 IEEE.
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Figure 1.6: Example of a colour image - left: original image with initial snake -
right: converged geometric snake (with a minor convergence problem in the top
right corner of the snake) - From [6]. (Colour Slide)

for many situations, geometric snakes can suffer from certain shortcomings and
the next section briefly deals with the nature of some such failings.

1.2.2 Shortcomings of the Geometric Snake

Geometric active contour models have the significant advantage over classical
snakes that changes in topology due to the splitting and merging of multiple
contours are handled in a natural way. However, they suffer in two specific ways:

1. They use only local information and hence are sensitive to local minima.
This means they are attracted to noisy pixels and can fail to converge
on the desired object when they rest at such strong ‘features’. They fail
to recognise, possibly weaker but true features further away in the image
landscape, for lack of a better global understanding of the image. An
example is shown in Figure 1.7-left.

2. The constant flow term makes the snake expand or shrink. It can speed
up the convergence and push the snake into concavities easily when the
objects have good contrast, i.e. when the gradient magnitudes at object
boundaries are large. However, when the object boundary is indistinct or
has gaps, the snake tends to leak through the boundary mainly because
of this constant force. The second term in (1.8) is designed to attract the
contour further close to the object boundary and also to pull back the
contour if it leaks through the boundary, but the force may just not be
strong enough since it still depends on the gradient values. It can not
resolve the existence of a weak edge. Figure 1.7-right demonstrates this
shortcoming of the standard geometric snake. The evolving of the snake
is based on the gradient information, and as there is gradual change of the
intensity, the contour leaks through.
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Figure 1.7: Noise sensitivity and weak-edge leakage problems. In each case the
evolving snake is shown in a light colour and the final snake in a dark one.

The result of such failures is that the geometric snake will converge to a
nonsensical form. Both these effects are demonstrated in Figure 1.8 where the
cells contain fuzzy borders and strong but tiny dark ‘granules’ that have led the
standard geometric snake astray (top-right image). The images in the bottom-
row of Figure 1.8 show the region map used for the RAGS formulation outlined
later in this chapter and the converged RAGS snakes. This figure also illustrates
the power of the geometric snake in splitting to find multiple objects.

Figure 1.8: Multiple objects - top row: initial snake and standard geometric
snakes - bottom row: region segmentation used by RAGS and converged RAGS
snakes (Original image courtesy of Dr. Douglas Kline, Department of Biological

Sciences, Kent State University, US ). (Colour Slide)
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Figure 1.9: GVF Field compared to traditional potential force vector field - from
left: A simple line-drawing U shape (binary) image, the traditional potential
force vector field, and GVF Field. - From [8], c©2003 IEEE.

1.3 The Geometric GGVF snake

In this section we briefly introduce the geometric GGVF snake and consider
its advantages and shortcomings. Later in the chapter, the GGVF snake will
be used along with the standard geometric snake to make comparisons to the
performance of RAGS.

The Gradient Vector Flow (GVF) active contour was first introduced by
Xu and Prince [7] in a parametric framework. The authors proposed a new
external force: a diffusion of the gradient vectors of a greylevel or binary edge

map derived from the original image. The GVF goes some way towards forcing
a snake into boundary concavities while providing a larger capture range due
to its diffused gradient vector field. Figure 1.9-right shows the diffused gradient
vectors for a simple object in 1.9-left. The traditional potential force is shown
in 1.9-centre.

The same authors have also introduced the GGVF, a generalised GVF snake
model. The GGVF improves the GVF by replacing the constant weighting factor
with two spatially varying weighting functions resulting in a new external force
field. The weighting factors provide a trade-off between the smoothness of the
GVF field and its conformity to the gradient of the edge map. The result is
that contours can converge into long, thin boundary indentations. The GGVF
preserves clearer boundary information while performing vector diffusion, while
the GVF will diffuse everywhere within image. As shown in Figure 1.10, the
GGVF snake shows clear ability to reach concave regions.

Later in [10], Xu et al. showed the GGVF equivalence in a geometric frame-
work. A simple bimodal region force generated as a two-class fuzzy membership
function was added to briefly demonstrate weak-edge leakage handling. The
geometric GGVF snake is useful when dealing with boundaries with small gaps.
However, it’s still not robust to weak edges, especially when a weak boundary is
close to a strong edge, the snake readily steps through the weak edge and stops
at the strong one. This is illustrated in Figure 1.11-left.

A further problem with the GGVF snake is that it does not always allow the
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Figure 1.10: Concavity convergence comparison - from left: Initial snake, GVF
snake result, and GGVF snake result - From [9].

Figure 1.11: GGVF weaknesses - left: The GGVF snake steps through a weak
edge towards a neighbouring strong one (final snake in white) - right: It also
can encounter topological problems (final snake in black). The evolving snake
is shown in a lighter colour in both cases.

detection of multiple objects. These topological problems arise, even though
the GGVF snake was specified in the geometric model, when the vector field is
tangent to the snake contour. In such cases there would be no force to push or
pull it in the perpendicular direction (to the vectors). This effect is shown in
Figure 1.11-right.

1.4 Region-aided Geometric Snake

We now begin to describe a novel approach to make the geometric snake much
more tolerant towards weak edges and image noise. It comprises the integration
of gradient flow forces with diffused region forces in the image resulting in the
region-aided geometric snake, RAGS:

• The gradient flow forces supplant the snake with local object boundary
information. They play a main role in all active contours2.

2There are notable exceptions to this, e.g. [11].
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• The region forces are based on the global image features and supplant the
snake with global image information.

We show that this combination of forces not only improves the performance of
the geometric snake towards weak edges, but also makes it more immune to
noise. The PDE thus obtained, evolves an initial contour towards final conver-
gence under the influence of both internal forces and boundary-regional image
forces, and is implemented via level sets.

The proposed region force can be generated from any image segmentation
technique. This means that while RAGS is independent of any particular seg-
mentation technique, it is dependent on the quality of the regions produced.
However, we show a good degree of tolerance to (reasonable) segmentation
quality, and that our snake indeed acts as a refinement of the results of the
initial region segmentation. Later in Section 1.7, we introduce the mean shift
segmentation technique presented by Comaniciu and Meer in [12, 13] which is
a very elegant method to generate region maps for this work. Results will be
presented based on region maps obtained from both the under-segmentation
and over-segmentation options of the software from Comaniciu and Meer.

1.4.1 Gradient flow force: a summary

As mentioned earlier, the gradient flows impose local constraints while the re-
gion force contributes global constraints. Within a homogeneous region of an
image, measured by region segmentation, the snake evolves mainly according
to gradient flows. The first gradient flow is the weighted length gradient flow,
which is given by (1.7). It is composed of two terms. The first is the weighted

curvature term, g(|∇I |)κ ~N , which smooths the active contour and also shrinks

it. The second term, (∇g(|∇I |) · ~N ) ~N , is on the normal factor of the gradient of
the weighting function. Unlike the curvature, the vector field ∇g(|∇I |) is static.
The direction and strength of this field depends on position only, independent
of time and contour.

The second gradient flow, g(|∇I |)c ~N , is introduced by constant motion
which locally minimises area (see [14] for proof). It helps the snake shrink
or expand towards object boundaries and accelerates its convergence speed.

For all these forces, the weighting function g can be defined as any decreasing
function of the image I edge map f such that g → 0 as f → ∞. When dealing
with greylevel images, the solution (as used in this work) is straightforward:

f = |∇(Gauss ∗ I)| and g =
1

1 + f
(1.9)

This monotonically decreasing nature is illustrated in Figure 1.2. As for colour
images, the edge function f becomes a little more intricate (an example function
will be presented in Section 1.6). However, the derivation of the decreasing
function g can remain the same.
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1.4.2 Diffused region force

The aim of generating a region force is to empower the snake with a global view
of image features. A typical region segmentation method splits an image into
several regions, giving the segmentation map S. From this, the region map R
is generated by computing the gradient of S. The gradient computation is the
same as the edge computation stage for generating gradient forces. Then, we
compute the gradient ∇R of this region map, resulting in region constraints in
the vicinity of the region boundaries. Having slithered across a homogeneous
region reliant on the gradient flow forces, if the snake tries to step from one
region into another, it must concur with the region force in ∇R since it breaks
the region criteria, which probably indicates a leakage. The force field ∇R
has vectors pointing towards the centre of the region boundaries. The capture
area of this pure region force is quite small; only immediate areas close to
region boundaries. The vectors need to be diffused further away from the region
boundaries to create a larger capture field. To achieve this, we can diffuse ∇R
resulting in region forces with a larger capture area along the region boundaries.
Hence, the region force vector field [R̃(z) = (u(z), v(z)), z = (x, y)] is obtained
by solving the following equations:

{

p(|∇R|)∇2u − q(|∇R|)(u −∇Ru) = 0
p(|∇R|)∇2v − q(|∇R|)(v −∇Rv) = 0

(1.10)

where ∇2 is the Laplacian operator with dimensions u and v, p(.) and q(.) are
weighting functions that control the amount of diffusion, and ∇Ru and ∇Rv are
the components of vector field ∇R along the u and v directions3. The weighting
functions are selected such that p(.) gets smaller as q(.) becomes larger with the
desirable result that in the proximity of large gradients, there will be very little
smoothing and the vector field will be nearly equal to the gradient of the region
map. We use the following functions for diffusing the region gradient vectors:

{

p(|∇R|) = e−(|∇R|/K)

q(|∇R|) = 1 − p(|∇R|)
(1.11)

where K is a constant and acts as a trade-off between field smoothness and gra-
dient conformity. The solution of (1.10) is the equilibrium state of the following
partial differential equations:

{

ut = p(|∇R|)∇2u − q(|∇R|)(u −∇Ru)
vt = p(|∇R|)∇2v − q(|∇R|)(v −∇Rv)

(1.12)

where u and v are treated as functions of time. These partial differential equa-
tions can be implemented using an explicit finite difference scheme. An iterative
process can be set up, and guaranteed to converge with the following constraint

∆t ≤
∆x∆y

4pmax
(1.13)

3Theoretically, ∇R can be diffused in any two orthogonal directions, u and v, within the
image domain. However, practically we will only choose x and y directions corresponding to
image plane coordinates. Thus ∇Ru and ∇Rv are equal to δR

δx
and δR

δy
respectively.
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Figure 1.12: Region force diffusion - top row: A synthetic image with additive
Gaussian noise, region segmentation map, region boundary map R, and gradient
of the region map R (and a small selected area) - bottom row: diffused region
vector field, and close-up views in the small selected area of the vectors in the
gradient of region map and the diffused region vector field respectively.

where ∆x and ∆y are the spatial sample intervals, pmax is the maximum of p(.),
and ∆t is time step, the interval between time tn and time tn+1 when iteratively
solving (1.12).

From (1.11) and (1.12) we note that within a homogeneous region, based
on the criteria of region segmentation, p(.) equals one while q(.) equals zero.
Thus (1.12) is only left with the first term (as the second term vanishes). This
effectively smooths the vector field. However, at the region boundaries, p(.) → 0
and q(.) → 1. The smoothing term imposes less and the region vectors are close
to the gradient of the region map R. Thus the diffused region vector field
provides the evolving snake with an attracting force in a sufficiently large range
near the region boundaries, and also allows the snake to evolve solely under
other gradient forces.

Figure 1.12 illustrates an example of region force diffusion, including close-up
views of pre and post-diffusion vector field.

1.4.3 Region-aided snake formulation

Next, we can derive the region-aided geometric snake formulation. The standard
geometric snake is given by (1.8). In the traditional sense, the snake forces fall
into two types, internal forces and external forces. The internal forces impose
regularity on the curve and control the elasticity and rigidity of the snake. The
external forces pull the snake towards salient image features such as object
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boundaries. Thus, the internal and external forces in (1.8) can be written as

{

Fint = g(|∇I |)κ ~N

Fext = g(|∇I |)c ~N −∇g(|∇I |)
(1.14)

where g(.) is the stopping function as before. The first term of the external
forces is a constant shrink or expand force in the normal direction of the snake.
It can be separated from other external forces in the sense that it is not spatially
static in the image domain as other external forces and needs different numerical
schemes. However, considering the previous definition of snake forces and that
the constant force alone can push the snake towards boundaries, we keep it in
the external term.

The diffused region force is a feature driven force and spatially static. So we
can add the diffused region force to the external term:

{

Fint = g(|∇I |)κ ~N

Fext = αg(|∇I |) ~N + βR̃ −∇g(|∇I |)
(1.15)

where R̃ is the region force vector field obtained in (1.10) and α is a new constant
incorporating c. Constants α and β act as a trade-off between gradient forces
and region forces. In practice, β is a constant from 0 to 1 for most non-highly
textured images. If good segmentation results are available, β should be set
close to 1.

The snake evolves under all the internal and external forces. However, only
the forces in the normal direction of the evolving contours can change the geom-
etry. The forces tangential to the contours can only change the parameterisation
of the contours. Thus, a geometric snake evolving under internal and external
forces can be interpolated as

Ct = [(Fint + Fext) · ~N ] ~N (1.16)

Finally, by substituting (1.15) into (1.16), the region-aided geometric snake
formulation becomes:

Ct = [g(|∇I |)(κ + α) −∇g(|∇I |) · ~N + βR̃ · ~N ] ~N (1.17)

1.4.4 Level set representation

In this section, we outline the level set representation for the region-aided geo-
metric snake. Level sets describe a moving front in an implicit function and are
the basis for the numerical algorithm for curve evolution according to functions
of curvature, introduced by Osher and Sethian [15, 16]. In the application to
active contours, the evolving contour is embedded into a higher dimensional
surface as a zero level set. The entire surface, the level sets, is an implicit rep-
resentation of the embedded contour. As shown in Figure 1.13, the snake is
initially built in a three dimensional surface, which later evolves according to
underlying forces. Finally, the converged snake is extracted from the level sets
by cutting it at zero height.
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Figure 1.13: Level sets evolution for an embedded snake - top row: initial
snake on test image, evolving contour, and final converged snake - bottom row:
Corresponding evolving level sets. The snake is tracked at zero height.

Let C be a level set of a function of φ : [0, a] × [0, b] → <. That is, C is
embedded into the zero level set with φ an implicit representation of the curve
C. This representation is parameter free and intrinsic. Given a planar curve
that evolves according to Ct =

� ~N for a given function
�
, then the embedding

function should deform according to φt =
�
|∇φ|, where

�
is computed on the

level sets. By embedding the evolution of C in that of φ, topological changes
of C are handled automatically and, accuracy and stability are achieved using
numerically stable computations.

The internal curvature and external pressure terms of the RAGS formulation
in (1.17) can be easily transferred to a level set representation:

{

Ct = g(|∇I |)κ ~N → φt = g(|∇I |)κ|∇φ|

Ct = g(|∇I |)α ~N → φt = g(|∇I |)α|∇φ|
(1.18)

The other external forces in (1.17) are static vector fields derived from image
data which do not change as the active contour deforms. Static force fields are
defined on the spatial positions rather than the active contour itself. Since ~N
is the inward normal, the level set representation of the inward unit normal is
given by

~N = −
∇φ

|∇φ|
(1.19)

Then, we have
�
· ~N = −

1

|∇φ|
(

�
· ∇φ) (1.20)
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Combining (1.18) with (1.20) where
�

takes on the static force fields, the level
set representation of RAGS is given by:

φt = g(|∇I |)(κ + α)|∇φ| + ∇g(|∇I |) · ∇φ − βR̃ · ∇φ (1.21)

where g(.) is the stopping function as before. The expression for the curvature
of the zero level set assigned to the interface itself is given by

κ = div
( ∇φ

|∇φ|

)

=
φxxφ2

y − 2φyφxφxy + φyyφ2
x

(φ2
x + φ2

y)3/2
(1.22)

1.5 Numerical Solutions

The numerical solution for region force diffusion is discussed in detail in 1.5.1,
but the detailed numerical solutions for RAGS level set representation are only
presented in Appendix A as they are not critical to understanding the concepts
underlying RAGS. In fact, the whole of this section can be skipped without loss
of continuity.

1.5.1 Numerical solutions for region force diffusion for
RAGS

Initially, a mesh grid needs to be selected, with final accuracy directly depen-
dent on its resolution. However, due to the nature of a digital image, the grid
resolution is constrained to the pixel level. It was shown in Section 1.4.2 that the
steady solution of (1.10) can be achieved by computing the equilibrium state of
(1.12). The initial state of the region force vector field R̃ is given by the gradient
of the region map R. Simple central differences can be used to approximate ∇R,
resulting in vectors that are then diffused. Let ∆x and ∆y be the grid spacing,
∆t be the time step, and i, j, and n represent the spatial position and time.
The partial derivative of time can be approximated by forward difference as

ut =
un+1

i,j − un
i,j

∆t
(1.23)

The spatial partial derivatives can be solved using central differences approxi-
mation given by

∇2u =
ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j

∆x∆y
(1.24)

The solutions to partial derivatives of v(x, y, t) are similar to those of u(x, y, t).
The weighting functions given in (1.11) can be easily computed. Thus, substi-
tuting the partial derivatives into (1.12) gives the following iterative solution:

{

un+1
i,j = un

i,j + ∆tΛ

vn+1
i,j = vn

i,j + ∆tΩ
(1.25)
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where,

Λ =
p(.)i,j

∆x∆y
(un

i+1,j + un
i,j+1 + un

i,j−1 + un
i−1,j − 4un

i,j) − q(.)i,j(u
n
i,j − Rx,ij)

and

Ω =
p(.)i,j

∆x∆y
(vn

i+1,j + vn
i,j+1 + vn

i,j−1 + vn
i−1,j − 4vn

i,j) − q(.)i,j(v
n
i,j − Ry,ij)]

where Rx,ij and Ry,ij are partial derivatives of R. They also can be approxi-
mated by central differences as

{

Rx,ij =
Ri+1,j−Ri−1,j

2∆x

Ry,ij =
Ri,j+1−Ri,j−1

2∆y

(1.26)

The convergence is guaranteed with the time step restriction of (1.13).

1.5.2 Numerical solution for the level set implementation
of RAGS

As in the numerical solution for vector diffusion, a computational grid is re-
quired. Once the grid is chosen, the initial level sets φ(x, t) = 0 can be defined
with the property that the zero level set corresponds to the initial contours of
the snake. The signed-distance transform can be used to build the initial level
sets. A brute-force Euclidean distance transform would be computationally in-
feasible. Practically, accuracy is required only near the initial contours and
discrete values based on grid distance can suffice further away. A positive sign
is given to the points outside the contours, and a negative sign is applied to the
points inside.

As shown in (1.17), the snake evolves according to four forces that can be
catagorised into three types based on the nature of their motions:

1. The first motion is of a smoothing and collapsing nature with speed pro-
portional to its curvature as shown in Figure 1.1. It can be numerically
approximated using central differences, because the curvature is only de-
pendent on the contour. It is independent of time and spatial position.

2. The second is expanding or shrinking with a spatially constant speed, char-
acterised by αg(.) in the normal direction of the curve. However, when the
constant term exists the normals can collide with each other while evolv-
ing. Thus shocks, or corners, will form and once a shock has developed,
some information will be lost as it evolves. This means that shocks cause
irreversibility; information can not be recovered by tracing ‘backwards’ in
time. Generally, no new information can be created while evolving, which
is referred to as an entropy condition. Central difference approximation
can not be used to approximate the gradient in this case, as it suffers from
shocks where the entropy condition is invoked. An upwind scheme can be
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used, as an entropy-satisfying scheme, that engages information upwind of
the direction of its propagation. In other words, in order to achieve a sta-
ble numerical scheme, the numerical domain of dependence should contain
the mathematical domain of dependence. Thus, in order to approximate
the gradient of the constant term, it is important first to know which way
the speed function points, and whether it is negative or positive. Then we
can choose proper backward or forward difference approximations.

3. The third type of motion in (1.17) is contributed by the underlying static
velocity field, the direction and strength of which are based on spatial
position. It is independent of the shape and position of the snake. The
motion of contours under this velocity field can be numerically approxi-
mated through upwind schemes by checking the sign of each component
of the velocity field and constructing one-sided upwind differences in the
appropriate direction. For a positive speed component, backward differ-
ence approximation is used, otherwise forward difference approximation
should be applied.

By using these approximation schemes, (1.17) can be numerically imple-
mented. The detailed numerical solutions for RAGS are presented in Appendix
A. For general numerical solution to level sets, including concepts such as en-

tropy condition and upwind scheme, the interested reader is referred to works
by Sethian [17, 16] and by Osher and Fedkiw [18].

1.6 Region-aided Geometric Snake on Vector-
Valued Images

The theory of boundary detection by the geometric or geodesic snake can be
applied to any general ‘edge detector’ function. The stopping function g should
tend to zero when reaching edges.

When dealing with greylevel images, the decreasing function g can be easily
derived from the edge detector f , as shown in (1.9). We use a similar stopping
function for edges obtained directly from vector-valued images such as a colour
image.

A consistent extension of scalar gradients based on a solid theoretical foun-
dation has been presented by di Zenzo [19]. This extension has been applied in
the active contour literature to both geometric and parametric snakes.

In a vector-valued image the vector edge is considered as the largest differ-
ence between eigenvalues in the tensor metric. Let Θ(u1, u2) : <2 → <m be a
m-band image for i = 1, 2, ..., m. For colour images, m = 3. A point in the image
is considered as a vector in <m. The distance between two points, P = (u0

1, u
0
2)

and Q = (u1
1, u

1
2), is given by 4Θ = Θ(P ) − Θ(Q). When this distance tends

to the infinitesimal, the difference becomes the differential dΘ =
∑2

i=1
∂Θ
∂ui

dui
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with its squared norm given by

dΘ2 =

2
∑

i=1

2
∑

j=1

∂Θ

∂ui

∂Θ

∂uj
duiduj (1.27)

Using standard Riemannian geometry notation, then let sij = ∂Θ
∂ui

· ∂Θ
∂uj

, such

that

dΘ2 =

2
∑

i=1

2
∑

j=1

sijduiduj =

[

du1

du2

]T [

s11 s12

s21 s22

][

du1

du2

]

(1.28)

For a unit vector v = (cos θ, sin θ), then dΘ2(v) indicates the rate of change
of the image in the direction of v. The extrema of the quadratic form are
obtained in the directions of the eigenvectors of the metric tensor sij , and the
corresponding eigenvalues are:

λ± =
s11 + s22 ±

√

(s11 − s22)2 + 4s2
12

2
(1.29)

with eigenvectors (cos θ±, sin θ±) where the angles θ± are given by

{

θ+ = 1
2 arctan 2s12

s11−s22

θ− = θ+ + π
2

(1.30)

The maximal and minimal rates of change are the λ+ and λ− eigenvalues
respectively, with corresponding directions of change θ+ and θ−. The strength of
an edge in a vector-valued case is not given simply by the rate of maximal change
λ+, but by the difference between the extremums. Hence, a good approximation
function for the vector edge magnitude should be based on f = f(λ+, λ−). Now
RAGS can be extended to the region-aided geometric colour snake by selecting
an appropriate edge function fcol. The edge stopping function gcol is defined
such that it tends to 0 as fcol → ∞. The following functions can be used (cf.
(1.9)):

fcol = λ+ − λ− and gcol =
1

1 + fcol
(1.31)

Then replacing gcol(.) for the edge stopping term g(.) in (1.17), we have the
colour RAGS snake:

Ct = [gcol(|∇I |)(κ + α) −∇gcol(|∇I |) · ~N + βR̃ · ~N ] ~N . (1.32)

Finally, its level set representation is also given by replacing gcol(.) for g(.) in
(1.21):

φt = gcol(|∇I |)(κ + α)|∇φ| + ∇gcol(|∇I |) · ∇φ − βR̃ · ∇φ (1.33)
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1.7 The Mean Shift Algorithm

This section can be skipped without loss of continuity. Its topic is the process of

generating the image region segmentation map S which is then used as described

in Section 1.4.2. The reader can assume it is available and skip to the next

section.
An essential requisite for RAGS is a segmentation map of the image. This

means that RAGS is independent of any particular segmentation technique as
long as a region map is produced, however, it is dependent on its representa-
tional quality. In this section, the mean shift algorithm is reviewed as a robust
feature space analysis method which is then applied to image segmentation. It
provides very reasonable segmentation maps and has extremely few parameters
that require tuning.

The concept underlying the nonparametric mean shift technique is to anal-
yse the density of a feature space generated from some input data. It aims to
delineate dense regions in the feature space by determining the modes of the un-
known density, i.e. first the data is represented by local maxima of an empirical
probability density function in the feature space and then its modes are sought.
The denser regions are regarded as significant clusters. Comaniciu and Meer
[20, 13] have recently provided a detailed analysis of the mean shift approach,
including the review below, and presented several applications of it in computer
vision, e.g. for colour image segmentation.

We now briefly present the process of density gradient estimation. Consider
a set of n data points {xi}i=1...n in the d-dimensional Euclidean space Rd. Also
consider the Epanechnikov kernel, an optimum kernel yielding minimum mean
integrated square error:

K(x) =

{

1
2Zd

(d + 2)(1 − xT x) if xT x < 1

0 otherwise
(1.34)

where Zd is the volume of the unit d-dimensional sphere. Using K(x) and
window radius h, the multivariate kernel density estimate on the point x is

f̂(x) =
1

nhd

n
∑

i=1

K
(x − xi

h

)

. (1.35)

The estimate of the density gradient can be defined as the gradient of the kernel
density estimate since a differentiable kernel is used:

∇̂f(x) ≡ ∇f̂(x) =
1

nhd

n
∑

i=1

∇K
(x − xi

h

)

. (1.36)

Applying (1.34) to (1.36), we obtain:

∇̂f(x) =
nx

n(hdZd)

d + 2

h2

( 1

nx

∑

xi∈Hh(x)

[xi − x]
)

(1.37)
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where the region Hh(x) is a hypersphere of radius h and volume hdZd, centered
on x, and containing nx data points. The sample mean shift is the last term in
(1.37)

Mh(x) ≡
1

nx

∑

xi∈Hh(x)

[xi − x] (1.38)

The quantity nx

n(hdZd) is the kernel density estimate f̂(x) computed with the

hypersphere Hh(x), and thus (1.37) can be rewritten as

∇̂f(x) = f̂(x)
d + 2

h2
Mh(x), (1.39)

which can be rearranged as

Mh(x) =
h2

d + 2

∇̂f(x)

f̂(x)
. (1.40)

Using (1.40), the mean shift vector provides the direction of the gradient of the
density estimate at x which always points towards the direction of the maximum
increase (in the density). Hence, it converges along a path leading to a mode of
the density.

In [13], Comaniciu and Meer performed the mean shift procedure for im-
age segmentation in a joint domain, the image (spatial) domain and colour
space (range) domain. The spatial constraints were then inherent in the mode
searching procedure. The window radius is the only significant parameter in
their segmentation scheme. A small window radius results in over-segmentation
(i.e. larger number of clusters), and a large radius produces under-segmentation
(yielding a smaller number of clusters). In this work, the performance of RAGS
will be demonstrated on both the under-segmentation and over-segmentation
resolutions of Comaniciu and Meer’s work. In either case, the result of the mean
shift procedure is the region segmentation map S which is passed to RAGS for
generating the diffused region boundary map R̃.

1.8 A summary of the RAGS algorithm

The colour RAGS algorithm is now reviewed with the aid of Figure 1.14. Given
the input colour image, two streams of processing can begin concurrently.

• In the first stream, the vector gradient is computed to provide the edge
function f , which is then used in (1.9) to yield the decreasing function g,
followed by ∇g. Function g will act as spatial weights for the snake cur-
vature force and constant force, and ∇g will contribute to the underlying
doublet attraction force.

• In the second stream, a region segmentation map S is produced by apply-
ing any reasonable segmentation technique, e.g. the mean shift algorithm.
From it, then region map R can be generated using vector gradients.
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Figure 1.14: RAGS processing schema. (Colour Slide)
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Gradient of the region map R provides ∇R, which imposes region forces
immediate to region boundaries. These region forces are then diffused by
solving (1.10), resulting in a region force vector field R̃.

Thus, all the underlying velocity fields and the weighting function g are
ready and prepared. Then we can generate initial level sets based on an initial
snake using the distance transform and evolve the level sets according to all
force fields (rightmost part of Figure 1.14). The curvature force and constant
force adaptively change with the level set snake. Along with the static forces,
they are numerically solved using the principles described in section 1.5.2 with
the solutions given in Appendix A. After the level set evolves to a steady state,
the final snake is easily obtained by extracting the zero level set.

1.9 Experiments and Results

In this section we present results that show improvements over either the stan-
dard geometric snake or the geometric GGVF snake or both, and mainly in
images where there are weak edges or noisy regions preventing the aforemen-
tioned snakes to perform at their best. Although GGVFs have been reported
only using greylevel image gradients, we can also apply them to ‘colour’ gra-
dients (obtained as described in section 1.6), which allows direct comparison
with the colour RAGS. It must also be noted that the GGVF can sometimes
perform better than we have shown in some of the following examples as long
as it is initialised differently, i.e much closer to the desired boundary. In all the
experiments, we have initiated the geometric, GGVF, and RAGS snakes at the
same starting position, unless specifically stated.

1.9.1 Preventing Weak-edge Leakage

We first illustrate the way weak-edge leakage is handled on a synthetic image.
The test object is a circular shape with a small blurred area on the upper right
boundary as shown in Figure 1.15.

The standard geometric snake steps through the weak edge because the
intensity changes so gradually that there is no clear boundary indication in
the edge map. The RAGS snake converges to the correct boundary since the
extra diffused region force delivers useful global information about the object
boundary and helps prevent the snake from stepping through. Figure 1.16
shows, for the test object in Figure 1.15, the edge map, the stopping function
g(.), its gradient magnitude |∇g(.)|, the region segmentation map S, and the
vector map of the diffused region force R̃.

1.9.2 Neighbouring Weak/Strong Edges

The next experiment is designed to demonstrate that both the standard geo-
metric snake and the GGVF snake readily step through a weak edge to reach a
neighbouring strong edge. The test object in Figure 1.17 contains a prominent
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Figure 1.15: Weak-edge leakage testing on a synthetic image - top row: geodesic
snake steps through - bottom row: RAGS snake converges properly using its
extra region force.

Figure 1.16: Diffused region force on weak edge - from left: the edge map, the
stopping function g(.) of edge map, the magnitude of its gradient ∇g(.), the
region segmentation map, and the vector map of the diffused region force R̃.

circle inside a faint one. The presence of the weaker edge at the outer bound-
ary is detected only by the RAGS snake. The geodesic snake fails because the
weaker outer boundary allows the whole snake to leak through (similar to but
in the opposite direction of propagation in Figure 1.15). The GGVF snake fails
due to the strong gradient vector force caused by the inner object boundary.
Practical examples of this can also be observed in most of the real images shown
later, such as Figures 1.20 and 1.26.

1.9.3 Testing on Noisy Images

We also performed comparative tests to examine and quantify the tolerance to
noise for the standard geometric, the geometric GGVF, and the RAGS snakes.
For this a Harmonic shape was used as shown in Figure 1.18. It was generated
using

r = a + bcos(mθ + c) (1.41)

where r is the length from any edge point to the centre of the shape, a, b, and
c remain constant and m can be used to produce different numbers of ‘bumps’;
in this case m = 6. We added varying amounts of noise and measured the
accuracy of fit (i.e. boundary description) after convergence. The accuracy was
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Figure 1.17: Strong neighbouring edge leakage - from left: initial snake, geodesic
snake steps through weak edge in top right of outer boundary, GGVF is at-
tracted by the stronger inner edge, RAGS snake converges properly using extra
region force.

computed using Maximum Radial Error (MRE), i.e. the maximum distance in
the radial direction between the true boundary and each active contour.

Figure 1.18: A shape and its boundary (a Harmonic curve).

Impulse noise was added to the original image from 10% to 60% as shown in
the first column of Fig 1.19. The region segmentation data used for RAGS is in
the second column (without any post-processing to close gaps etc.). The third,
fourth, and fifth columns show the converged snake for the standard geometric,
the GGVF, and RAGS snakes respectively. A simple subjective examination
clearly demonstrates the superior segmentation quality of the proposed snake.
The initial state for the standard geometric and RAGS snakes is a square at
the edge of the image, while for the GGVF it is set close to the true boundary
to ensure better convergence. At low percentages of noise, all snakes could find
the boundary accurately enough. However, at increasing noise levels (> 20%),
more and more local maximums appear in the gradient flow force field, which
prevent the standard geometric and GGVF snakes from converging to the true
boundaries. The RAGS snake has a global view of the noisy image and the
underlying region force pushes it towards the boundary. The MRE results are
shown in Table 1.1. These verify RAGS error values to be consistently and
significantly lower than the other two snake types for noise levels > 10%.

1.9.4 Results on greylevel images

Figures 1.20 to 1.22 demonstrate RAGS in comparison to the standard geomet-
ric and GGVF snakes on various greylevel images. Figure 1.20 shows a good
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Figure 1.19: Shape recovery in noisy images - (column 1) original image with
various levels of added Gaussian noise [0%,10%,...,60%], (column 2) the region
maps later diffused by RAGS, (column 3) standard geometric snake results,
(column 4) GGVF snake results, (column 5) RAGS results.
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Table 1.1: MRE comparison for the Harmonic shapes in Figure 1.19.
% noise Stand. Geom. GGVF RAGS

Snake Error Snake Error Snake Error

0 2.00 2.00 2.00
10 2.23 2.24 2.00
20 5.00 7.07 4.03
30 10.00 16.03 3.41
40 16.16 21.31 5.22
50 15.81 21.00 5.38
60 28.17 20.10 5.83

example of weak-edge leakage on the lower side of the object of interest. While
RAGS does extremely well here, the geometric snake leaks through and the
GGVF snake leaks and fails to progress at all in the narrow object. In Figure
1.21, RAGS achieves a much better overall fit than the other snakes, particularly
in the lower regions of the right-hand snake and the upper-right regions of the
left-hand snake. In Figure 1.22, again RAGS manages to segment the desired
region much better than the standard geometric and the GGVF snakes. Note
the standard snake leaks out of the object, similar to the effect demonstrated
with the synthetic image in Figure 1.15.

Figure 1.20: Brain MRI (corpus callosum) image - top row: initial snake, stan-
dard geometric snake - bottom row: GGVF snake, and RAGS snake (original

image courtesy of GE Medical Systems).



28

Figure 1.21: Heart MRI image - top row: initial snakes, standard geometric
snakes - bottom row: GGVF snakes, and final RAGS snakes showing improve-
ment on the top right of the left snake and the lower region of the right snake.

Figure 1.22: Heart MRI image - top row: initial snake, standard geometric snake
- bottom row: GGVF snake, and final RAGS snake showing better convergence
and no leakage. (original image courtesy of GE Medical Systems).
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1.9.5 Results on colour images

We now consider the performance of the RAGS snake on colour images. In
Figure 1.23 we can see a cell image with both strong and fuzzy region boundaries.
Note how the fuzzy boundaries to the right of the cell ‘dilute’ gradually into the
background. So the results in the top-right image again demonstrate an example
of weak edge leakage, similar to the example in Figure 1.22, where the standard
geometric snake fails to converge on the outer boundary. The middle and bottom
rows show the converged RAGS snake using the over-segmentation and under-
segmentation colour region maps produced by the mean shift algorithm.

Figure 1.23: Weak-edge leakage testing - top row: original image with start-
ing contour and geodesic snake which steps through - middle row: over-
segmentation colour region map and converged RAGS snake - bottom row:
under-segmentation colour region map and converged RAGS snake (Original

image courtesy of Bristol Biomedical Image Archive, Bristol University, UK ).
(Colour Slide)
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A very similar example is demonstrated in Figure 1.24 in application to
images of the optic disk in which the blood vessels have been removed using
colour mathematical morphology techniques. Again, the failing performance
of the standard snake is shown along with the RAGS results on both over-
segmentation and under-segmentation regions.

Figure 1.24: Optic disk localisation - top row: initial contour and geodesic
snake which steps through to the stronger central region - middle row: over-
segmentation colour region map and final RAGS snake - bottom row: under-
segmentation colour region map and final RAGS snake. (Colour Slide)

In Figure 1.25, a full application of RAGS is presented where the result-
ing regions from the RAGS snake are quantitatively evaluated against those
hand-labelled by an expert ophthalmologist. The first column represents these
groundtruth boundaries. The second column shows the position of the starting
RAGS snakes. The boundary of the optic disk is quite fuzzy and well blended
with the background. The region force helps the proposed snake stop at weak
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edges while the standard geometric snake leaks through (as shown in Figure
1.24) and the accuracy of the GGVF snake is highly dependent on where the ini-
tial snake is placed (hence GGVF snake results are not provided). The last two
columns illustrate the RAGS results using over-segmented and under-segmented
regions of the mean shift algorithm respectively.

A simple measure of overlap is used to evaluate the performance of the RAGS
snake against its corresponding groundtruth:

M =
n(A ∩ B)

n(A ∪ B)

where A and B correspond to ground-truth and RAGS localised optic disk
regions respectively, and n(.) is the number of pixels in a region. Table 1.2 shows
the result of measurement M demonstrating a 91.7% average performances for
both over/under-segmentation RAGS respectively.

Table 1.2: Quantitative evaluation of RAGS snake on the optic disks in 1.25.
Image 1 2 3 4 5 6 Avg.

% RAGS(over) 91.4 90.0 91.9 93.1 93.1 90.5 91.7
% RAGS(under) 90.7 89.5 93.1 91.3 93.0 92.7 91.7

The final example in Figure 1.26 shows a darker cell centre compared to
the cell outer region, but more significantly the object of interest is surrounded
by other strong features. The standard geometric snake splits and converges
unsatisfactorily and the GGVF snake is pulled in and out by the stronger inner
cell nucleus and neighbouring cells respectively, while the RAGS snake converges
well to the outer cell boundary without leaking through.

All the examples shown here illustrate the resilience of RAGS to weak edges
and noise. However, the RAGS snake does suffer some shortcomings. As with
the standard geometric snake, or the geometric GGVF snake, it will not per-
form well in highly textured regions in which the gradient flow forces may be
hampered by multitudes of texture edge information. It is also dependent on
a reasonable segmentation stage, although this was shown to be quite flexible
using a popular method of image segmentation.

1.10 Conclusions

A novel method, the region-aided geometric snake or RAGS, was proposed.
It integrates the gradient flow forces with region constraints, composed of the
image region vector flow forces obtained through the diffusion of the region
map. The theory behind RAGS is standalone and hence the region force can be
generated starting from any reasonable segmentation technique. We also showed
its simple extension to colour gradients. We demonstrated the performance of
RAGS, against the standard geometric snake and the geometric GGVF snake,
on weak edges and noisy images as well as on a number of other examples.
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Figure 1.25: RAGS segmentation comparison with ground-truth - (column
1) ground-truth, (column 2) initial snakes, (column 3) RAGS results with
over-segmentation, (column 4) RAGS results with under-segmentation (Colour
Slide).
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Figure 1.26: Cell with strong nucleus feature - top row: initial snake, standard
geometric snake - bottom row: GGVF snake, RAGS snake showing how the
stronger inner edge in the cell nucleus does not cause it to lose the outer weaker
edge (original image courtesy of Bristol Biomedical Image Archive, Bristol Uni-

versity, UK ). (Colour Slide)

The experimental results have shown that the region-aided snake is much
more robust towards weak edges. Also it has better convergence quality com-
pared with both the standard geometric snake and the geometric GGVF snake.
The weak-edge leakage problem is usually caused by inconclusive edge values at
the boundaries, which makes it difficult for gradient-based techniques to define
a good edge. The gradual changes do not provide a sufficient minima for the
stopping function to prevent the level set accumulating in that area. The dif-
fused region map gives the snake an extra underlying force at the boundaries.
It also makes the snake more tolerable to noise as shown by the harmonic shape
recovery experiment and many of the real images. The noise in the image intro-
duces local minima in the stopping function preventing the standard geometric
snake to converge to the true boundary. However, for RAGS the diffused region
forces give a better global idea of the object boundary in the noise clutter and
helps the snake step closer and converge to the global minima.
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1.11 Further Reading

Deformable contour models are commonly used in image processing and com-
puter vision, for example for shape description [21], object localisation [22], and
visual tracking [23].

A good starting point to learn about parametric active contours is [24]. These
snakes have undergone significant improvements since their conception, for ex-
ample see the GVF snake in [7, 9]. Region-based parametric snake frameworks
have also been reported in [25, 26, 27].

The geometric model of active contours was simultaneously proposed by
Caselles et al. [1] and Malladi et al. [2]. Geometric snakes are based on the
theory of curve evolution in time according to intrinsic geometric measures of
the image. They are numerically implemented via level sets, the theory of which
can be sought in [15, 16].

There has been a number of works based on the geometric snake and level
set framework. Siddiqi et al. [14] augmented the performance of the standard
geometric snake that minimises a modified length functional by combining it
with a weighted area functional. Xu and Prince extended their parametric
GVF snake [7] into the Generalised GVF snake, the GGVF, in [9]. Later, they
also established an equivalence model between parametric and geometric active
contours [10] using the GGVF. A geometric GGVF snake enhanced with simple
region-based information was presented in [10]. Paragios and Deriche [28, 29]
presented a boundary and region unifying geometric snake framework which
integrates a region segmentation technique with the geometric snake. In [30],
Yezzi et al. developed coupled curve evolution equations and combined them
with image statistics for images of a known number of region types, with every
pixel contributing to the statistics of the regions inside and outside an evolving
curve. Using colour edge gradients, Sapiro [6]) extended the standard geometric
snake for use with colour images (also see Figure 1.6). In [11], Chan and Vese
described a region-segmentation based active contour that does not use the
geometric snake’s gradient flow to halt the curve at object boundaries. Instead,
this was modelled as an energy minimisation of a Mumford-Shah based minimal
partition problem and implemented via level sets. Their use of a segmented
region map is similar to the concept we have explored here.

Level set methods can be computationally expensive. A number of fast
implementations for geometric snakes have been proposed. The Narrow Band

technique, initially proposed by Chop [31], only deals with pixels that are close
to the evolving zero level set to save computation. Later, Adalsterinsson and
Sethian [32] analysed and optimised this approach. Sethian [33, 34] also pro-
posed the fast marching method to reduce the computations, but it requires the
contours to monotonically shrink or expand. Some effort has been expended in
combining these two methods. In [35], Paragios et al. showed this combination
could be efficient in application to motion tracking. Adaptive mesh techniques
[36] can also be used to speed up the convergence of PDEs. More recently, addi-
tive operative splitting (AOS) schemes were introduced by Weickert et al. [37]
as an unconditionally stable numerical scheme for nonlinear diffusion in image
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processing. The basic idea is to decompose a multi-dimensional problem into
one-dimensional ones. AOS schemes can be easily applied in implementing level
set propagation [38].

The mean shift algorithm is a nonparametric technique for estimation of
the density gradient, which was first proposed by Fukunaga and Hostetler [39].
The idea was later generalised by Cheng [40]. The technique was extended to
various applications, amongst them colour image segmentation, by Comaniciu
and Meer [20, 12, 13].
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Appendix A

Numerical solution for the level set implementa-
tion of RAGS

Let φi,j denote the value of φ at the grid position of xi = i∆x, yi = j∆y,
where ∆x and ∆y are the grid steps along x and y directions respectively.
Denote φ(xi, yj , tn) by φn

i,j , the time derivative φt at (i, j, tn) is approximated

by forward difference as φt(i, j, tn) = (φn+1
i,j −φn

i,j)/∆t, where ∆t is a small time
interval. As given in (1.17), the snake evolves according to four forces. However,
they can be catagorised into three types based on the nature of their motions.

The first motion is a collapsing one with speed proportional to its curva-
ture. It is a parabolic contribution to the equation of motion and it can be
approximated with central differences. The curvature κ is only dependent on
contours; it is independent of time and spatial position, hence it can also be
solved using central difference approximations. The curvature motion at time t
is approximated as

(g(.)κ|∇φ|)n
i,j = g(.)i,jK

n
i,j(D

0x
i,j

2
+ D0y

i,j

2
)1/2 (1.42)

where D0x
i,j = (φn

i+1,j − φn
i−1,j)/2∆x, D0y

i,j = (φn
i,j+1 − φn

i,j−1)/2∆y, and Kn
i,j is

the central difference approximation to the curvature expression given in (1.22):

(φx)n
i,j = D0x

i,j , (φy)n
i,j = D0y

i,j (1.43)

(φxx)n
i,j =

φn
i+1,j − 2φn

i,j + φn
i−1,j

∆x2 , (φyy)n
i,j =

φn
i,j+1 − 2φn

i,j + φn
i,j−1

∆y2 (1.44)

(φxy)n
i,j =

φn
i+1,j+1 − φn

i−1,j+1 − φn
i+1,j−1 + φn

i−1,j−1

4∆x∆y
(1.45)

The second motion is expanding or shrinking with a spatially constant speed
in its normal direction. It must be approximated through entropy-satisfying

schemes [16]. Let V0 be the constant speed function regarding to αg(.). Follow-
ing Sethian’s upwinding finite difference scheme, the solution is given by























(V0|φ|)n
i,j = V0i,j [max(D−x

i,j , 0)2 + min(D+x
i,j , 0)2+

max(D−y
i,j , 0)2 + min(D+y

i,j )2]1/2 if V0i,j ≥ 0

(V0|φ|)n
i,j = V0i,j [max(D+x

i,j , 0)2 + min(D−x
i,j , 0)2+

max(D+y
i,j , 0)2 + min(D−y

i,j )2]1/2 otherwise

(1.46)

where D+x
i,j = (φn

i+1,j − φn
i,j)/∆x, D+y

i,j = (φn
i,j+1 − φn

i,j)/∆y and D−x
i,j = (φn

i,j −

φn
i−1,j)/∆x, D−y

i,j = (φn
i,j −φn

i,j−1)/∆y are the forward and backward differences
respectively.

The external forces left in (1.17) contribute the third underlying static ve-
locity field for snake evolution. Their direction and strength is based on spatial
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position, but not on the snake. This motion can be numerically approximated
as follows. Let ~U(x, y, t) denote the underlying static velocity field according to

βR̃−∇g(.). We check the sign of each component of ~U and construct one-sided
upwind differences in the appropriate (upwind) direction [16]:

(~U · ∇φ)n
i,j = max(un

i,j , 0)D−x
i,j + min(un

i,j , 0)D+x
i,j +

max(vn
i,j , 0)D−y

i,j + min(vn
i,j , 0)D+y

i,j (1.47)

where ~U = (u, v). Thus, (1.17) is numerically solved using the schemes described
above.
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Questions

1. What are the advantages of geometric snakes over their parametric coun-

terparts?

2. Which are some of the key papers on the geometric snake?

3. How do I diffuse the region segmentation map?

4. Describe how weighting functions p(.) and q(.) behave in vector diffusion?

5. What parameters are there in RAGS?

6. How do I choose the parameter values?

7. What are some of the disadvantages of RAGS?

8. What is a good source of information for learning about level sets?

9. How are level sets initialised?

10. Is the geometric snake computationally efficient? Are there any ways to

speed up the convergence?

11. How do I find out more about the GVF and GGVF snakes?

12. Describe the mean shift process.

13. How do I find out more about the Mean Shift segmentation method?

14. Who else has applied di Zenzo’s method of vector gradients in the active

contour literature?

15. How do I find out more about the optic disk application from the Results

section?
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Answers

1. In parametric methods, the contour needs to be explicitly parameterised,
so it is not intrinsic. Different parameterisation methods will result in
slightly different shapes. More importantly, when topological problems
arise, parametric methods can not handle them. Geometric snakes do not
explicitly track the evolving contour and instead have built in implicit
functions, hence they can split or merge freely. Contours are represented
as a level set of a 3D surface. Instead of evolving the contours, the 3D
surface is evolved (as shown in Figure 1.13). The contours of interest
always lay in the same level set, so they can be easily extracted whenever
needed. Parameterisation of the contours is only needed (if desired for
further statistical shape analysis) when they are steady.

Furthermore, geometric snakes can have larger capture areas than para-
metric ones. The capture range can be enlarged for parametric snakes, for
example using the vector diffusion technique. However, important infor-
mation may be lost in this kind of process (see Figure 1.11).

2. See references [1, 2, 3, 4, 14, 6, 9, 16]. This is not an exhaustive list, just
a good starting point.

3. The region segmentation gives the segmentation map S. Vector gradient
computation on S results in the region map R. Simple gradient com-
putation on R gives ∇R, i.e, region constraints immediate to the region
boundaries. In order to enlarge the region force capture area, vector diffu-
sion is applied by solving (1.10) to diffuse the region force vectors in ∇R.
The diffusion is iteratively achieved by computing the equilibrium state
of (1.12). Theoretically, the diffusion can be performed in any orthogonal
directions within the image plane. However, practically, x and y direc-
tions corresponding to image plane coordinates are chosen. Thus, vector
components δR

δx and δR
δy are diffused in the image domain.

4. The functions p(.) and q(.) are monotonically decreasing and increasing
weighting functions. Their relationship is illustrated in Figure 1.27. Func-
tion p(.) effectively controls the diffusion. The larger p(.) is, the more is
the diffusion on the region. Function q(.) preserves as much gradient in-
formation as possible on the original region along the region boundaries.

5. According to (1.17), α and β are the most important parameters in RAGS.
Moreover, constant K needs to be specified when diffusing the region force.
There are also parameters that are commonly needed in geometric snakes,
such as the time step, level set re-initialisation step, and the snake stopping
criteria.

6. The parameters α and β represent a trade-off between the constant flow
force and the region force. α determines the strength of the constant
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Figure 1.27: Plot of the weighting functions p(.) and q(.): The magnitude of
∇R is normalised to [0, 100]; The constant K in (1.11) is set to 50.

flow force, and also controls the inflation direction inward or outward
depending on its sign. β is bounded between 0 and 1 and signifies the
contribution of the region force to the formulation. When dealing with
images with lots of noise and/or fuzzy boundaries, RAGS relies more on
the region force. Given reasonable segmentation results, β can be chosen
closer to 1. While performing region force diffusion, parameter K controls
the balance between data diffusion and data conservation. The larger
the value of K, the more diffusion there will be. In RAGS, K is usually
selected as 50, when the magnitude of ∇R is normalised in the range of
[0, 100] (see Figure 1.27).

7. RAGS has to be initialised inside or outside the object of interest, just like
other traditional geometric snakes. This user initialisation requirement
can be a disadvantage when total automatic segmentation is needed in
some applications. Also, while RAGS can perform well in the presence
of noise, it does not perform so well on highly textured images, as it is
designed for object segmentation based on colour. Gradient flow forces,
i.e. local information, will become too noisy when computed over textured
regions.

8. Sethian’s book [16] and Osher’s book [18] are comprehensive works on
level set theory and its numerical solutions.

9. The initial level set is usually built by the signed Euclidean distance trans-
form. However, a brute Euclidean distance transform leads to an O(N 4)
complexity for a N ×N image, which is computationally expensive. Many
algorithms have been proposed, providing approximate solutions in O(N 2)
time or exact solutions in O(N 3) time. Interested readers are referred to
[41, 42, 43].
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10. Level sets trade a 2D problem into 3D. They do need more computation,
especially when dealing with large images, in updating the level sets sur-
rounding the zero level set in which the contour is embedded. There are
several methods available to speed up the convergence of the active con-
tour, such as the narrow band method [31, 32], the fast marching method
[33, 34], and the AOS scheme [38].

11. See references [7] and [9].

12. The mean shift procedure can be described as follows:

• select the window radius h,

• select the initial seeds,

• compute the mean shift vector in (1.40) and translate the search
window by that amount,

• repeat the mean shift computation for each seed and translate till
convergence,

• perturb the converged seeds by randomly shifting them a small amount,
repeat the mean shift computation till convergence,

• using K-NN, classify all the data points to the converged centres.

13. See references [20] and [13].

14. See references [6] and [44]. The work by Sapiro [6] has applied it to
the geometric snake and that of Gevers et al. [44] has applied it to the
parametric snake.

15. See references [22] and [45].


