
Generative Modelling in

Non-Euclidean Domains

Michael P. Kenning, BSc

Submitted to Swansea University in fulfilment of the

requirements for the Degree of Master of Research

January, 2019

Summary

Machine learning has been advanced considerably by the development of deep
learning. Conventional deep-learning techniques are, however, limited to topo-
logically regular data, leaving out many data domains. A new field of deep
learning in irregular domains has opened up to fill this lacuna. The graph is
one mode of representing data; and many natural data are represented well as
graphs. Recent work has advanced deep learning on graphs, but very little has
been advanced in terms of generative methods.

In this work we present a graph-based convolutional autoencoder (GCAE) on
two datasets. The first dataset is a modified MNIST dataset. We evaluate the
effect of a set of parameters of the network on the reconstruction error. We find
that the number of graph convolutions per block decreases the reconstruction
error substantially. Increasing the number of output maps in convolutions,
however, does not reduce the error. The number of tracked weights in the
network does not significantly effect the time required to train the network.

The next dataset is the Temple University Hospital EEG Corpus. The
dataset consists of a large collection of electroencephalography scans from over
316 unique patients. We likewise apply a GCAE, structurally inspired by the
GCAE applied to the MNIST dataset. Unfortunately the model does not per-
form as well on the dataset as we had hoped; the reconstruction errors between
the GCAE and a convolutional autoencoder are similar, for example.

A great part of the challenge in graph deep learning is constructing a graph
that is appropriate to the dataset. This is a far greater challenge in itself and
requires greater attention than this thesis can provide. We also posit that the
dataset itself limited the ability to develop an effective model.

i

Declarations

Declaration

This work has not previously been accepted in substance for any degree and is

not being concurrently submitted in candidature for any degree.

Signed (candidate)

Date

Statement 1

This thesis is the result of my own independent work/investigation, except where

otherwise stated. Other sources are acknowledged by giving explicit references.

A bibliography is appended.

Signed (candidate)

Date

Statement 2

I hereby give my consent for my thesis, if accepted, to be available for photo-

copying and for inter-library loan, and for the title and summary to be made

available to outside organisations.

Signed (candidate)

Date

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Layout . 3

2 Background 5

2.1 Traditional Machine Learning . 5

2.1.1 Initial Intuitions for Machine Learning 5

2.1.2 Dimensionality Reduction and Domain Experts 8

2.2 Deep Learning . 10

2.2.1 From Perceptrons to Multi-Layer Perceptrons 11

2.2.2 Convolutional Neural Networks 14

2.3 Irregular-Domain Deep Learning 15

2.3.1 Non-Euclidean Geometries 16

2.3.2 Deep Learning on Graphs 17

2.4 Summary . 19

3 Graph Convolutional Autoencoder 21

3.1 A Modified MNIST Dataset: Building the Graph 22

3.2 Methodology . 24

3.2.1 Convolution . 25

3.2.2 Pooling . 29

3.3 Results . 31

3.3.1 Experiment 1: Convolution Units per Block 31

3.3.2 Experiment 2: The Number of Output Maps in the First

Convolution Block . 32

3.3.3 Experiment 3: The Number of Output Maps in the Sec-

ond Convolution Block . 33

3.3.4 Experiment 4: Weights 33

3.4 Discussion . 33

iii

3.5 Summary . 34

4 Graph Convolutional Autoencoder Applied to EEG Data 36

4.1 The Temple University Hospital EEG Corpus 37

4.2 Graph Construction . 39

4.3 Results . 41

4.4 Discussion . 47

4.5 Summary . 49

5 Conclusions and Future Work 51

5.1 Conclusions . 51

5.2 Future Work . 51

iv

Acknowledgements

Of my colleagues: I should like first of all to thank Xianghua Xie; for his super-

vision, attention and steadying hand; without whom my degree work would not

have been possible. I should also like to thank (in no particular order) Jingjing

Deng, Michael Edwards, David George and Joss Whittle for the help they af-

forded me throughout my degree, however begrudgingly given it sometimes was.

Additionally, I thank Jay Morgan, Man Duhu and all colleagues in Faraday’s

fourth-floor lab for the company and conversation.

Of my family: I thank my mother Alison Royal for letting me live rent-free

for the year, putting up with my reversion to type, and her support. I thank my

girlfriend Kristina Seit for her tolerating me and her companionship; without

her, I should have imploded.

Finally, to my uncle Timothy Royal, whom I did not know as well as one

might; and my grandfather Peter Royal, who was like a father to me. This work

is dedicated to their memory.

v

List of Figures

2.1 Linear regression. 6

2.2 Linear and non-linear data compared. 8

2.3 Decomposition of correlated data into its principal components. . 9

2.4 A perceptron. 11

2.5 The sigmoid function. 12

2.6 A multi-layer perceptron. 12

2.7 Cross-entropy loss. 13

2.8 A convolutional kernel. 14

2.9 A projection of a Euclidean shape onto a non-Euclidean geometry. 17

2.10 A visualisation of a graph. 17

3.1 The structure of an autoencoder. 22

3.2 Von Neumann neighbours. 23

3.3 The process of irregularisation. 25

3.4 The translation property visualised. 26

3.5 Artefacts introduced by Fourier transformations. 27

3.6 Two-level algebraic multigrid (AMG) pooling on an arbitrarily

irregular graph with a coarsening factor α = 0.05. 30

3.7 A visual representation of the autoencoder model for the MNIST

data. 31

3.8 The reconstruction error over 100 epochs on the validation set as

the number of convolution units in the convolution blocks is varied. 32

3.9 The reconstruction error over 100 epochs on the validation set

as the number of output maps in the first convolution block was

varied from 10 to 50. 32

3.10 The reconstruction error over 100 epoch on the validation set as

the number of output maps in the second convolution block was

varied from 10 to 50. 33

3.11 The reconstruction error over 100 epochs for each variation in the

number of weights in the convolution units. 34

vi

4.1 The three electrode reference systems used by the TUH EEG

corpus. 37

4.2 An EEG graph visualised. 39

4.3 The one-dimensional-convolution (1D) model. 43

4.4 The graph model. 44

4.5 The two-dimensional-convolution (2D) model. 45

4.6 The Charbonnier cost-function. 46

4.7 The results of the experiment for classification accuracy. 47

4.8 The results of the experiment for autoencoder cost. 48

vii

Abbreviations

ACNS American Clinical Neurophysiological Society

AE autoencoder

AMG algebraic multigrid

CAE convolutional autoencoder

CNN convolutional neural network

CoD curse of dimensionality

EDF European Data Format

EED European Epilepsy Database

EEG electroencephalography

GCAE graph-based convolutional autoencoder

GCVAE graph-convolutional variational autoencoder

GPGPU general-purpose graphics processing-unit

HAR human-action recognition

ILSVRC International Large-Scale Visual Recognition Challenge

LMS least mean squares

LSTM long short-term memory

MLP multi-layer perceptron

PCA principal component analysis

RF random forests algorithm

SVD singular-value decomposition

SVM support-vector machine

TUH-EEG Temple University Hospital EEG Corpus

viii

We went to R’s room. To look at it, you’d think everything was

just exactly like my place. Same table on the wall, and the

armchairs, table, chest, bed, all made with the same glass. But R

had hardly entered before he moved one of the easy chairs, then

the other, and the planes were dislocated, everything slipped out of

the prescribed correlation and became non-Euclidean. R will never

change, never.

—D-503 in We by Yevgeny Zamyatin

ix

Chapter 1

Introduction

Contents

1.1 Motivation . 1

1.2 Contributions . 3

1.3 Thesis Layout . 3

1.1 Motivation

Machine learning continues to grow and thrive, achieving undreamed-of re-

sults on problems as wide and varying as image recognition, natural-language

translation—and even election manipulation [1], [2]. The meteoric rise of ma-

chine learning in recent years is mainly due to the development of more sophis-

ticated deep-learning models. Deep-learning models are able to take data and

learn automatically a way to represent the data for the purposes of classifica-

tion, recognition, denoising, localisation and a variety of other purposes. Large

corporations now have research groups dedicated to deep-learning research, such

as Facebook’s AI Research group and Alphabet’s DeepMind project.

The most prominent of such learning techniques are limited to working on

data in regular domains. Images and videos, for example, have a regular, grid-

like structure; the pixels in an image or video have a meaningful spatial rela-

tionship. The convolutional neural network (CNN), the most prominent type

of neural network today, is able to take advantage of local patterns in images,

such as eyes. Eyes, for example, have a specific statistical profile in an image; a

CNN can learn these local structures and leverage them in learning tasks—all

automatically.

As we mentioned, CNNs are limited to regular data, so these techniques, as

powerful as they are, cannot be applied to data where these spatial relations do

1

not exist or not structured in a grid- or array-like way. One example, used in

this thesis, is the electroencephalography (EEG) scan. EEG scans are recorded

using electrodes placed across the surface of a human subject’s scalp. These

electrodes are not placed on the scalp on some regular grid; they are distributed

according to angles at set intervals from the top of the scalp. The surface is also

curved, like the surface of a sphere.

The surface of a sphere and the ‘surface’ of an image differ starkly in their

characteristics. For instance, to measure distances in each case requires two

different equations. These geometrical differences result in further problems in

machine learning. A CNN uses convolution kernels to ‘walk’ over the surface of

an image. These kernels are much smaller than the image, so focus on smaller

sections of the image, like a spotlight, except a strict square. There are many

kernels in a CNN, each of which learn to identify different features. In an image,

one might learn to identify lines; another to identify blobs. These features add

up to produce an eye, a mouth, a nose, etc. One cannot walk a kernel over the

surface of a sphere, as there is a degree of divergence between the kernel and

the surface of a sphere. (Of course, as the diameter of the sphere approaches

infinity, the amount of divergence tends to zero; i.e., the surface of the sphere

at a given point approximates a flat surface.)

The kernels work on an image because they work in squares, and images

nicely divide into subsets of (overlapping) squares. On the contrary, the surface

of a sphere does not have this necessary property. One can imagine trying to

place a 3-by-3 grid on a persons scalp covered in EEG sensors; the grid will

not likely encompass a constant number of sensors wherever it is placed. The

same grid on an grid of pixels, however, will encompass a constant number of

pixels—so long as it lies within the boundary of an image.

The surfaces of spheres are not the only example of spaces where convolu-

tions do not work; there are other geometries where kernels cannot work either.

Many real-world data do exhibit these irregular topologies, which means any

technique that works on irregular topologies and retains the power of deep-

learning algorithms would be of great value. Consider the surface of the Earth

and the distribution of earthquake sensors.

Graph deep learning is precisely that area looking to develop machine learn-

ing for irregular spaces. A majority of work focuses on graph-convolutional neu-

ral networks, the irregular-domain counterpart to CNN. Little work has been

conducted into graph-based convolutional autoencoders, however, with which

great strides could be made in irregular-domain encoding. Developing such a

method is the focus of this thesis.

2

1.2 Contributions

The contributions of this work are two-fold. The first contribution is incremen-

tal. We present a graph-based convolutional autoencoder (GCAE) that allows

us to perform encoding on irregular domains. The architecture is the extension

of existing, conventional, regular-domain techniques to irregular domains. As

many advances in computer vision have been made with generative techniques,

this work will provide the first stepping-stone to a wider field of generative

learning in irregular domains. The findings in this work are the basis for further

research.

The second contribution is the technique we have applied to EEG scans.

Previous techniques have required intensive, computationally expensive feature-

extraction strategies before any deep-learning methods can be applied. In our

work we discard all feature-extraction strategies and work solely on raw data

while leveraging the spatial information present in the graph Laplacian matrix.

With deep-learning architectures being automatic learners, this may give rise

to techniques that learn more valid or informative representations of the data.

These advances would therefore be applicable in medicine and seizure-detection

problems.

1.3 Thesis Layout

In Chapter 2 we summarise the main intuitions behind and motivations for

machine learning. Linear regression is presented as a basic example of a learn-

ing problem. With the discussion of higher dimensions and the curse of di-

mensionality, we move onto dimensionality reduction and domain experts as

feature extractors. Deep learning is introduced in this context as an auto-

matic feature-learner in the place of domain experts; deep learning’s purported

strength lies in its ability to automatically learn feature representations. Finally

we describe a limitation of conventional deep-learning techniques, its inability

to work with topologically irregular data. We present graph deep learning as

one set of techniques to address this limitation, and identify the lack of research

into embedding-learning in irregular domains.

In Chapter 3 we present a GCAE. We introduce the definition of graphs

and describe how convolutions can be implemented in graph domains in spite

of its spatial irregularity, namely through Fourier transformation and spectral

multipliers. We also present algebraic multigrid pooling as a method to reduce

the dimensionality of a graph in a way that allows an ‘unpooling’, analogous to

upsampling in regular-domain methods. We then present the results of some

experiments on the GCAE in order to validate it. We show that it is able to

3

learn encodings on a modified MNIST dataset.

In Chapter 4 we apply what we learned in Chapter 3 to real-world data;

namely, EEG scans from the Temple University Hospital EEG Corpus. The

architecture did not prove successful in experiments; there was no evidence to

show that it is better than our regular-domain models. We ascribed its failure

to problems relating to our architecture and the construction of the graph.

In Chapter 5 we conclude by outlining the more immediate research chal-

lenges and the more distance ones. The more immediate challenges constitute

searching for an architecture that does work well, in order to understand why

our architecture failed. The second is the use of a new dataset that might

provide more reliable data. The more distant challenges are those we believe

require far greater and far more prolonged attention. We ask if it is possible

to learn the best representation of graph data; and whether we can learn from

graphs with varying numbers of nodes. We leave its answer for future research.

4

Chapter 2

Background

Contents

2.1 Traditional Machine Learning 5

2.1.1 Initial Intuitions for Machine Learning 5

2.1.2 Dimensionality Reduction and Domain Experts . . . 8

2.2 Deep Learning . 10

2.2.1 From Perceptrons to Multi-Layer Perceptrons 11

2.2.2 Convolutional Neural Networks 14

2.3 Irregular-Domain Deep Learning 15

2.3.1 Non-Euclidean Geometries 16

2.3.2 Deep Learning on Graphs 17

2.4 Summary . 19

Machine learning has undergone revolutionary changes over the last two

decades. In this chapter we describe the movement from traditional machine

learning to deep learning, and the place of irregular-domain deep learning.

2.1 Traditional Machine Learning

2.1.1 Initial Intuitions for Machine Learning

The purpose of machine learning is to find patterns from morasses of data where

humans would otherwise falter or lag. With patterns one can make predictions

about the world. The most basic predictor is linear regression [3, p. 11]. Linear

regression involves finding a linear function y = f(x) defined on a continuous

variable x that best predicts another continuous variable y. This kind of mod-

elling can be applied to stock-market price prediction, in which case x is time

5

and y is price; or in medicine, where x is age and y is likelihood of developing

a disease.

How do we find the best prediction? Suppose f has the general form f(x) =

w0 + w1x (notice that this equation is equivalent to a line equation; we will

frequently refer to this function as a line). The optimisation task is to find

values for the coefficients wi such that we minimise the ‘incorrectness’ of the

predictions; i.e., we must find an f such that for every given data x and true

output y, f(x)−y ≈ 0. In English, we need a function that will yield the correct

prediction for a given value.

This ‘incorrectness’ is usually measured as the distance of the predictions

to the correct value. (In Figure 2.1 this distance is represented by the red

lines between the ‘line of best fit’ and the data-points represented by dark-blue

circles.)

0 1 2 3 4 5 6 7 8 9 10

x

0

2

4

6

8

10

12

14

16

18

20

y

Linear regression, with y = 2x

Figure 2.1: An example of linear regression. The light blue line is the ‘line of
best fit’ through the data. The red lines between the line and the dark-blue
circles, the true values for y, indicates the error of the predictions, given by the
line of best fit. These errors would be measured by the sum of squared errors
Equation 2.1.

How do we find wi? The process is more mathematically rigorous than

guessing wi and happening upon the best values. At first the coefficients are

randomly initialised. Then we measure the incorrectness of the function using

a cost-function or alternatively a loss-function. The cost-function is employed

in a process called gradient-descent optimisation.

For linear regression, the cost-function might be the least mean squares

6

(LMS), which uses the SSE—

E =
1

2

n∑
i=0

(f(xi)− yi)2 (2.1)

=
1

2

n∑
i=0

(w0 + w1x− yi)2 = Ei (2.2)

where n = the total number of data-points, (2.3)

xi = the ith data-point, and (2.4)

yi = the true output for xi. (2.5)

(2.6)

In essence, SSE severely penalises incorrect predictions. The square term means

that the further away from the line the true output is, the greater the cost. Using

the cost E we can adjust the coefficients—

wi = wi − α
∂E

∂wi
E (2.7)

where α = the learning rate. (2.8)

Gradient descent is performed iteratively until the loss falls below some prede-

fined threshold. (Gradient-descent optimisation is not necessary when the data

is non-singular; in these cases, there is a closed-form solution for the weights [3,

p. 12].)

There are a few issues that come to mind when considering linear regres-

sion. Firstly, the data may be more complex. What if there is more than one

dimension of input data? In the simplest case, this only requires a definition of

the above functions, substituting x for x and w for wi [4, p.105], such that—

f(x) = w>x = y, and (2.9)

E =
1

2

n∑
i=0

(y −w>x). (2.10)

There is also the issue of which data we train the algorithm over. In machine

learning, a dataset is usually split into two sets: the training set and testing set.

The training set is usually larger than the testing set. In linear regression, as

in any other technique, we train the model on the training set and assess the

accuracy of the predictions on the testing set. The error rate is used to assess the

generalisability of the model (the error rate is also known as the generlisation

error).

Equation 2.9, regardless of the dimensionality, is only suitable for data that

7

is linear, however. Problems arise when we consider data that is non-linearly

related to y (Figure 2.2). It is possible to transform the data using a non-

linear kernel. But even if this transform were made, there is the overriding

problem of dimensionality. If the dimensionality of data is too great, then the

problem is not an appropriate model but tractability: The number of weights in

a model increase linearly with dimensionality, and each additional weight is an

additional optimisation problem. When the number of dimensions in the data

is high, optimisation problems become exceedingly difficult [4, p.152]. These

problems are part of the phenomenon termed the curse of dimensionality [3,

pp. 22–27].

0 1 2 3 4 5 6 7 8 9 10

x

0

200

400

600

800

1000

y

Linear regression with y = 100x - 150, compared to the true distribution function y = x3

Figure 2.2: Linear and non-linear data compared. Linear regression is best
suited to data that exhibit linear relationships with respect to an input x. The
straight, black line above indicates the line of best fit that might be given for
the data indicated by the dark-blue circles. The dark-blue line describes the
true relationship of x and y.

2.1.2 Dimensionality Reduction and Domain Experts

The curse of dimensionality can be mitigated by reducing the dimensionality

of the data. Before we can reduce the data, however, we need to know which

dimensions or features contain the most information. Some dimensions may

contain useless information, characterised by low variance.

One technique for discovering the important dimensions is principal com-

ponent analysis (PCA). Suppose we have a matrix X ∈ Rn×m where n is the

number of samples and m is the number of features. The singular-value decom-

8

position (SVD) of X has the form

X = UDV >. (2.11)

D is an m-by-m diagonal matrix of eigenvalues, and U and V are the n-by-m

and m-by-m orthogonal matrices that span the column space and row space

of X respectively [3, p. 66], also referred to as the left and right eigenvectors

respectively. The diagonal entries of D are in descending order, and correspond

to the eigenvectors in U and V . Each eigenvector describes the degree of vari-

ation in each eigenvector; this allows us to retain the first c components that

account for a given percentage of the data’s variation. The first c components

are therefore called the principal components (Figure 2.3).

-4 -2 0 2 4

x

-4

-3

-2

-1

0

1

2

3

4

5

y

Correlated data

(a) Σ =

[
1.0 1.5
1.5 3.0

] -4 -2 0 2 4

x

-4

-3

-2

-1

0

1

2

3

4

5

y
Uncorrelated data

(b) Σ =

[
3.7 0.0
0.0 0.2

]
Figure 2.3: The left plot is randomly generated data correlated according to the
covariance beneath. The right plot is the data in the left plot projected into
eigenspace. The data on the right is obtained by taking the right eigenvector
from the decomposition X = UΛV and performing matrix multiplications on
the data. The result is that the principal directions of variation in the correlated
data, given by the orange and red lines in the first figure (a), are aligned to the
cardinal axes, as in the second figure (b). This is the function performed by
PCA known as decorrelation.

PCA is not always suitable, however; like linear regression in Section 2.1.1,

it does not work when the data is non-linear. In such cases, one might look

elsewhere for a non-linear technique, such as kernel PCA [5].

In other cases it may not be enough to be equipped with a good method.

Data may be so large or complex in some domains that they require specialist

knowledge to understand the data’s dynamics. In these cases a domain expert

may be consulted about how best to digest or compress data.

Take EEG signals as an example. In this work we use the Temple Univer-

9

sity Hospital EEG Corpus (TUH-EEG); it contains thousands of millions of

seconds of data on patient electroencephalography (EEG) scans, with a sub-

stantial quantity of samples containing seizures labelled by qualified doctors [6].

Determining whether an EEG scan contains a seizure is a difficult process due

to the variability of seizures [7] and the necessity for information from a number

of sources that builds a picture of the evidence over time ‘until an accepted

threshold is achieved’ [8]. An algorithm would have to reduce the data down to

some manageable size while also remaining representative of the original data.

The job of the domain expert is not simply to guide dimensionality reduction,

however. To build a seizure-detecting algorithm would require a comprehensive

understanding of the heuristics doctors use to determine whether a seizure is

occurring; and furthermore an understanding of how these heuristics manifest

themselves in data and the dynamics of the variables in the data.

2.2 Deep Learning

As discussed in Section 2.1.2, domain experts were once brought in to help

understand data and create algorithms that could validly perform on the data

tasks that would otherwise be carried out by an expert.

Domain experts have their disadvantages, however. The machine-learning

techniques that rely on domain experts to propose dimensionality reduction

strategies cannot capture ‘the variability and richness of natural data [. . .]

mak[ing] it almost impossible to build an accurate recognition system entirely

by hand’ [9]. Deep-learning techniques could achieve state-of-the-art results on

handwritten digit recognition—which demonstrated, for the authors of the paper

[9], that ‘better recognition systems can be built by relying more on automatic

learning, and less on hand-designed heuristics’.

Deep-learning techniques were initially sidelined, but gained traction with

the development of the general-purpose graphics processing-unit (GPGPU) to

the point where they are now considered to have ‘dramatically improved the

state-of-the-art’ [10]. The term ‘deep learning’ encompass a wide range of

neural-network techniques from multi-layer perceptrons (MLPs) and feed-forward

networks to convolutional neural networks (CNNs) [9], [11] and long short-term

memory (LSTM) [12]. The basic unit of any neural network is a perceptron.

(Perceptrons [13] is an early comprehensive, theoretical treatment of percep-

trons.)

10

2.2.1 From Perceptrons to Multi-Layer Perceptrons

A perceptron takes a weighted summation of its input x and passes it through

an activation function (Figure 2.4). One activation function is the sigmoid func-

tion, which takes a value z and outputs a value in the range (0, 1) across an

infinite domain (Figure 2.5). This structure is similar to the linear-regression

model presented in Section 2.1.1 with a constraining function. A perceptron

with a linear activation function f(x) = x can therefore model any linear re-

gression problem. Though introducing the non-linearity allows us to extend our

model beyond linear problems, such that it is able to ‘understand the interaction

between any two input variables’ [4, p. 165].

Figure 2.4: A perceptron takes a sum of weighted inputs, adds a bias b and
passes it through some activation function, the sigmoid function σ in this case
(Figure 2.5). Note that for each connection there is an associated weight. Each
node between the input layer (the grey nodes) and output layer (the green node)
has an associated bias. This is better shown in Figure 2.6.

Multiplying these perceptrons means we can learn many functions simul-

taneously. We can increase the capacity to an even greater extent by adding

additional layers; these are called hidden layers. Suppose we have two percep-

trons in the first hidden layer and a third perceptron in a second hidden layer,

which takes the output of the first hidden layer as its input (Figure 2.6). Further

imagine the input to the input layer is a picture. The two perceptrons in the

first hidden layer are designed to learn different tasks: one learns whether there

is a smile in the picture; the other learns whether there is a pair of eyes in the

image. The perceptron in the second layer takes the output of the first layer (of

both perceptrons) and makes a prediction about the existence of a face in the

input: if the output value is 0.5 or greater, there is a face; if lower, there is no

face. The input data is correspondingly labelled 1 if there is a face and 0 other-

wise. (This is just a toy example. The functions are more basic than this; they

look for low-level structures. This model would likely fail for a face-recognition

task for the additional reason that the linear mappings of the perceptrons are

11

-5 -4 -3 -2 -1 0 1 2 3 4 5

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

The sigmoid function

Negative response Positive response

Figure 2.5: The sigmoid function σ(x) = 1/(1 + e−x) takes a value x and
computes a value in the range [0, 1] over an infinite domain. The function
asymptotes at 0 and 1.

not translation invariant—an issue whose solution we will discuss in the section

on convolutional neural networks.)

Figure 2.6: The first layer of a multi-layer perceptron is the input layer, indicated
by the grey nodes; the final, output layer is the final layer indicated by the single
green node. All intermediate layers are referred to as hidden layers. Each jth
node in the hidden layer has its own set of weights wi,j for each ith node in the
previous layer; each node also has its own bias bk,j .

The output of the second layer in this scenario represents something like

the certainty of the machine’s prediction—which we want to maximise. After

measuring the error of the model over a training set, the weights in the network

(the wi’s in Figure 2.6) can then be adjusted to the degree of error indicated

12

by the cost-function, most commonly the cross-entropy (Figure 2.7). In back-

propagation, a process for gradient optimisation in neural networks [11], this

process is iterated until the cost stabilises and the model can be optimised no

more.

-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Prediction confidence of class 1

0

1

2

3

4

5

6

7

8

9

10

C
ro

ss
-e

nt
ro

py
 lo

ss

Figure 2.7: The cross-entropy loss function penalises an incorrect prediction
more severely the more incorrect the prediction is. The x-axis of the plot above
is the confidence of a model that an observation is class 1, if the observation’s
true class is class 1.

One can build much wider and deeper models in this way—i.e., models with

more perceptrons or nodes per layer and more layers overall—and indeed this is

often the case. Complex data requires either a complex function or a multitude

of simple functions to approximate the complex one. Universal approximation

theorem states that a sufficiently deep neural network with a linear output layer

and at least one hidden layer with a ‘squashing function’ can approximate any

Borel measurable function [14], i.e., ‘any continuous function on a closed and

bounded subset of R’ (see Goodfellow, Bengio, and Courville [4, p. 194–197] for

further explanation of the theorem).

MLPs have their limitations, however. As shown in Figure 2.6, immediate

layers are fully connected. As the number of perceptrons grow, the number

of connections grow exponentially; consequently the number of weights grow

too. This was the limitation pointed out at the end of Section 2.1.1: every

additional weight is an additional optimisation problem. Too many weights is

still a problem today, but it was an even greater problem before the development

of GPGPUs when the limited parallelisability of CPU programmes placed the

greatest constraint on performance [4, p. 441].

The MLP’s architecture also means that it is susceptible to translated input.

To return to the example of face recognition, in the MLP above, the perceptron

that is trained to find eyes in the input image should ideally respond to eyes

anywhere in the image. The linear map does not permit this, as it is forced to

13

Figure 2.8: Convolution kernels iterate over the rows and columns of an input
(the grey grid) performing some operation along the way. The operation can
either be linear or non-linear. The above example is a 3-by-3 convolution kernel
over a 4-by-4 grid calculating the average of the 9 values within its boundaries.

learn an eye in a fixed location.

If eyes appeared in the same set of pixels in every image, this would not

be a problem; but images of fixes vary significantly with respect to the relative

location of eyes. Yet the problem should be no harder; the eye looks the same no

matter where it is—an example of what is referred to as statistical stationarity.

The linear maps in perceptrons are unable to take advantage of this statistical

property because they consider the image as a whole, not as its parts. CNNs on

the other hand are able to respond to and exploit statistical stationarity—which

leads us to our next topic.

2.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) were first presented by LeCun, Boser,

Denker, et al. in 1989 [11] in application to handwritten ZIP code recognition.

Instead of a linear map (Section 2.2.1), each layer after the input layer would

be the convolution of several compact kernels over the input (Figure 2.8). The

compact kernels were able to learn sub-structures in the input of the layer. This

meant that unlike perceptrons, CNNs are able to leverage statistical stationarity

[15]. It also cuts down on the number of weights required, easing considerably

the overall optimisation problem.

CNNs were set aside for a long time, however, and in their place random

forests algorithms (RFs) and support-vector machines (SVMs) were used. CNNs

came to the fore after the 2012 International Large-Scale Visual Recognition

Challenge (ILSVRC) after a convolutional neural network trounced the second-

place, non-CNN architecture by 11.1 percentage points with a top-5 error rate

of 15.3% [16]. Every year since until the final competition in 2017, a CNN has

come in first place in classification tasks (Table 2.1).

Zeiler and Fergus [17], the winners of ILSVRC 2013, were able to improve

14

Year Top-5 Error Rate (%) Paper
2012 15.3 [16]
2013 11.2 [17]
2014 6.7 [18]
2015 3.6 [19]
2016 3.1 No paper
2017 2.3 [20]

Table 2.1: The winners of the International Large-Scale Visual Recognition
Challenge challenge in order of year. Each year a convolutional neural network
(CNN) of some kind was the winning architecture.

upon the design of the previous year’s winners after drawing some insights from

the previous year’s winning architecture. They sought to understand why CNNs

work so well and developed a technique called deconvolution to understand how

Krizhevsky, Sutskever, and Hinton’s [16] model worked. They learnt that it was

sensitive to high and low-frequency information and insensitive to mid-range

frequencies; and they implicitly compute the spatial relationships of artefacts

within images. Furthermore, invariance to scale and translation improves with

the depth of the model; CNNs are not invariant to rotations of non-rotationally

symmetric images; the depth of a model is more crucial to its precision than

the size of a given individual layer; changing the size of fully connected layers

contributes little to a model’s precision; increasing the size of internal convolu-

tion layers gives a boost to the model’s precision; and lastly increasing the size

of both the middle and final fully connected layers results in overfitting.

2.3 Irregular-Domain Deep Learning

While CNNs work well on images and videos, the validity of extending them to

topologically irregular data is questionable. Take the problem of human-action

recognition (HAR). There are a number of ways of describing the movement

of a person through a scene—using optical-flow images [21] and action maps

obtained from scene flows [22]. In recent years, the widespread availability

of cheap motion-tracking hardware such as Microsoft’s Kinect has led to the

more frequent use of skeletal maps [23] in HAR research. Skeletal maps exhibit

an irregular topology as its nodes are (1) not fully connected and (2) where

connected, pairs of nodes are not equidistant with other pairs of nodes.

In order to apply conventional techniques to skeletal maps, the data must

be embedded in Cartesian space or correlate vaguely related features [24], [25].

But this has a questionable validity as it involves discarding the spatial relations

between vertices and channel data.

Instead of embedding the irregular data in Cartesian space, Edwards and Xie

15

[26] proposed the skeletal models as graphs and using graph convolutional tech-

niques to learn appropriate models for human actions. Such techniques are part

of a larger class of deep-learning techniques, termed ‘geometric deep learning’

[27]. In this section we focus solely on graph deep-learning techniques. First,

however, we will look at the mathematical background to irregular domains, or

non-Euclidean geometries.

2.3.1 Non-Euclidean Geometries

Euclid’s Elements established what we now know as Euclidean geometry as a

set of definitions, axioms and postulates. The definitions defined points, lines,

planes, surfaces, volumes, etc. Axioms were assertions of observable facts of

geometry, ‘some inherent attribute that is known at once to one’s auditors—

such as that fire is hot’; for example, ‘two equal straight lines will coincide with

each other’ [28, p. 142].

Much debate was aroused by Euclid’s fifth postulate. It states—

if a straight line falling on two straight lines makes the interior angles
on the same side less than two right angles, the straight lines, if
produced indefinitely, will meet on that side on which are the angles
less than the two right angles. [28, p. 150]

This is the definition of a pair of non-parallel lines. In the fifth century CE,

seven hundred years after Elements first appeared, mathematicians were still

contesting its status as a postulate1[29, pp. 88-9]. The disagreement centred on

the postulate’s independence from the other postulates and axioms. Its inde-

pendence was firmly established through Nikolai Ivanovich Lobachevsky’s work

on hyperbolic, hence non-Euclidean geometry. This development in geometry

‘lead to enormous practical consequences’ that Einstein incorporated into his

General Theory of Relativity [29, p. 89].

Consider a regular triangle. It has three equal sides that subtend three

angles which add up to 180°. If we project this shape onto the surface of a

sphere, the shape is deformed, such that the interior angles sum to greater than

180°. Instead of a sphere, we could consider an oblate spheroid like the earth;

the fact of deformation would remain. (See Figure 2.9 for a visual illustration.)

Many geometries can be generated by changing the Fifth Postulate. Non-

Euclidean or irregular spaces don’t necessarily take the form of a sphere; there

are other geometric structures to consider, such as manifolds [27]. One of the

most prominent representations of such geometries in deep learning is the graph.

1Proclus: ‘This ought to be struck from the postulates altogether [. . .] the converse of it
is proved by Euclid himself as a theorem.’ [28, p. 150]

16

Figure 2.9: A projection of a Euclidean shape onto a non-Euclidean geom-
etry. Left is regular, Euclidean geometry. Right is irregular, non-Euclidean
geometry—more specifically, an elliptic geometry. The regular triangle (left)
has been projected onto the surface of a sphere (right). Projection does not
change the length of the sides; but it changes the size of the interior angles.

2.3.2 Deep Learning on Graphs

Graphs are a form of data representation, consisting of vertices joined by edges.

Mathematically it is defined as an object G = 〈V,W 〉 where V is the set of

n vertices and W is the n-by-n weighted adjacency matrix, where 0 indicates

no edge between a pair of vertices and a positive, real number indicates an

edge-weight (Figure 2.10).

Figure 2.10: The above shows a graph with 4 vertices labelled v1 to v4 and 3
edges. Each pair of vertices with an edge has an associated weight, given as
a number on the line. The degree for each node is given as a number in the
vertex; the degree corresponds to the number of incident edges.

The weight matrix thus represents the graph in the spatial domain. Though

17

its spatial irregularity means we cannot perform conventional spatial convolution

described in Section 2.2.2. Instead, Bruna, Zaremba, Szlam, et al. [15] suggested

a decomposition of the weight matrix into eigenvectors, which can then be used

in Fourier transformations of graph data. According to convolution theorem

[30, p. 163] a point-wise multiplication in the spectral domain is equivalent to a

convolution in the spatial domain. A convolution can therefore be implemented

in graphs by linearly filtering the Fourier-transformed graph data. Edwards and

Xie [31] later improved on the method simply by transposing the Fourier basis

in the Fourier transform.

Implementing graph convolutions in the way described above has its disad-

vantages, however. The operation is computationally expensive: it is an O(|V |2)

for the forward Fourier transformation and O(|V |2) on the way back [32]. Def-

ferrard, Bresson, and Vandergheynst [33] suggest using Chebyshev polynomials.

Levie, Monti, Bresson, et al. [34] proposed a further improvement using Cay-

leyNets. For the purposes of this work, we have decided to use Fourier-transform

method presented by Edwards and Xie [31] as the paper also presents a method

for graph pooling using the same mathematical objects.

One example of a data domain that is represented well by a graph is the skele-

tal model [26], but there are many other domains with existing work in graph

deep learning. Monti, Bronstein, and Bresson [35] proposed a recommender

system using graphs. Traffic data is represented well by graph structures and

has been used in application to traffic prediction [36]. Molecules can also be

represented as a graph to be used to learn molecular fingerprints [37].

Dimension-reducing operations are common in regular CNNs, as they pro-

vide a means for generalising and compacting information as the network is

forced to learn only the most discriminant information. Graph convolutions,

however, do not reduce the dimensionality of input. In regular CNN, the pooled

data are second-order statistics, such as means, maxima or minima. It also pro-

vides nice properties, such as robustness to slight translations in the input data

[4, p. 335 ff.]. The standard pooling operations used in CNNs cannot be used

due to the graph’s property of topological irregularity. Instead one must use

graph-based clustering. Three clustering methods to be found in the litera-

ture are Kron’s reduction [38], Graclus multi-level clustering [39] and algebraic

multigrid clustering (AMG) [40]. All three methods have been used in graph

deep-learning applications [26], [31], [33]; but AMG is most suitable for graph

autoencoding. In contrast to Kron’s and Graclus, AMG provides projection and

restriction matrices to coarsen and uncoarsen the graph respectively, and it does

not assume anything about the topology of the graph; instead it works on the

weight matrix. There is, however, an element of randomness in the coarsening

of the graph using AMG, meaning that two algorithm will not yield the same

18

coarsening.

The above are examples of graph convolution applied to discriminative tasks.

Little work, however, has been conducted into generative techniques. Wang,

Pan, Long, et al. [41] proposed a marginalised graph autoencoder to cluster

citation data, though they treat each node of a graph as a separate sample

in its own right; we are interested in graph-wise representation learning as op-

posed to vertex-wise learning. Litany, Bronstein, Bronstein, et al. [42] presented

a graph-convolutional variational autoencoder (GCVAE) to complete partial

body-shapes. Their technique does not involve representation learning, how-

ever; it learns a latent space which is searched at inference for a shape that

minimises the dissimilarity between the input and output. Guo, Nejati, and

Cheung [43] leverage information present in the adjacency matrix of the graph

to learn a transform of the graph-signal channels; this transform is then fed to

a fully connected neural network to learn a low-dimension representation of the

graph data.

2.4 Summary

In Section 2.1.1 we described the necessary intuitions for a basic machine-

learning technique called linear regression. We saw that the curse of dimen-

sionality means that such linear techniques are not suitable for learning from

high-dimensional data. In Section 2.1.2 we described two ways of addressing

this: an unsupervised method such as principal component analysis; and the

consulting of ‘domain experts’ who understand their domain’s data comprehen-

sively and can advise on how best to reduce the data.

In Section 2.2.2 we introduced convolutional neural networks (CNNs) which

were built upon earlier work on multi-layer perceptrons summarised in Sec-

tion 2.2.1. CNNs were promoted for their ability to learn data representations

automatically with the belief that handcrafted feature-extractors and human-

designed heuristics could not capture the complex interactions that were possible

with non-linear models. The crowning moment for CNNs was the 2012 Interna-

tional Large-Scale Visual Recognition Challenge in which a CNN came in first

place. That a CNN had won every year until the final competition in 2017 is

emblematic of the position of CNNs in modern machine learning.

In Section 2.3 we showed how CNNs have a limited application beyond regu-

lar domains. Existing techniques require irregular data to be embedded in regu-

lar domains, in the process losing some crucial spatial information. A whole new

area of deep learning called geometric deep learning has been built to address

this problem, built upon the concept of ‘non-Euclidean geometries’, described

in Section 2.3.1.

19

Graphs have a number of uses that are briefly explored in Section 2.3.2. We

define a graph and consider a few data domains that exhibit irregular topologies.

While much work has been conducted into discriminative techniques, compara-

tively little has been conducted into generative techniques.

The focus of this work is thus on generative deep-learning tasks in irregular

domains, particularly on graphs. In Chapter 3 we apply graph-convolutional

techniques to a modified MNIST dataset. In Chapter 4 we apply the techniques

defined in Chapter 3 to EEG scans.

20

Chapter 3

Graph Convolutional

Autoencoder

Contents

3.1 A Modified MNIST Dataset: Building the Graph 22

3.2 Methodology . 24

3.2.1 Convolution . 25

3.2.2 Pooling . 29

3.3 Results . 31

3.3.1 Experiment 1: Convolution Units per Block 31

3.3.2 Experiment 2: The Number of Output Maps in the

First Convolution Block 32

3.3.3 Experiment 3: The Number of Output Maps in the

Second Convolution Block 33

3.3.4 Experiment 4: Weights 33

3.4 Discussion . 33

3.5 Summary . 34

Simply stated, the task for autoencoders (AEs) is to replicate its input.

Though we do not expect nor want a perfect replication of the input. The most

frequent purpose of the autoencoder is to learn a ‘smaller’ representation of the

input, a representation with a dimensionality that is far smaller than the input

dimensionality. Such autoencoders are referred to as undercomplete [4, p. 499]

and performs what is referred to as encoding. In reducing the data like this, we

expect some loss—but only so much loss as is ‘acceptable’ [44].

Put in formal mathematics, we would like to learn a pair of functions f and

g. Given an input x ∈ Rn, f should encode the data in some lower dimensional

21

space, such that f(x) = h ∈ Rm where m� n and m,n ∈ N>0. The function g

should decode h such that g(h) = x̃ ≈ x (Figure 3.1).

Figure 3.1: The structure of an autoencoder. The input layer is larger than the
hidden layer or code. The output is the same size as the input. The encoder
must learn an appropriate compression of the input data such that the encoding
contains enough information from which the decoder can reconstruct the input.

As we have seen in Section 2.2.2, the convolutional operators in convolutional

neural networks (CNNs) and convolutional autoencoders (CAEs) alike assume

spatial regularity in the input data, which means a convolutional autoencoding

method is not applicable in the case of spatially irregular data. In this chapter

we present a method for encoding spatially irregular data, drawing upon the

methods presented by Edwards and Xie [31]. We evaluate the method on a

modified MNIST dataset.

This work has been published in the Proceedings of the IEEE International

Conference on Image Processing for 2018.

3.1 A Modified MNIST Dataset: Building the

Graph

The MNIST dataset consists of 60,000 28-by-28-pixel greyscale images of hand-

written digits 0 through 9. The typical task on MNIST is to classify correctly the

digits. The property of being handwritten means that the a learning algorithm

cannot simply memorise a single shape for each character; the handwritten dig-

its deviate so far from the ‘standard’ shape that the algorithm must learn their

distribution and make probabilistic inferences from the learned distributions. In

an unsupervised task, the algorithm would learn the optimal clustering of the

dataset.

The pixel-grid of the images is regularly spaced: each pixel is equidistant

to its von Neumann neighbours (see Figure 3.2) giving rise to a regular grid.

22

Hence the dataset itself yields graphs with regular topologies. In the interest of

evaluation of our technique, we would like irregular data. We can irregularise

this data in the manner described in Edwards and Xie [31] which we describe

next. N.B.: We interchangeably use the terms node and vertex throughout the

work.

Figure 3.2: Von Neumann neighbours. Consider each circle in the above 3-by-3
grid as pixels in a 3-by-3 image. Each pixel’s von Neumann neighbours are
those immediately upward, downward, leftward and rightward. Consider these
three examples, which describe the three general cases: The green circle has four
neighbours, one in each direction. The yellow circle has only three neighbours
since there is no upward neighbour. The red circle has only two neighbours,
one downward and one rightward. This patterning gives rise to a regular grid.
This figure may also be considered as an image-as-graph visualisation, where
each vertex corresponds to a pixel, the black edges describe the von Neumann
neighbours, and the numbers in the circles represent adjacencies.

Irregularisation of the MNIST dataset involved (1) creating a graph from an

image; (2) selecting and removing a random subset of vertices from remove from

the graph; and (3) removing those vertices and corresponding features from the

dataset. (We have visualised the process on one example image in Figure 3.3.)

Creating a graph. The images in the dataset were 28-by-28 pixels large. Con-

structing the vertices V for this image is simple; each pixel is simply in-

terpreted as a graph vertex. The adjacency matrix A records whether a

pairs of pixels are von Neumann neighbours (see Figure 3.2). The adja-

cency matrix is equivalent to the weight matrix W as each edge has a

weight of 1 as all von Neumann neighbours are equidistant. This compre-

hension of the images yields a regular graph. This only needs to be done

once for the whole dataset, as the graph is fixed for every example in the

dataset.

Selecting and removing a random subset of vertices. In the regular graph

there are 784 vertices corresponding to the 784 pixels in the original image.

We chose to exclude 84 random vertices, like Edwards and Xie [31].

23

The particular number of nodes to remove is an arbitrary choice, motivated

by three concerns. The first is information loss. If we removed all but one

node, we would leave ourselves with two little information to learn on; the

intuition follows for if we keep all but one, all but two, etc., until we reach

a point where our intuition is less clear. Essentially, we want enough data

to discriminate on.

The second concern is which nodes we choose to remove. The salient

information in MNIST images is focussed around the centre. If we choose

only to remove points from the centre of the image, we would lose the most

important information. The best way to select nodes is random selection

where each node has an equal probability of being chosen.

We cannot simply randomly choose 84 vertices, however: our method re-

quires the graph to be non-partitioned. Therefore we cannot allow for

vertex-selections that lead to orphans or segments (see Figures 3.3(d)

and 3.3(e) for disallowed vertex-selections). The method was implemented

by reducing the ith row and column from the weight matrix for each cor-

responding ith vertex.

The final concern is the choosing of enough nodes to motivate the use

of graph convolution. One might ask what the difference is between an

irregular graph and an image with zero-valued entries. A proper treat-

ment of this issue is beyond the scope of this thesis, however. We believe

that 84 nodes is a sufficient number to disrupt the regularity of the grid

(Figure 3.3).

Removing corresponding features from the dataset. As the correspond-

ing row and column for each removed vertex was removed from the weight

matrix, so was the ith pixel in the image. An array stored the numbers

of the vertices to keep. The dataset was then vectorised along the feature

axes

Once irregularised, the dataset was split into a 55,000-large training set and

a 5,000-large validation set.

3.2 Methodology

As explained in Chapter 2, CNNs exploit useful statistical properties in data,

such as statistical stationarity and compositionality. It is not possible to operate

on irregular domains in the way conventional way: the lack of a ‘translation

property’ [15] in irregular domains makes convolution impossible; the lack of

24

(a) Original image. (b) Regular graph. (c) Irregular graph.

(d) Orphaned ver-
tices.

(e) A partitioned
graph.

Figure 3.3: The process of irregularisation. Each image from the dataset (a)
is comprehended as a graph (b). A random subset of vertices are removed to
produce an irregular graph (c). When we choose the random subset of vertices,
we must avoid situations where individual vertices are orphaned or the graph is
partitioned. In the cases above, six vertices are arbitrarily removed leading to
two orphans in (d) and a partition in (e).

this property also prohibits straightforward pair-wise pooling or clustering of

the data (see Figure 3.4).

3.2.1 Convolution

From the convolution theorem described by Bracewell [30], we can induce that

convolution in the spatial domain is identical to a multiplication in the spectral

domain [45, p. 163]. This permits defining convolution in the spectral domain

rather than the spatial domain.

Suppose we have a graph G defined on a set of n vertices V and weight

25

(a) Translation property. (b) No translation property.

Figure 3.4: The translation property visualised. Informally speaking, the trans-
lation property exists for a data-domain if a window can be slid unit-by-unit
across the entire space with a constant number of pixels/vertices in its bound-
aries. In the drawing (a) above, the window, represented by a red square, can
be placed anywhere within the boundaries of the data, represented by the ver-
tices, and contain nine vertices. If the data is irregular, however, as in (b), the
window will not always contain 9 vertices wherever it is put.

matrix W ∈ Rn×n. We can compute the Laplacian matrix of the graph—

L = D −W,

where Di,j =

∑

j Ai,j if i = j,

0 otherwise,

where Ai,j =

1 if Wi,j > 0,

0 otherwise,

where A is the adjacency matrix, a binary matrix where each entry Ai,j is 1 if

there is a connection between nodes i and j or 0 otherwise; and D is the degree

matrix, a diagonal matrix where each entry Di,i holds a value corresponding to

the ith node’s degree, the equivalent of the sum of the ith row or column of the

adjacency matrix A.

In decomposing the Laplacian matrix, we obtain the graph’s eigenvectors U

and eigenvalues Λ:

L = U>ΛU.

The eigenvectors allow us to perform an operation that is analogous to a Fourier

transformation [46]. The eigenvectors can therefore be considered to form the

Fourier basis. We can therefore define the graph’s Fourier transformation. Sup-

pose f ∈ Rn is some n-dimensional graph signal in the spatial domain. The

Fourier transform of the signal is

f̂ = U>f,

26

-10-14

10-14

Figure 3.5: Artefacts introduced by discrete Fourier transformations [30, p. 281].
On the left is a random image from the MNIST dataset. Fourier-transforming
that image forward and backward gives the centre image. There are no percep-
tible differences. The right image shows quite how much noise is introduced; it
shows the normalised per-pixel difference between the left and centre images.

where f̂ ∈ Rn is the graph signal in the spectral domain. The reverse Fourier

transformation is defined as

f = Uf̂.

The inverse Fourier transformation on a computer does not f , however, as

computer-implementations of the Fourier transformation are discrete. Owing

to the discrete nature of computers, in practice, a discrete forward and inverse

Fourier transformation of f yields a slightly-modified f̃ (viz. [30], p. 281, ‘Is

the Discrete Fourier Transform Correct?’). As the sampling of discrete Fourier

transforms is ‘not sufficiently closely spaced to represent high-frequency compo-

nents’ (ibid.), artefacts, such as ringing [45, pp. 169–175], are introduced to the

data merely by the discrete forward and inverse Fourier transformations (see

Figure 3.5). The discrete reverse Fourier transformation is thus defined as

f̃ = Uf̂.

As mentioned above, the convolution theorem states that a convolution over

the spatial domain is identical to a multiplication in the spectral domain. If we

consider a convolution kernel h in the spatial domain, there is a vector k ∈ Rn

a filter in the spectral domain, such that

f ?G h ≡ f̂ � k, (3.1)

where ?G denotes spatial convolution on a graph and � denotes the Hadamard

product between two equal-length vectors.

In the same way that filters in CNNs do not need to be the same size as its

layer’s input, e.g. [9], there does not need to be the same number of learned

weights as there are components of the spectral signal. Observe above that the

Fourier-transformed graph signal f̂ is the same length as the non-transformed

27

graph signal f . Suppose the signal-domain filter is given by k ∈ Rn. The filter k

is the same length as f̂ ; for each element ki ∈ k, there is a corresponding element

in f̂ that ki alone multiplies. The vector k therefore acts as a set of scalars of f̂ .

These scalars could be learned, with the aim of representing a certain pattern

present in space. These scalars can be considered as weights and so analogous

to the kernel weights in CNNs. If, however, we do decide to learn these weights,

then each weight is a variable, and therefore an optimisation problem. Thus,

as the size of the graph signal increases, the optimisation problem increases

linearly. This introduces scaling problems.

Rather than learn a vector of weights k, equal in length to the size of the

graph signal, we instead learn a much smaller vector of weights, and interpolate

these weights up to the size of the signal. For instance, instead of k ∈ Rn,

we have κ ∈ Rm such that m � n. The full-size vector of weights k is thus

distinguished from the much smaller vector of tracked weights κ; instead of

learning the weights, we learn the tracked weights. (Henceforth we refer to the

tracked weights simply as weights.) The size of κ is an arbitrary choice, like the

size of kernels in CNNs. The interpolation matrix Φ is a choice to be made by

the model-architect; in our case, we use bicubic interpolation.

A convolution in the spectral domain is therefore,

f ′ = U(f̂ � Φκ) = U(U>f � Φκ),

where U is the Fourier basis; Φκ is the interpolated signal-domain filter; the

convolved graph signal f ′.

In the graph convolution layer in our deep-learning model, an arbitrary num-

ber of filters may be used yielding an equal number of output maps [31]. These

output maps are equivalent conceptually to the output maps of CNNs The pre-

vious layer may have more than one map, too. If the number of input maps

is i and the number of output maps is o, the equation for each output map

0 ≤ o < o is—

f ′o = U

i∑
i=0

[
(U>fi)� (Φκ)

]
. (3.2)

where fi is the input map.

In this chapter we experiment with the number of weights to study its effect

on encoding quality. The number of nodes in the modified MNIST dataset is

700, with the number of weights in vector κ varying from 10 to 60 in increments

of 10.

28

3.2.2 Pooling

In feed-forward networks and CNNs, reducing the dimensionality of the input

data forces the model to learn more general features. For similar purposes, AEs

and CAEs contain pooling layers in order to encode in a smaller dimension than

the input; these kinds of autoencoder are termed undercomplete [4, §14.1]. The

convolution layers in CNNs and CAEs implement another form of dimensionality

reduction as kernel strides.

Both kernel strides and conventional pooling exploit a spatial regularity

that is not present in irregular domains. Graph convolutions are implemented

by multiplication in the spectral domain (3.1), so there is no kernel to stride

from the outset. (Besides, the definition of graph convolution (3.2) requires a

fixed graph.) Conventional pooling techniques require a regularity, or as Bruna,

Zaremba, Szlam, et al. [15] term it, a ‘multiscale dyadic clustering of the grid’,

i.e., the ability of element-pairs to be merged somehow (minimum, maximum,

average) at multiple levels.

Conventional techniques are not possible. Fortunately there are many tech-

niques for pooling or coarsening graphs. Unfortunately it is an NP-hard problem

with a concomitant abundance of literature the problem [47].

Coarsening is defined formally as this: Suppose we have a graph G = 〈V,W 〉
where |V | = n. A coarsening scheme reduces G by some cut-metric to give

a coarser graph Ĝ = 〈V̂ , Ŵ 〉 where |V̂ | = n̂, n̂ < n and W ∈ Rn̂×n̂. As

stated in the literature review Section 2.3, we are using algebraic multigrid

(AMG) to coarsen the graph. The algorithm is described in pseudo-code in

Algorithm 1. Clustering is performed on the weight-matrix, where each entry

Wi,j describes the edge-weight between vertices i and j. The algorithm selects

a random vertex from the graph uniformly at each step (as not to privilege any

one node over any other; Line 6). For each edge and each vertex incident to

the current vertex along that edge, the edge-weight is added entry in an array

corresponding to the incident vertex (the array to which we add the edge-weights

is called column sums in Algorithm 1). A vertex is only observed so long as its

current value (stored in column sums) is less than the threshold. If its value is

less than the threshold, it is also marked to be kept (Line 8). The algorithm

works through every node in the graph (thus it is a greedy algorithm).

For our model, the restriction and projection matrices are precomputed;

the pooling levels and hence graph sizes are thus fixed in our model. In our

case there are two pooling levels. Before pooling there are 700 vertices in the

graph; after level-one pooling there are 276 vertices; after level-two pooling

there are 66 vertices. (See Figure 3.6 for a visualisation of these graphs.) Two

different runs of the algorithm won’t necessarily yield the same result due to

29

Algorithm 1 The algebraic multigrid (AMG) coarsening algorithm [40]. This
algorithm gives a single coarsening given a set of vertices V , a normalised weight
matrix W and a coarsening factor α.

1: procedure AMGPooling(V , W , α)
2: n← |V |
3: random vertices← randomise order(array(n))
4: column sums← zeros(n, 1)
5: vertices to keep← falses(n, 1)
6: for vertex in random vertices do
7: if columns sums[vertex] ≤ α then
8: vertices to keep[vertex]← True
9: for col = 0 . . . n− 1 do

10: column sums[col]← column sums[col] +W [vertex, col]
11: end for
12: end if
13: end for
14: P ←W [:, vertices to keep]
15: R← P> × (1/sum columns(P)) // element-wise division
16: V̂ ← V [vertices to keep]
17: Ŵ ←W [vertices to keep, vertices to keep]
18: return P,R
19: end procedure

the aforementioned randomisation (see Line 3 in Algorithm 1). In addition

to uniformly randomly selecting nodes for study, the algorithm tends to merge

vertices based on how strongly related they are, corresponding to the strength of

their connection, i.e., their respective weights in the weight matrix [47, p. 194].

In our model we used the same graph-coarsenings across all experiments.

(a) No pooling. (b) Pooling level one. (c) Pooling level two.

Figure 3.6: Two-level AMG pooling on an arbitrarily irregular graph with a
coarsening factor α = 0.05. The above example uses the same graph obtained
for Figure 3.3(c). With no pooling there are 700 vertices (a). After level-one
pooling there are 276 vertices. After level-three pooling there are 66 vertices.

30

Figure 3.7: A visual representation of the autoencoder model for the MNIST
data, read from left to right.

3.3 Results

All experiments ran on a Windows 10 machine equipped with an NVIDIA

GeForce 1080Ti. The model code was written in Python with the TensorFlow

library. Figure 3.7 is a visual representation of our model. A graph-convolution

block refers to a set of repeating convolution units. A convolution unit refers

to a single graph-convolution layer, a rectified linear unit as an activation func-

tion and a dropout layer. The AMG block is a AMG restriction to left of the

Encoding block; to the right, it is an AMG projection. A filter is a single set

of weights, equivalent to a set of weight in a CNN. The weights in the encoder

and decoder are not shared. The model receives as input the spatial signals of

the graph for the MNIST dataset. There is only one channel since the data is

grayscale; thus the input data consists of 700 node-values.

The model was optimised using the Adam optimiser with a 0.001 learning

rate and a 256-sample batch size. The AMG coarsening factor was 0.05 and a

dropout drop-probability of 20%. By default, the number of weights was 10; the

number of output maps in the first convolution block was 10; the number of out-

put maps in the second convolution block was 20; and the number of convolution

units per block was 1—but these changed according to the experiment.

We ran experiments on four parameters of the network to check the encod-

ing quality: the number of convolution units per block; the number of output

maps in the first convolution block; the number of output maps in the second

convolution block; and the number of weights in the graph convolution unit. By

conducting these experiments we hoped to learn something about the effect of

these parameters on autoencoding quality in irregular domains.

3.3.1 Experiment 1: Convolution Units per Block

The number of convolution units per block varied from 1 to 5. The recon-

struction error over the validation set over 100 epochs for each variation of

the number of convolution units is plotted in Figure 3.8. The optimal number

of convolution layers, i.e., the encoding that yielded the lowest reconstruction

cost, was 1 convolution layer. Increasing the number of units beyond one yields

a lower-quality encoder.

31

20 40 60 80 100

0.04

0.06

0.08

0.10

0.12

Epoch

R
ec

on
st

ru
ct

io
n

E
rr

or

1 unit/block

2 units/block

3 units/block

4 units/block

5 units/block

Figure 3.8: The reconstruction error over 100 epochs on the validation set as the
number of convolution units in the convolution blocks is varied. The optimal
number of convolution units is 1.

3.3.2 Experiment 2: The Number of Output Maps in the

First Convolution Block

The number of output maps in the first convolution block was varied from 10

to 50. Figure 3.9 plots the reconstruction error on the validation set over the

100 epochs of training for each independent variation. Increasing the number

of output maps increased the fidelity of the encoding. The overall effect was,

however, unremarkable.

20 40 60 80 100

3.00

4.00

5.00

6.00

·10−2

Epoch

R
ec

on
st

ru
ct

io
n

E
rr

or

10-10 configuration

20-10 configuration

30-10 configuration

40-10 configuration

50-10 configuration

Figure 3.9: The reconstruction error over 100 epochs on the validation set as
the number of output maps in the first convolution block was varied from 10 to
50.

32

3.3.3 Experiment 3: The Number of Output Maps in the

Second Convolution Block

As in Experiment 2, the number of output maps in the second convolution block

was varied from 10 to 50. Figure 3.10 plots the reconstruction error on the val-

idation set over the 100 epochs of training for each independent variation. The

overall effect of increasing the number of output maps in the second convolution

block was greater than that for Experiment 2. Though the increase was still

unremarkable.

20 40 60 80 100

3.00

4.00

5.00

6.00

·10−2

Epoch

R
ec

on
st

ru
ct

io
n

E
rr

or

10-10 configuration

10-20 configuration

10-30 configuration

10-40 configuration

10-50 configuration

Figure 3.10: The reconstruction error over 100 epoch on the validation set as
the number of output maps in the second convolution block was varied from 10
to 50.

3.3.4 Experiment 4: Weights

The number of weights in the convolution blocks was varied from 10 to 60. The

number of weights was changed for every convolution unit. The upper bound on

the number of weights was 60 to account for the size of the coarsest graph (see

Figure 3.6). The reconstruction error over the validation set over 100 epochs

for each independent variation is plotted in Figure 3.11. Increasing the number

of weights in the convolution units improved encoding quality, but in the same

order of magnitude as observed in Experiment 2 and 3.

3.4 Discussion

The experiments demonstrate that our convolutional autoencoder appropriately

encodes and learns representational features. Given how simple the MNIST

dataset is, it is no surprise that the model performs best with a single graph

33

20 40 60 80 100

3.00

4.00

5.00

6.00

·10−2

Epoch

R
ec

on
st

ru
ct

io
n

E
rr

or

10 weights

20 weights

30 weights

40 weights

50 weights

60 weights

Figure 3.11: The reconstruction error over 100 epochs for each variation in the
number of weights in the convolution units.

convolution unit (Experiment 1), and does not improve much with additional

output maps (Experiment 2 and 3) and weights (Experiment 4). Increasing

the number of convolution units and output maps not only yielded in one case

worse results and in the other insubstantially better results, they also increased

the time to train the algorithm. Every additional convolution unit increased

training time on average by a factor of 1.68. Every additional 10 output maps

in the first convolution block increased the time to train by a factor of 1.34;

every additional 10 output maps in the second block increased the training time

by a factor of 1.47.

The data shows that our model is particularly sensitive to the number of

graph-convolution layers in each convolution block. The number of filters on

the other hand does not affect the reconstruction cost significantly; though the

cost does decrease with an increased number of filters. In increasing the number

of weights, we expected the autoencoder cost to reduce as more weights means a

coarser filter, which should capture more local information. Indeed, this is what

is borne out in the results; but the effect is not significant. Nonetheless, the

results show that our graph-convolutional autoencoder is suitable for encoding

graph-data.

3.5 Summary

In this section, we presented a model that encodes irregular data. Our dataset

was a modified version of MNIST, where we represented the image data as

graphs and removed a random subset of nodes, yielding a domain with an irreg-

ular topology. Conventional techniques would not work with such data, so we

34

had to define convolution and pooling operations. Convolution in the irregular

domain was achieved by a multiplication in the spectral domain of the graph.

Pooling was implemented using the algebraic multigrid (AMG) coarsening al-

gorithm.

With our modified MNIST dataset and convolution and pooling defined on

the graph, we created a model to encode the images from the modified dataset.

We found upon experimentation that a simple model architecture yielded a

high-fidelity encoding. This is most likely due to the simplicity of the MNIST

dataset.

35

Chapter 4

Graph Convolutional

Autoencoder Applied to

EEG Data

Contents

4.1 The Temple University Hospital EEG Corpus . . 37

4.2 Graph Construction 39

4.3 Results . 41

4.4 Discussion . 47

4.5 Summary . 49

In Chapter 3 we defined convolution and pooling on irregular domains, and

built a model to learn representative features of graph data. In this chapter we

will apply these techniques to another data-domain with greater significance—

electroencephalography (EEG).

Electroencephalograms record brain activity in the form of electrical signals

through the scalp of a subject and take the form of a cap. The 10/20 system

recommended by the American Clinical Neurophysiological Society (ACNS) [48]

has acted as the main standard for the design of EEG cap, but there are other

systems available, too [49]. The ACNS standard defines 81 standard electrodes,

positioned concentrically around a central node called Cz. (In the 10/20 con-

figuration only 21 electrodes are used; see Figure 4.1 for a visual representation

of these sensors. N.B.: These graphs are not related to the graphs we use for

deep learning. Please see Section 4.2 to read how we constructed the graph for

deep learning.)

Because of the spherical, non-Euclidean surface of the scalp and the regu-

36

Figure 4.1: The three electrode reference systems used by the TUH EEG corpus.
This figure is adapted from work by Lopez, Gross, Yang, et al. [50]. From that
paper: ‘a) the Common Vertex Reference (Cz), b) the Linked Ears Reference
(LE) and c) the Average Reference (AR)’. In this work we solely work on data
using the AR system.

lar placement of electrodes across a non-Euclidean geometry, graph techniques

should perform well on electroencephalographys data. In this chapter we present

a graph-based convolutional autoencoder (GCAE) for encoding EEG data.

4.1 The Temple University Hospital EEG Cor-

pus

The Temple University Hospital EEG Corpus (TUH-EEG) [6] is a massive,

professionally labelled EEG dataset containing abnormal EEG data from over

25,000 studies. The subset we are interested in for our work is the TUH-EEG

Seizure Corpus, specifically version 1.2.1 [51].

The seizure dataset is already divided into disjoint training and testing

sets. The training set consists of 264 unique patients, 78,838.0892 seconds of

seizure data and 1,109,474.9108 seconds of background data. The testing data

is smaller, with 50 unique patients, 58,322.3671 seconds of seizure data and

558,779.6329 seconds of background data. The training set is further divided

into two disjoint training and validation sets. The validation set consists of 243

patient-sequences selected from the original training set.

The dataset is 18 gigabytes large. The EEG data resides in European Data

37

Format (EDF) files, and the labels for the data reside in separate label files. For

each EDF file there are two label files: one contained many labels for different

kinds of seizures for multi-class classification tasks; the other dataset contained

binary labels indicating which parts of the EEG data recorded seizures. These

labels constitute the ground-truth. Each time-step is labelled either seizure or

non-seizure.

To simplify our task, we restricted our use of the dataset to the reference sys-

tem with the greatest amount of data, the AR reference system (see Figure 4.1),

which accounts for 51.5% of the dataset [50].

In preparing the data for our model, we had to prepare the data by—

Subsampling the data and selecting for common channels. The lowest

frequency in the dataset was 250 Hz, so all sequences were subsampled

to this frequency. The greatest common set of electrode channels was 17

large—C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz, Pz,

A1, A2. By subsampling the EEG data to the same, common frequency,

equally-sized data-windows would correspond to equal time-lengths in dif-

ferent sequences. Selecting the greatest common set of channels would

ensure (1) a fixed graph for all data and (2) the inclusion of the greatest

amount of variance in the data. This subsampling of the data follows the

example of previous work [7], [50], [52], [53].

Labelling the time-steps in the data. The label files specified where seizures

started and ended in each sequence. The start and stop times were given

in seconds rather than time-steps or indices. To convert these times to

indices was trivial. The index of the start time-step/index is given by

istart = btstart · freqc.

The index of the end of the seizure was calculated similarly:

iend = dtend · freqe.

With these indices calculated, we labelled each time-step seizure/non-

seizure according to whether it fell between istart and iend inclusively.

We compiled a list of the indices for the time-steps corresponding to seizures

and another for those corresponding to non-seizures for each sequence of EEG

data. During training, these indices were sampled according to a uniform dis-

tribution with replacement. It is possible that a time-step could be sampled

twice. However, due to the size of the dataset, this was very unlikely. For this

reason we did not make an effort to ensure it did not happen. We also did

38

Figure 4.2: A visualisation of an EEG cap with two different heuristics to de-
termine the connectivity of the graph. On the left, vertices were connected only
if they were at least within one-fourth of greatest Euclidean distance between
all nodes in the graph. On the right-hand-side graph, all nodes are connected;
i.e., it is fully connected. N.B.: This graph is similar to the one we used for our
EEG data, but it is not the same.

not see any problem with the model being trained on a batch containing one

already-observed sequence while the rest had not. It would have been even less

likely that the entire batch consisted of already-observed sequences.

The data was not normalised for three reasons. Firstly, the measurements of

EEG signals occupy the same range of numbers. Secondly, it raises the question

of what exactly we normalise against. The maximum of the patient? or the

maximum of the entire dataset? Thirdly, we found that batch-normalisation

hampered the performance of the model to such a degree during training that

it was finally dropped.

4.2 Graph Construction

Before we can perform any graph deep learning on the EEG data, we must cre-

ate the graph to represent the spatial locations of the 17 electrodes. The edges

should ideally describe some real relationship between two sensors in the graph,

such as their physical distance, so a unit-weight for the edges is not useful.

(Figure 4.2 for a visualisation of an EEG cap with two different connectivities.)

An additional question is how many connections. It may also describe other,

real attributes. Rui, Nejati, and Cheung [54] [54] describe a few alternative

‘brain connectivities’ that could be applied in constructing the graph; namely,

functional connectivity and effective connectivity. The easiest approach, re-

quiring little expert knowledge, is to use standardised measurements used in

constructing EEG caps to calculate physical distance. As we will see, we have

no radii measurements to use. The second-best measure is therefore the angular

relationship between two sensors.

The ACNS standard supplies spherical coordinates for each of the sensors,

39

recording their location relative to the top of the scalp [48, p. 58]. Unfortunately

the radii of the locations was not specified—presumably because the radii change

so drastically between patients since peoples’ heads are not all one size. The

proximity of the sensors to one another can be inferred from their spherical

distances. These distances were therefore used to populate a weight matrix.

The spherical coordinates for each electrode is given by a pair of values, the

elevation θ and the azimuth φ. The electrode Cz is assigned an elevation and

azimuth of 0; all other electrodes are located relative to this. The origin is

located at the centre of the sphere. The ACNS standard specifies the values

in degrees, so they were first converted to radians before calculating spherical

distances.

First we needed an equation to measure the spherical distance. We know

how to calculate the Euclidean distance in Cartesian space:

distance =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2. (4.1)

We can convert between Cartesian and spherical coordinates using the following

equations:

x = r sin(θ) cos(φ),

y = r sin(θ) sin(φ),

z = r cos(θ).

(4.2)

By substituting the equations in 4.2 for x, y and z in 4.1 and rearranging the

resultant equation, we get an equation for the calculation of spherical distance:

distance =
√
r21 + r22 + 2r1r2[sin(θ1) sin(θ2) cos(φ1 − φ2) + cos(θ1) cos(θ2)]

(4.3)

As this equation requires radii measurements that we do not have, we cannot

use this equation to compute the edge-weights for the graph. But the angular

component of the above equation,

angular component = sin(θ1) sin(θ2) cos(φ1 − φ2) + cos(θ1) cos(θ2)1. (4.4)

does measure the angular divergence or convergence of two spherical coordinates.

If two sensors lie on top of one another, the angular component yields 1; if they

on opposite sides of the unit sphere, the value is -1. The closer two sensors, the

higher the value of the angular component. Assuming a unit-sphere, we can use

this angular component to measure the relatedness of two sensors.

1The equation for spherical distance was given at https://math.stackexchange.com/

questions/833002

40

This equation for the angular component cannot in its current state be used

for calculating edge-weights, as negative values are not permitted to be used in

the weight matrix. Instead we can translate and scale the range from [−1, 1] to

[0, 1] by first adding one and dividing the whole by 2:

Wi,j =
(sin(θ1) sin(θ2) cos(φ1 − φ2) + cos(θ1) cos(θ2)) + 1

2
(4.5)

Each entry of the weight matrix for the graph is then defined by a trans-

formed calculation of the angular component (4.4).

The lack of radii measurements means it is not possible to visualise the graph

accurately. This does not imply the weight matrix has no bearing on reality,

however. Assuming a perfect sphere, the weights used to define the edges of the

graph correspond inversely to the angles between sensors. The scalp is certainly

not a perfect sphere but we believe the two are close enough for our method to

be valid.

4.3 Results

All experiments ran on a Windows 10 machine equipped with an NVIDIA

GeForce 1080Ti. The model code was written in Python with the TensorFlow

library. Figures 4.3 to 4.5 are diagrams of the three models we compare ex-

perimentally. Dropout was implemented with a probability of 50%. The leaky

ReLU layers were implemented with an alpha of 0.2, the default value in Ten-

sorflow. The graph convolutions used a number of tracked weights equal to the

ceiling of the square-root of its number of vertices; there were 17 vertices in the

graph convolution, so 5 tracked weights.

Each model was optimised using RMSProp [55] over 200 epochs with a 8-

sample batch size and an initial learning-rate of 0.001 for 10 epochs that decayed

linearly over the remaining 190 epochs to 0.0001 (using numpy’s linspace func-

tion). This learning-rate was settled upon after experimenting with learning-

rates orders of magnitude apart; we found that 0.001 yielded a stable learning-

rate that didn’t learn so quickly or so slowly that nothing was learned. In any

case, the choice of learning-rate is an arbitrary choice, and this choice cannot be

said with certainty to be the most optimal. The decaying learning-rate allows

for smaller adjustments in the learning and is intended to allow the model to

fine-tune its parameters.

Each batch consisted of one-half seizure samples and one-half non-seizure

samples. The samples were 1,024 time-steps long, corresponding to 4.096 sec-

onds of EEG data at 250 Hz. The samples were randomly chosen from the data

using the index-lists extracted before training (Section 4.1).

41

There are two axes present in the data: a temporal axis and a spatial axis.

As mentioned in above, there were 1,024 time-steps for each sampled sequence

and 17 nodes. Therefore there are 17,408 data-points per sample. The graph

deals with the spatial structure of the data, i.e., the 17 node. The seizures

are assumed to have a stationary distribution along the temporal axis. For

this reason we decided to use one-dimensional convolutions to learn temporal

patterns in the data. This is an assumption that underlies machine-learning

approaches proposed in previous work [7], [50], [52], [53].

As a basis for comparison, we implemented three different architectures with

analogous structures. The basis for comparison is the one-dimensional (1D)

model described in Figure 4.3. In this model the only convolution is along

the temporal axis, disregarding the spatial axis. The purpose of the 1D model

is to assess what can be discriminated solely on the basis of what is present

temporally. This can then be compared to versions of the 1D model where there

exists some comprehension of spatial information. Overall this will permit us

to assess and compare the contributions of the two axes.

The 1D model consists of three subnetworks: an encoder, a decoder and a

classifier. The encoder and decoder subnetworks (the autoencoder subnetwork)

is built of one-dimensional convolution blocks. Similarly with the convolution

blocks in Section 3.3, the one-dimensional convolution blocks consist of a single

temporal one-dimensional convolution layer; a leaky ReLU layer as an activation

layer; followed by a dropout layer for more robust training. There are three of

these blocks, each of which is followed by a temporal pooling 5 units long. The

final pooling layer is followed by a single one-dimensional convolution and a

leaky ReLU layer. We do not use a dropout layer at the end of the autoencoder

since we will be using this data to train the classifier, within which there is

already a dropout layer present. N.B.: The one-dimensional convolutions solely

in the 1D model have 85 nodes/outputs, corresponding to 5 nodes for each

graph-node in the input. This was intended to replicate the capacity of the 2D

and graph models, described below.

The decoder subnetwork is a mirror-image of the encoder, except the final

graph-convolution, one-dimensional convolution and leaky ReLU are not present

at the beginning (see Figure 4.3). The weights are not shared between encoder

and decoder. The classifier consists of two fully-connected layers of 100 neurones

with leaky ReLUs and dropout layers in between the first two fully-connected

layers. An additional, final layer consists of two neurones trained as a binary

classifier. (Figure 4.3 describes the size of the layers at each step in a more

comprehensible way.)

The two comparison models that we developed extend the 1D model. The

first, which we name the graph model (see Figure 4.4), includes graph-convolution

42

layers before each one-dimensional convolution in the encoder of the 1D model,

and after each one-dimensional convolution block in the decoder of the 1D

model. We decided not to include graph-clustering/-pooling layers since the

number of nodes in the graph (17) is low. Each graph-convolution layer yielded

five output-maps. The purpose of this model is to assess the contribution of

graph-understanding to the performance of the model.

The two-dimensional (2D) model substitutes two-dimensional convolutions

for the one-dimensional convolutions in the 1D model (see Figure 4.5). The

kernel-size of the two-dimensional convolutions is 5-by-5, 5 units in the temporal

domain (as in the 1D model) with 5 units in the spatial domain. In using these

layers, we are making an incorrect assumption of the spatial relationship of the

nodes, an assumption that is commonly made when dealing graphs in other

problem-domains (viz. [24], [25]).

Figure 4.3: The one-dimensional-convolution (1D) model is nearly identical to
the 2D model: all 2D convolutions are replaced with 1D convolutions with a
receptive field 5 units long. N.B.: The output-dimensions of the one-dimensional
convolution blocks are on the surface different to those in Figures 4.4 and 4.5.
The nodes in the 1D model equal 85 to correspond to the 17 graph-nodes and
5 graph-channels in the 2D and graph models.

The Charbonnier loss [56] (4.6) was used as the cost-function for the au-

toencoders. It has a steep slope resembling L1 loss for extreme values of x̃− x,

with a curve resembling an L2 loss around 0 due to an epsilon term (ε = 0.0001;

see Figure 4.6). The Charbonnier loss hence retains the curve around zero as

43

Figure 4.4: The graph model consists of a series of graph convolution blocks,
one-dimensional convolution blocks and one-dimensional pooling. The values in
the brackets state the output of each layer or set of layers. Each convolution
block consists of a graph convolution, a leaky ReLU layer and a dropout layer.
Similarly, each one-dimensional convolution block consists of a one-dimensional
convolution, a leaky ReLU layer and a dropout layer. The final layer in the
encoder does not contain a full one-dimensional convolution block; instead, there
is only a one-dimensional convolution and a leaky ReLU. The decoder contains
identical components to the encoder, with one-dimensional upsampling layers
replacing the pooling layers. The final layer of the decoder is non-activated.

with L2 loss and the straight edges beyond 0 as with the L1 loss. For these

reasons, optimising this function results in more stable training than L1 and L2

losses. In computing the cost, each time-step was considered an independent

observation, so the loss was calculated based on the mean of all time-steps in all

batches. The classification cost was measured using a sigmoidal cross-entropy

function, as the output of the classifier part of the model is one unit large.

The models were optimised according to the sum of the autoencoder and

classification costs. Balancing these costs is integral to the linear separation of

data. The purpose is not classification; this is a generative approach and so it

will not give competitive performance. The purpose is to learn which features

44

Figure 4.5: The two-dimensional-convolution (2D) model is similar to the graph
model, except all graph blocks have been removed and replaced with 2D convo-
lutions with a 5-by-5 receptive field.

best correspond to seizures. The classification accuracy is an assessment of the

performance of the autoencoder, applied in learning to adjust the encoding in a

way that increases the separability of the data. The two should be considered

in conjunction.

E(x) =
√

(x̃− x) + ε2 (4.6)

Due to the size of the database, we could not run through the full dataset

every epoch. Instead we randomly chose 60,800 EEG samples every epoch,

half of which were seizure samples and half non-seizure. Over 200 epochs this

result in a good coverage of the dataset: 6,080,000 seizure samples of a pos-

sible 6,254,608, and the same number of non-seizure samples from a total of

125,368,700. The samples are likely to overlap between any epoch, however; by

samples, we refer to the time-steps upon which a 1,024-unit window of EEG

data can be taken. The justification for this overlap is our preference for the

model to become temporally invariant. It is harder to say the same thing is true

for the non-seizure data. There is a far greater quantity of non-seizure samples

available, so the likelihood of overlap is far lower in this case.

The validation and testing set are sampled likewise. From the validation

set, 12,800 samples are taken every epoch. Over the 200 epochs of training,

45

-1 -0.5 0 0.5 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lo
ss

Charbonnier loss-function, = 0.1

Figure 4.6: The Charbonnier cost-function combines the linear slope of an L1

cost-function for values greater than zero, with a curve that reaches its minimum
near zero, but never reaches y = 0 due to a small epsilon term (see Equation 4.6).

2,560,000 samples are made from a total of 30,424,383 possible samples with

replacement; 1,467,058 of all possible samples are classified as seizures, from

which 1,280,000 are sampled with replacement. Upon completion of training,

480,000 samples, half of which are classified as seizures, are taken from a total

of 98,108,159 samples, 12,330,283 of which are labelled as seizures.

The key difference between our approach and others before us [7], [50], [52],

[53] is that our approach does not train on extracted features; we use the raw

EEG data to train our model. While we cut down on time by avoiding data-

processing procedures, our model’s performance is affected by the greater degree

of noise; this corresponds to a poorer classification performance. Since the model

learns on this raw data, it may pick up on structures these other techniques miss.

We expected the experimental data to show that the performance of the

graph model is superior to the other two; the graph-understanding of the data

should allow the model to learn the dynamics in the data. The three models

were trained according to the same scheme over the same dataset. We assessed

them on their accuracy and reconstruction errors. The validation errors were

used to assess the training for generalisation errors, while the test errors will

tell us of the performance on totally unobserved data.

The results present a mixed picture. The graph model is not distinctly

better than the 2D and 1D models with respect to classification and encoding

performance. The graph model performed generally better than the 2D and 1D

46

0 50 100 150 200

Epoch

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Training accuracy

0 50 100 150 200

Epoch

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Validation accuracy

-5 0 5

Epoch

40

50

60

70

80

90

100

A
cc

ur
ac

y
(%

)

Testing accuracy

Graph conv.
2D conv.
1D conv.

Figure 4.7: The results of the experiment on the three models for classification
accuracy. The graph model far outperformed the 2D and 1D models on the
training set. The graph model only marginally beat the 2D model.

models on the validation set; yet it was outperformed every so slightly on the

testing set by the 1D and 2D models (Figure 4.7). Nonetheless, the performance

differences were insignificant, and therefore it cannot be said that one method

can be favoured over any other.

The encoding performance as reconstruction error or autoencoder cost does

not give a clear result in favour of any of the models. Despite the 2D model

performing better over the training set than the graph model, their performance

was fairly even on the validation set; yet when it came to the testing set the 2D

model had a slightly lower reconstruction cost (Figure 4.8).

Overfitting is the major problem here. The training accuracy gradually

increases with the epoch, but the validation accuracy is erratic. The accuracy

occasionally dips below 50%, indicating that the model is performing worse than

mere guess-work. The reconstruction errors for the models also reveal problems.

The models become only marginally better over time on the training data, and

perform erratically on the validation set.

4.4 Discussion

The results of the experiment are not what we originally hoped. The graph

convolutions (defined in Section 3.2.1) take into account the spatial relationships

of the EEG channels. Two-dimensional convolutions make different assumptions

about the spatial relationships in the data they operate on; applying them to

domains where the assumptions no longer hold should result in poor results when

compared to an approach like graph convolution that does take into account

47

0 50 100 150 200

Epoch

3

4

5

6

7

8

9

E
rr

or

Training reconstruction error

0 50 100 150 200

Epoch

3

4

5

6

7

8

9

E
rr

or

Validation reconstruction error

-5 0 5

Final epoch

3

4

5

6

7

8

9

E
rr

or

Testing reconstruction error

Graph conv.
2D conv.
1D conv.

Figure 4.8: The results of the experiment on the three models for autoencoder
cost. None of the models appeared to learn an encoding any better than the
others. The reconstruction error on the testing set was better for the 1D and
2D models than the graph model. (Note that the 2D and 1D models had the
reconstruction error on the test set.)

these spatial relationships.

There are several possible reasons for the graph convolution’s on-par perfor-

mance with the graph convolution. First of all, there’s the architecture itself

(Figure 4.4). Would graph pooling layers reduce the reconstruction error by

forcing the data into a more compact encoding space? Architectures that use

two-dimensional convolutions (unlike ours) pools the features in all directions in

order to generalise features. We refrained from doing so in our code for fear that

it would prevent the model from learning anything (time was at a premium).

Also, should we have put a one-dimensional convolution and graph convolution

before the first pooling layer in the decoder? The capacities of the encoder and

decoder are imbalanced without it. Perhaps this imbalance is highly consequen-

tial to the performance of the autoencoder.

Secondly, perhaps there was some dependency in the temporal domain that

would improve the separability of the classes? The 1D convolutions were in-

tended to understand any salient information in the temporal axis; but they are

not appropriate for learning time dependencies. A graph-based long short-term

memory (LSTM) layer instead of a one-dimensional convolution layer would

address this problem by learning any time dependencies; unfortunately, to the

best of our knowledge, there are no examples in the literature of architectures

using graph LSTMs.

Thirdly, the representation of graph using the measure stated in Equation 4.5

may not be adequate to represent the graph. Human skulls vary in size, radius,

48

curvature, etc.; it is not possible to construct a graph that is representative of

the whole population. Human-action recognition research is subject to the same

troubles in constructing skeletal models [26].

To consider too is the fact that there are different ways to represent the

connectivity of the brain from the outset. We mentioned in Section 4.1 that

we decided on a structural representation—i.e., one that simply considers the

relative distances between the sensors of the EEG cap. Rui, Nejati, and Cheung

[54] mentions two ‘brain connectivities’: functional connectivity and effective

connectivity. Further work into how one might represent a graph in these ways

may yield more fruitful alternatives for graph representation; or, indeed, work

on how to learn an appropriate graph representation.

Finally, there is the dataset to consider. Seventeen sensors were selected

after searching for the greatest common set of sensors in the EEG data. Might

more sensors have yielded a better encoding? The paper for the TUH-EEG

Seizure Corpus [51] suggests that some of the seizures were labelled by doctors

and others algorithmically. A possible alternative is the European Epilepsy

Database (EED)2. The website advertises 40,000 hours of data from 250 epilepsy

patients, 50 of which with intercranial recordings, and up to 122 channels. The

dataset is expensive, however: a three-year license for 30 patient datasets costs

3,000¿.

Given the results for reconstruction error (Figure 4.8), we think the greatest

failure is the architecture. The lack of great distinction in the reconstruction

error between the three methods suggests the problem is the architecture or the

construction of the graph. The purpose of the 1D convolutions was to show that

adding spatial comprehension to the network (the graph convolutions) or even

invalid spatial comprehension (2D convolutions) would improve the encoding in

some way, but the more valid method would improve the encoding to a greater

extent. If this were the case, it would have shown in the reconstruction error

and the accuracy. The fact that all three did not perform in radically different

ways suggests that the method is flawed somehow. To understand why requires

further research.

4.5 Summary

In this chapter we presented the results of an experiment comparing the graph

convolution operation with a two conventional methods. The models were

trained on a subset of the Temple University Hospital EEG Corpus consist-

ing of seizures from 264 unique patients. We constructed a graph for the 17

2http://epilepsy-database.eu/

49

sensors using spherical coordinates specified in the American Clinical Neuro-

physiological Society’s specification for electroencephalography (EEG) caps.

The results did not reveal any improvement in testing accuracy in the use

of graph convolutions compared to two-dimensional convolutions. There may

be a number of reasons for the poorer performance. The architecture may

not be balanced; and graph pooling may increase encoding performance. A

graph-based long short-term memory (LSTM) layer may also yield a better

performance if it were used in the place of the one-dimensional convolutions;

however, to the best of our knowledge, no graph LSTM implementations exist

in the literature. Our graph representation of the EEG cap may itself be invalid,

too (this is a research problem we outline in Section 5.2). Finally, the dataset

itself may be of poor quality.

50

Chapter 5

Conclusions and Future

Work

Contents

5.1 Conclusions . 51

5.2 Future Work . 51

5.1 Conclusions

In Chapter 4, we sought to apply what we learned in Chapter 3 to a real task.

We decided to apply our work to the classification of electroencephalography

(EEG) scans. We described the Temple University Hospital EEG Corpus and

used it to train the graph-based convolutional autoencoder (GCAE). As a point

of comparison, we compared this model to a couple of analogous architectures

one implementing two-dimensional convolutions and the other implementing

one-dimensional convolutions. Unfortunately the graph-convolution was not

distinctly better than other models; in fact it performed slightly worse on the

testing set.

5.2 Future Work

There are two avenues for future research immediately available. The first is the

study of better deep-learning architectures that implement graph convolution.

Part of the reason for the failure of our graph model is poor understanding

and inexperience. Graph deep learning is a young field, with no textbook on

the subject. Further work on a more appropriate model for EEG data would

51

yield fruitful insight into why this model does not work; it may guide future

researchers with heuristics for building graphs.

The second is the use of a different dataset. The TUH-EEG dataset’s great-

est set of common sensors is fairly low (only 17). A consequence of this low num-

ber was that we refrained from using graph pooling layers. Instead we proposed

using the European Epilepsy Database which contains potentially better-quality

labelling and higher number of sensors common to all patient datasets.

There are several, more distant possibilities for research. In Section 4.4 we

discussed the validity of the way we defined the graph representing the EEG

sensors. The challenge of defining graphs based on humans is not unique; as

we noted, human-action recognition has similar problems. But whether it was

the optimal representation of the graph is in question and an ongoing research

problem. Can we build a model that will learn the best representation for a

graph representation of a data domain?

Finally, there is the question of whether we can learn on data with different

graph-dimensionalities. As mentioned above and in Section 4.4, we had to use

a restricted number of sensors from the TUH-EEG dataset. Is it possible to

build a model that will learn irrespective of the number of active nodes? An-

swering this question may have significant implications for graph deep learning

in other domains, such as learning the activity on computer networks and hence

cybersecurity.

52

Bibliography

[1] Alexus Strong. How Cambridge Analytica Used Machine Learning to Mine

Facebook Data. Online. Mar. 2018. url: https://news.codecademy.com/

cambridge-analytica-machine-learning-facebook-data/.

[2] Carole Cadwalladr and Emma Graham-Harrison. Revealed: 50 million

Facebook profiles harvested for Cambridge Analytica in major data breach.

Online. Mar. 2018. url: https://www.theguardian.com/news/2018/

mar/17/cambridge-analytica-facebook-influence-us-election.

[3] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of

Statistical Learning. Springer-Verlag New York Inc., Feb. 9, 2009. 745 pp.

isbn: 0387848576. url: https://www.ebook.de/de/product/8023140/

trevor_hastie_robert_tibshirani_jerome_friedman_the_elements_

of_statistical_learning.html.

[4] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT

Press, 2016.

[5] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. “Non-

linear Component Analysis as a Kernel Eigenvalue Problem”. In: Neural

Computation 10.5 (1998), pp. 1299–1319. doi: 10.1162/089976698300017467.

[6] Iyad Obeid and Joseph Picone. “The Temple University Hospital EEG

Data Corpus”. In: Frontiers in Neuroscience 10 (2016), p. 196.

[7] David James, Xianghua Xie, and Parisa Eslambolchilar. “A discriminative

approach to automatic seizure detection in multichannel EEG signals”. In:

Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd

European. IEEE. 2014, pp. 2010–2014.

[8] Scott B. Wilson, Mark L. Scheuer, Ronald G. Emerson, et al. “Seizure de-

tection: evaluation of the Reveal algorithm”. In: Clinical Neurophysiology

115.10 (2004), pp. 2280–2291. doi: 10.1016/j.clinph.2004.05.018.

[9] Y. LeCun, L. Bottou, Y. Bengio, et al. “Gradient-based learning ap-

plied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),

pp. 2278–2324. doi: 10.1109/5.726791.

53

[10] Geoffrey Hinton Yann LeCun Yoshua Bengio. “Deep learning”. In: Nature

(2015).

[11] Y. LeCun, B. Boser, J. S. Denker, et al. “Backpropagation Applied to

Handwritten Zip Code Recognition”. In: Neural Computation 1.4 (1989),

pp. 541–551. doi: 10.1162/neco.1989.1.4.541.

[12] Sepp Hochreiter and Jürgen Schmidhuber. “Long short-term memory”.

In: Neural computation 9.8 (1997), pp. 1735–1780.

[13] Marvin L Minsky and S Papert. Perceptrons. Expanded Edition. MIT

Press, Cambridge, MA, 1988.

[14] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feed-

forward networks are universal approximators”. In: Neural Networks 2.5

(1989), pp. 359–366. doi: 10.1016/0893-6080(89)90020-8.

[15] Joan Bruna, Wojciech Zaremba, Arthur Szlam, et al. “Spectral Networks

and Locally Connected Networks on Graphs”. In: ArXiv (Dec. 21, 2013).

arXiv: http://arxiv.org/abs/1312.6203v3 [cs.LG].

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. “ImageNet clas-

sification with deep convolutional neural networks”. In: Communications

of the ACM 60.6 (2017), pp. 84–90. doi: 10.1145/3065386.

[17] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Con-

volutional Networks”. In: Computer Vision – ECCV 2014. Springer In-

ternational Publishing, 2014, pp. 818–833. doi: 10.1007/978-3-319-

10590-1_53.

[18] Christian Szegedy, Wei Liu, Yangqing Jia, et al. “Going Deeper With

Convolutions”. In: The IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2015.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, et al. “Deep Residual Learn-

ing for Image Recognition”. In: The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2016.

[20] Jie Hu, Li Shen, and Gang Sun. “Squeeze-and-Excitation Networks”. In:

arXiv (Sept. 5, 2017). arXiv: http://arxiv.org/abs/1709.01507v2

[cs.CV].

[21] Gul Varol, Ivan Laptev, and Cordelia Schmid. “Long-Term Temporal

Convolutions for Action Recognition”. In: IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 40.6 (2017), pp. 1510–1517. doi:

10.1109/tpami.2017.2712608.

54

[22] Pichao Wang, Wanqing Li, Zhimin Gao, et al. “Scene Flow to Action

Map: A New Representation for RGB-D Based Action Recognition with

Convolutional Neural Networks”. In: 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). IEEE, 2017. doi: 10.1109/

cvpr.2017.52.

[23] Gunnar Johansson. “Visual perception of biological motion and a model

for its analysis”. In: Perception & Psychophysics 14.2 (1973), pp. 201–211.

doi: 10.3758/bf03212378.

[24] Earnest Paul Ijjina and C Krishna Mohan. “Human Action Recognition

Based on MOCAP Information Using Convolution Neural Networks”. In:

2014 13th International Conference on Machine Learning and Applica-

tions (ICMLA). IEEE. 2014, pp. 159–164.

[25] Earnest Paul Ijjina and C Krishna Mohan. “Human action recognition

based on motion capture information using fuzzy convolution neural net-

works”. In: 2015 Eighth International Conference on Advances in Pattern

Recognition (ICAPR). IEEE. 2015, pp. 1–6.

[26] Michael Edwards and Xianghua Xie. “Graph-Based CNN for Human Ac-

tion Recognition from 3D Pose”. In: Workshop on Deep Learning in Ir-

regular Domains at the 28th British Machine Vision Conference (BMVC

2017). 2017.

[27] Michael M. Bronstein, Joan Bruna, Yann LeCun, et al. “Geometric Deep

Learning: Going beyond Euclidean data”. In: IEEE Signal Processing

Magazine 34.4 (2017), pp. 18–42. doi: 10.1109/msp.2017.2693418.

[28] Proclus. A Commentary on the First Book of Euclid’s Elements. Ed. by

Glenn R Morrow. Princeton University Press, 1992.

[29] Martin Gardner. Fads and Fallacies in the Name of Science. Vol. 394.

Courier Corporation, 1957.

[30] Ronald Newbold Bracewell. The Fourier Transform and Its Applications.

McGraw-Hill New York, 1986.

[31] Michael Edwards and Xianghua Xie. “Graph Based Convolutional Neural

Network”. In: ArXiv (Sept. 28, 2016). arXiv: http://arxiv.org/abs/

1609.08965v1 [cs.CV].

[32] Mikael Henaff, Joan Bruna, and Yann LeCun. “Deep Convolutional Net-

works on Graph-Structured Data”. In: ArXiv (June 16, 2015). arXiv:

http://arxiv.org/abs/1506.05163v1 [cs.LG].

55

[33] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. “Convo-

lutional Neural Networks on Graphs with Fast Localized Spectral Fil-

tering”. In: Proceedings of the 30th International Conference on Neural

Information Processing Systems. NIPS’16. Barcelona, Spain: Curran As-

sociates Inc., 2016, pp. 3844–3852. isbn: 978-1-5108-3881-9. url: http:

//dl.acm.org/citation.cfm?id=3157382.3157527.

[34] Ron Levie, Federico Monti, Xavier Bresson, et al. “CayleyNets: Graph

Convolutional Neural Networks with Complex Rational Spectral Filters”.

In: ArXiv (May 22, 2017). arXiv: http://arxiv.org/abs/1705.07664v1

[cs.LG].

[35] Federico Monti, Michael M. Bronstein, and Xavier Bresson. “Geometric

Matrix Completion with Recurrent Multi-Graph Neural Networks”. In:

ArXiv (Apr. 22, 2017). arXiv: http://arxiv.org/abs/1704.06803v1

[cs.LG].

[36] Bing Yu, Haoteng Yin, and Zhanxing Zhu. “Spatio-Temporal Graph Con-

volutional Networks: A Deep Learning Framework for Traffic Forecast-

ing”. In: arXiv (Sept. 14, 2017). doi: 10.24963/ijcai.2018/505. arXiv:

http://arxiv.org/abs/1709.04875v4 [cs.LG].

[37] David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, et al.

“Convolutional Networks on Graphs for Learning Molecular Fingerprints”.

In: Proceedings of the 28th International Conference on Neural Informa-

tion Processing Systems -Volume 2. NIPS’15. Montreal, Canada: MIT

Press, 2015, pp. 2224–2232. url: http://dl.acm.org/citation.cfm?

id=2969442.2969488.

[38] Florian Dorfler and Francesco Bullo. “Kron Reduction of Graphs With

Applications to Electrical Networks”. In: IEEE Transactions on Circuits

and Systems I: Regular Papers 60.1 (2013), pp. 150–163. doi: 10.1109/

tcsi.2012.2215780.

[39] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. “Weighted Graph

Cuts without Eigenvectors: A Multilevel Approach”. In: IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 29.11 (2007), pp. 1944–

1957. doi: 10.1109/tpami.2007.1115.

[40] Dorit Ron, Ilya Safro, and Achi Brandt. “Relaxation-Based Coarsening

and Multiscale Graph Organization”. In: Multiscale Modeling & Simula-

tion 9.1 (2011), pp. 407–423. doi: 10.1137/100791142.

56

[41] Chun Wang, Shirui Pan, Guodong Long, et al. “MGAE: Marginalized

Graph Autoencoder for Graph Clustering”. In: Proceedings of the 2017

ACM on Conference on Information and Knowledge Management - CIKM

'17. ACM Press, 2017. doi: 10.1145/3132847.3132967.

[42] Or Litany, Alex Bronstein, Michael Bronstein, et al. “Deformable Shape

Completion with Graph Convolutional Autoencoders”. In: arXiv (Dec. 1,

2017). arXiv: http://arxiv.org/abs/1712.00268v4 [cs.CV].

[43] Yiluan Guo, Hossein Nejati, and Ngai-Man Cheung. “Deep neural net-

works on graph signals for brain imaging analysis”. In: arXiv (May 13,

2017). arXiv: http://arxiv.org/abs/1705.04828v1 [cs.CV].

[44] Andrew P. Valentine and Jeannot Trampert. “Data space reduction, qual-

ity assessment and searching of seismograms: autoencoder networks for

waveform data”. In: Geophysical Journal International 189.2 (2012), pp. 1183–

1202. doi: 10.1111/j.1365-246X.2012.05429.x.

[45] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing. Sec-

ond. Prentice Hall, 2002.

[46] D. I. Shuman, S. K. Narang, P. Frossard, et al. “The emerging field of

signal processing on graphs: Extending high-dimensional data analysis

to networks and other irregular domains”. In: IEEE Signal Processing

Magazine 30.3 (2013), pp. 83–98. doi: 10.1109/msp.2012.2235192.

[47] Cédric Chevalier and Ilya Safro. “Comparison of Coarsening Schemes for

Multilevel Graph Partitioning”. In: Learning and Intelligent Optimization.

Ed. by Thomas Stützle. Berlin, Heidelberg: Springer Berlin Heidelberg,

2009, pp. 191–205.

[48] American Clinical Neurophysiology Society. Technical Standard 1: Stan-

dard for Transferring Digital Neurophysiological Data Between Indepen-

dent Computer Systems. Feb. 2008. url: https://www.acns.org/pdf/

guidelines/Technical-Standard-1.pdf.

[49] Valer Jurcak, Daisuke Tsuzuki, and Ippeita Dan. “10/20, 10/10, and 10/5

systems revisited: Their validity as relative head-surface-based position-

ing systems”. In: NeuroImage 34.4 (2007), pp. 1600 –1611. issn: 1053-

8119. doi: https : / / doi . org / 10 . 1016 / j . neuroimage . 2006 . 09 .

024. url: http://www.sciencedirect.com/science/article/pii/

S1053811906009724.

[50] S. Lopez, A. Gross, S. Yang, et al. “An analysis of two common reference

points for EEGS”. In: 2016 IEEE Signal Processing in Medicine and Biol-

ogy Symposium (SPMB). IEEE, 2016. doi: 10.1109/spmb.2016.7846854.

57

[51] M Golmohammadi, V Shah, S Lopez, et al. “The TUH EEG Seizure Cor-

pus”. In: Proceedings of the American Clinical Neurophysiology Society

Annual Meeting. 2017, p. 1.

[52] Ali Shoeb and John Guttag. “Application of Machine Learning to Epilep-

tic Seizure Detection”. In: Proceedings of the 27th International Confer-

ence on International Conference on Machine Learning. ICML’10. Haifa,

Israel: Omnipress, 2010, pp. 975–982. isbn: 978-1-60558-907-7. url: http:

//dl.acm.org/citation.cfm?id=3104322.3104446.

[53] A. Harati, M. Golmohammadi, S. Lopez, et al. “Improved EEG Event

Classification Using Differential Energy”. In: 2015 IEEE Signal Processing

in Medicine and Biology Symposium (SPMB). IEEE, 2015. doi: 10.1109/

spmb.2015.7405421.

[54] Liu Rui, Hossein Nejati, and Ngai-Man Cheung. “Dimensionality reduc-

tion of brain imaging data using graph signal processing”. In: 2016 IEEE

International Conference on Image Processing (ICIP). IEEE, 2016. doi:

10.1109/icip.2016.7532574.

[55] Kevin Swersky Geoffrey Hinton Nitish Srivastava. Neural Networks for

Machine Learning: Overview of mini-batch gradient descent. Lecture slides.

2014. url: http://www.cs.toronto.edu/~tijmen/csc321/slides/

lecture_slides_lec6.pdf.

[56] P. Charbonnier, L. Blanc-Feraud, G. Aubert, et al. “Two deterministic

half-quadratic regularization algorithms for computed imaging”. In: Pro-

ceedings of 1st International Conference on Image Processing. IEEE Com-

put. Soc. Press, 1994. doi: 10.1109/icip.1994.413553.

58

