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Abstract

Cardiovascular disease is one of the leading causes of the morbidity and mortality in the west-

ern world today. Many different imaging modalities are in place today to diagnose and investi-

gate cardiovascular diseases. Each of these, however, has strengths and weaknesses. There are

different forms of noise and artifacts in each image modality that combine to make the field

of medical image analysis both important and challenging. The aim of this thesis is develop a

reliable method for segmentation of vessel structures in medical imaging, combining the expert

knowledge of the user in such a way as to maintain efficiency whilst overcoming the inherent

noise and artifacts present in the images. We present results from 2D segmentation techniques

using different methodologies, before developing 3D techniques for segmenting vessel shape

from a series of images. The main drive of the work involves the investigation of medical

images obtained using catheter based techniques, namely Intra Vascular Ultrasound (IVUS)

and Optical Coherence Tomography (OCT). We will present a robust segmentation paradigm,

combining both edge and region information to segment the media-adventitia, and lumenal bor-

ders in those modalities respectively. By using a semi-interactive method that utilizes “soft”

constraints, allowing imprecise user input which provides a balance between using the user’s

expert knowledge and efficiency. In the later part of the work, we develop automatic methods

for segmenting the walls of lymph vessels. These methods are employed on sequential images

in order to obtain data to reconstruct the vessel walls in the region of the lymph valves. We

investigated methods to segment the vessel walls both individually and simultaneously, and

compared the results both quantitatively and qualitatively in order obtain the most appropriate

for the 3D reconstruction of the vessel wall. Lastly, we adapt the semi-interactive method used

on vessels earlier into 3D to help segment out the lymph valve. This involved the user inter-

active method to provide guidance to help segment the boundary of the lymph vessel, then we

apply a minimal surface segmentation methodology to provide segmentation of the valve.
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Assessment Metrics

Contents

Hausdorff Distance - HD

This is a measurement of how close two sets of points are to each other. The HD represents the

distance from one point (pixel) in one set, to the corresponding point (pixel) in the compared

set. It is therefore a metric to compare the accuracy of a segmentation, as it looks at the mean

distance of a pixel from its corresponding pixel in the compared set (in most cases the ground

Truth).

Area Overlap Ratio - AOR

The AOR is a similarity measure used in this work, and is related to the Jaccard index. The

AOR measures the area of overlap between two sets (in this case the area of the segmentation

and that of the ground truth). AOR is defined as the size of the intersection betwwen the two

sets, divided by the smaller of the size of the two sets.

overlap (GT ,RS) =
|GT ∩RS|

min (|GT |, |RS|)
(1)

where GT and RS in our case represent the Ground Truth and the Segmentation result respec-

tively.

Specificity

Specificity, also known as the true negative rate, is measures the proportion of negatives that are

correctly identified as such. i.e It is a measure of the amount of True Negatives, and therefore

xx



quantifies the avoidance of false positives.

Specificity T NR =
T N
N

(2)

Specificity T NR =
T P

T P+FP
(3)

where T NR is the True Negative Rate, T N are true Negatives, N are all Negatives, and FP are

False Positives.

Sensitivity

The Sensitivity, also known as true positive rate, is a measure of the proportion of correctly

identified true positives, and it therefore quantifies the avoidance of false negatives.

Sensitivity T PR =
T P
P

(4)

Sensitivity T PR =
T P

T P+FN
(5)

where T PR is the True Positive Rate, T P are true Positives, P are all positives, and FN are

False Negatives.

Accuracy

Accuracy is a measure of the number of correct (true) results, both positive and negative, over

the total number of cases recorded. This means that an accuracy of 100% represents all the

recorded values (both positive and negative) being correct.

ACC =
(T P+T N)

(T P+FP+FN +T N)
(6)

where ACC represents accuracy, T P and FP are true and false positives respectively, and T N

and FN are true and false negatives likewise.
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Introduction

Contents
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The main goal of the work was to provide a stable and efficient image segmentation method for

medical images. In that respect, throughout this work, we concentrate on medical applications

(although in some cases real world data is used to demonstrate versatility). Image segmenta-

tion has become ubiquitous across many fields in many different research approaches; such as

computer vision [28, 29, 30], motion tracking [31, 32, 33], pattern recognition [34, 35, 36] and

medical imaging [37, 38, 39]. In fact, it finds common usage in many applications where there

is a need to separate objects from the image, or classification of different regions is paramount.

In the modern world, image segmentation has become so ubiquitous a method that it is often

included in all manner of software packages, and often we take its use for granted. As with

other technologies, medical imaging techniques have advanced a considerable amount since

their inception. Today we use a plethora of imaging techniques for diagnostics, prognosis and

to aid in treatment. In the field of cardiology alone, X-ray, magnetic resonance imaging (MRI),

ultrasound and optical coherence tomography (OCT) are becoming more and more common

[40, 41, 42]. Cardiology is of vital importance as cardiovascular disease (CVD) is one of the
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1. Introduction

main causes of mortality in the developed world [1, 43]. Although cardiologists have a wide

variety of imaging modalities and techniques at their disposal, all suffer (to a greater or lesser

extent) from noise and image artifacts. It is therefore of utmost importance, in this field to

be ale to provide a suitable wide ranging selection of image processing tools, such as image

segmentation [44, 45, 46], registration and reconstruction of images [47, 48, 49, 50], and im-

age enhancement [51, 52]. The main body of this thesis concerns itself with investigating and

developing a semi-interactive approach to segmentation of artery walls from images obtained

through IVUS and OCT modalities. Once this has been achieved, the methodology will be ex-

panded on to provide a tool for 3D reconstruction of vessels of rat lymph vessels, from images

obtained from confocal microscopy. Less work has been carried out on the segmentation of the

lymphatic system, and lymphoedema (caused by a blockage or failure in the system) can lead

to serious illness and be a sign of a greater underlying problem [53, 54] and have even been

linked to cardiovascular disease [55].

1.1 Aims

1. To provide a stable and efficient segmentation method that can be used in different med-

ical applications, but specifically the IVUS and OCT modalities to segment images. The

aim is to provide segmentation support for the cardiology field, optimized for two com-

mon imaging modalities.

2. To further develop a segmentation method to act on 3D medical images, specifically

those of Lymph Vessels obtained by confocal microscopy.

3. To reconstruct lymph valve regions in 3D, using segmentation techniques to reconstruct

both the wall and lymph valve.

1.2 Motivation

One of the main driving forces in this work was to investigate how imaging techniques could be

applied to investigate vessel structure segmentation. As cardiovascular disease is so prevalent

in the Western world, the main body is dedicated to the study of coronary arteries (although,

as we show, the technique can be utilised in other applications), with further study of the
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Figure 1.1: Mortality statistics for UK in 2012, adapted from [1] study by the British Heart
Foundation.

lymphatic system, which is another cause of decrease quality of life, and can be linked to other

disease states.

Cardiovascular disease is a major cause of death and morbidity in the world today [1, 43], and

in Britain alone accounts for almost 30% of deaths Fig. 1.1, and almost 10% of hospital inpa-

tient visits Fig. 1.2, which creates an extensive demand on hospital staff time and resources,

even in minor cases. The heart is, at its most simple, a pump that pushes blood around our body.

It is however, much more than that. The heart is a specially adapted muscle that maintains a

contraction and relaxation cycle throughout our entire life. In order to maintain this workload,

the heart needs to have its own supply of blood to the muscles that make up its walls. This

is the function of the coronary arterial network. Coronary artery disease (otherwise known as

ischaemic heart disease) is a serious disease, leading to large numbers of deaths, especially

in men worldwide [56]. One of its causes is a thickening or occlusion of the coronary artery

walls, by formation of plaques. This prevents blood getting to the beating muscle of the heart

wall, and leads to ischaemic incidents, or myocardial infarctions (so-called “Heart Attacks”).

One of the main drives of this work is to study images of coronary arteries to provide image

segmentation to support diagnosis in this field.
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Figure 1.2: Hospital visit statistics for UK in 2012, adapted from [1] study by the British Heart
Foundation. As can be seen, a significant proportion of hospital visits are concerned with
complications arising from cardiovascular problems. This provides a considerable amount on
stress on hospital resources and time.

Our aim is to provide a method to help investigate medical images that is very robust, and

draws upon the expert knowledge of the user, whilst allowing a degree of freedom. The main

objective of this work looks at creating a robust, segmentation tool that can be used to combine

the ease of a automatic, computer driven, segmentation, with that of a manual, user driven

method. This is achieved by allowing for minimal user input (which does not need to be

precise) to create an accurate segmentation. Although we concentrated primarily on arterial

structures, our method was designed to be very versatile, able to fulfil the needs not only in our

chosen medical applications, but also able to be used for other modalities, both medical and

real world.

The second part of this work looks at Lymph vessels. The valve regions of these vessels are

seldom investigated, with the major research drive being lymph nodes, but are a great cause

of morbidity in cardiovascular disease, cancer, and other diseases [57, 58, 59, 60]. By using

segmentation methods to reconstruct the region around the lymph valve, the underlying struc-

ture of the vessel can be studied. From this, it may be possible to understand the mechanisms

of failure that lead to the lymphoedema and have a base to investigate mechanisms to alleviate

this. The human lymphatic system plays several crucial roles in maintaining health, and the

understanding of its function is of great importance in health care. Amongst its roles are the
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maintenance of fluid and protein balance, transport of immunological cells, and nutrient up-

take. These important tasks are fulfilled by transporting fluid, cells and solutes to and from the

blood and the interstitial spaces. This is achieved via the lymphatic compartment, consisting

of a series of vessels and nodes throughout the body. Unlike the arteries studied in the other

sections of this work, lymph vessels are thin walled and the flow is maintained by the use of

valves, as they are low pressure systems. It is the region of the vessels near to these valves that

guides our work. In order to understand the malfunction states of the lymph system, under-

standing of the mechanics of the normal system is required. We will investigate mechanisms

to segment and reconstruct the lymph valve regions of these vessels in 3D.

1.3 Methodology

The aim of this work is to utilize image segmentation techniques to investigate and analyst

medical images from a several of differing modalities, including Magnetic Resonance Imag-

ing (MRI), Computed tomography (CT), and X-ray, but with most emphasis on IVUS, OCT,

and confocal microscopy. Throughout the course of this work we investigate the segmenta-

tion of images obtained via common imaging techniques and use provide a novel segmentation

technique in 2D and then 3D segmentations. The aim is to provide a reliable, robust image

segmentation technique that can be used in a variety of different applications. We present the

work showing results for a selection of medical images (from differing capture modalities) and

from generic real world imaging, yet the main drive of the work is to produce an application

specific solution to be used with catheter based techniques, such as intravascular ultrasound

(IVUS) and optical coherence tomography (OCT). We present a method of semi automatic

segmentation with minimal user input, combining both edge based and region based values to

show improved segmentation results when used to segment both open and closed results. We

will compare the results of this both qualitatively and quantitatively with other segmentation

methods in IVUS and OCT. We then expand upon this, with the inclusion of automatic tech-

niques for 3D segmentation of a whole vessel, and a user guided segmentation of the lymph

valve in 3D.

For our work we use three medical image data-sets: one from each of the 3 main modalities we

study (IVUS, OCT, and Confocal). These data-sets are manually labeled with ground truths

so we can use them to quantify our results. We also use the Berkely Image Database [61] to

qualitatively assess our method on real world images.
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1.3.1 Image Segmentation

Image segmentation is ubiquitous in many fields today, and involves many varied methods [62],

which can be roughly divided into two camps; interactive and automatic methods. Both of these

have distinct advantages and drawbacks associated with them. Interactive methods, require the

user to provide input to help guide the segmentation. Interactive methodologies require the

user to provide selections to define the target region in some way. This can be, for example

to select a region to define as background or foreground [63, 64], providing guide points on

the edge of the surface [65], or even drawing a boundary box around the desired object [66] In

some cases, interactive methods prove problematic, for example if the image is noisy, or the

target region is difficult to visualize. There are often solutions to these problems, such as those

discussed in Cui et al [67]. Interactive segmentation can also be improved by using various

optimization methods to assist the segmentation. These methods often involve training the

segmentation algorithm with images and known object shapes [63], or using a shape prior to

inform the segmentation [39]. One of the main advantages of interactive segmentation is that it

allows the expert knowledge of the user to be used to inform the segmentation process. This is

especially true in the medical field, as clinicians develop a vast experience of the images they

view. This advantage is also one of the drawbacks, as interactive techniques require user input,

which puts an extra time demand on the user. It is important therefore, to allow the user to

inform the process, but to minimize the amount of input required, which in itself can produce

problems requiring additional support to obtain accurate segmentation [68].

Although the fundamental methodologies used in interactive segmentation all require the user

to select regions, seed-points or guide-points on edges, how the system uses this information

varies greatly. As already mentioned, there are many different approaches for solving the

segmentation, which can be divided into broad categories, which we will now look at. These

are, learning based approaches, and energy minimization based approaches (such as graph-

cut or deformable model based approaches). In learning based approaches, the system reacts

dynamically to the user input, refining its segmentation results for the user. It is common-place

in these methods for the user to select region based data (usually in one image of a series) and

the system will perform the segmentation of the set of images. In early work using this method,

Elliott et al [69] compared the results obtained after user input with those obtained using default

parameters. This was then used to inform the segmentation for the rest of the images. More

recent work, such as that by Saffari et al [70], uses random forests to predict the labeling
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(background or foreground) using a series of pixel based feature descriptors. The principal

goal of the learning based approach is to adapt to the user selected features and improve and

inform the segmentation (usually of a set, or series of images) based on minimal input from

the user. Likewise, there are many different methods used in the energy minimization group,

however they all share one feature in common. They all strive to partition the image into

different regions by using a process of energy minimization. One of the most commonly used

categories of energy minimization methods is graph cut [71, 72]. Graph cut methods often

utilize an energy function based on cost terms derived from region based data, edge based data,

or a combination of both [21]. It is essential when using graph cuts to define the cost terms

adequately to avoid producing a series of local minima instead of the desired global. Another

common energy minimization paradigm is that of deformable model segmentation [73]. This

is based on variational frameworks, and deformable modeling segments images by minimizing

the energy function that is defined on a continuous contour or surface [74]. These methods

represent contours in the image in parametric form, having the ability therefore to track the

points on these surface curves with time. This makes them suitable for real-time solutions,

however they sometimes have difficulties with certain topological changes in the image, which

sometimes can pose a problem in medical image segmentation.

Automatic segmentation takes the emphasis away from the user, freeing up their time con-

siderably, but is a difficult process for medical imaging. Automatic methods can use various

methods to inform their segmentation [75], such as shape prior [45], or other application spe-

cific methods [76]. The main goals of automatic segmentation are to automate a process that

is too large (due to the number of cases in a study, or the number of images in a sequence for

example) for the user to interactively segment all the data. This can be a difficult task as med-

ical images are often very complex, and have large numbers of anomalies and problems with

the images, such as artifacts, occlusions, partial images, and noise. As for interactive methods,

automatic methods can be divided into different categories. These are often based on texture

features, or grey level features (including histogram features, edge based techniques and region

based techniques).

Grey level based techniques are quite common place, and can be quite simple, such as is the

case with histogram feature based techniques. Histogram based techniques work by assigning

a threshold to values based on their grey level and is the most simple technique [77]. These

techniques work well when the image has an area of uniform brightness distinct from the
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background (ideally a bright image against a dark background). This simple method works

well for certain images, but is very reliant on the quality of the image, and the level that

the threshold is set for, which may be difficult in more complicated images, though there are

modifications to deal with more complicated images [37]. One of the more common type of

grey level segmentation is edge based detection. These use one of the many edge detector

functions, such as Canny or Sobel, to find edge information for the image. However, after

applying the edge detectors, the algorithm still needs to separate the desired edges from others

that could have been detected. There are several approaches that can be taken to obtain a

suitable result, including edge relaxation [78, 79], and border detection [80, 81, 82]. Once

again the performance can be detrimentally affected by poor quality noisy images, and it is

often common-place to carry out a pre-processing stage prior to segmentation, for example

using a log Gabor filter [83] or other methods such as anisotropic filtering [84]. The third

category of grey level based techniques is region based features. These look for homogeneity

in the image, and can be further divided into three principles of region growing [85], namely;

region merging [86], region splitting [87], and split and merge [88]. Once again some pre-

processing may be required, and this technique can sometimes have a tendency to over or

under segment and image.

Texture based approaches use features such as granularity, or smoothness in an image regions

to perform a segmentation. The aim is to divide the regions of an image up based on texture

properties. A texture may be fine, coarse, smooth or grained, and is dependent on its tone

(intensity of the pixels or voxels) and structure (the spatial relationship between the pixels or

voxels) [89]. The texture base approach can be further subdivided into three categories, these

being statistical [90], syntactic(structural) [91, 92], or spectral [93]. Each approach requires

the textures of the image to be defined, in the statistical method, they are defined as a set of ex-

tracted features, which are represented by a vector in feature space. For the structural method,

they create a link between structural pattern and language syntax, and in spatial methods, spa-

tial frequencies are used to define the texture. Spectral feature based approaches are often

combined with other approaches although statistical methods are the most widely used.

There are also methods, such as that described by Zhang et al [94], that provide a method

that utilises both automatic and interactive methodologies; and recently there has been a shift

towards semi-interactive methods [95].
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1. Introduction

1.3.2 Bottom-up Approach to Segmentation

Bottom-up segmentation is a data-driven method that segments the image based on extracting

some low-level features, such as pixel intensity, texture information, color, or edge-based fea-

tures; rather than top-down approaches that rely on more abstract decision making processes

[96]. There are several existing bottom-up segmentation methods currently in use for segment-

ing IVUS and OCT images which include [97, 98, 99]. The first section of work in this thesis

is concerned with developing low-level bottom-up segmentation methods which can not only

be used for IVUS and OCT, but are versatile enough to be used in other methodologies, uti-

lizing open (the desired segmentation is similar to a line rather than a closed shape, such as

segmentation of cartilage in knee joint, or the horizon in a landscape image, and closed curve,

segmentation of a distinct closed shape, segmentations. A combination of complementary fea-

tures are used, instead of image intensity, to form the the cost functions, including edge based

features, obtained with the edge detector; and region based values, especially the discontinuity

between similar regions. A pre-processing scheme is also used to refine image features and

improve segmentation by the removal of noise in the image. A 3D shortest path segmentation

is then carried out to obtain the boundary in the desired region. A comparative study with

quantitative experimental results on IVUS and OCT images is presented.

1.3.3 Top-down Approach to Segmentation

Whereas the bottom-up approach was data-driven, basing the segmentation on low level fea-

tures such as color, luminance, and texture; top-down approaches use higher level features,

such as shape, or other class-specific information [2]. The difference in approach provides

different styles of results, as shown in Fig. 1.3. Higher level approaches often require training

with a sample set of the desired object, shape, or similar feature, and often it is the case that they

will not work as efficiently outside the category they are designed for. Both approaches can

also be combined, as in Borenstein and Ullman [100] where they combine the approaches in

a serial manner to perform the segmentation, using the low-level structure from the bottom-up

approach to create a bank of class specific segments that is used in a top-down manner.

1.3.4 Proposed Methods

The coronary artery segmentation developed in this wore used an interactive technique using

a combination of region based and edge based features. The segmentation is then be solved

9



1. Introduction

Figure 1.3: Comparison of top-down and bottom-up segmentation of natural images from [2].
The top row represents the input image, the middle row low-level, bottom-up segmentation
of the image into regions. The bottom layer shows the results from a high-level, top-down
approach. The method depicted used a bank of shape sections specific to a given class (horses)
in order to segment the image subject from background.

using a modified graph cut algorithm to segment the desired image. This method allows for

segmentation of open or closed objects in the image, making it very versatile as it can be

used for multiple applications. In the case of the coronary vessel images used predominantly

in this study we segment closed boundaries, namely the media-adventitia and the lumenal

boundaries, though we do provide examples of open object segmentation. We minimize the

work required by the user, by ensuring that a small number of control points are needed in

order to obtain accurate segmentation, and these do not have to be precisely aligned to the

edge features, thus reducing the length of time required for user input. We achieve this by

adapting our graph construction method and creating a 3D graph to segment. This uses the

control points as a non rigid, soft constraint to draw the segmentation towards it, but not force

the segmentation to include it. In order to allow the user to segment both open and closed

boundaries whilst including regional data, we build up a map of the probabilities of any given

point belonging to the foreground or background. This probability map is then used to find

the gradient magnitudes of changes in probability, which allows us to formulate the cost in

such a way as it can be combined with the edge based term. This provides an accurate, robust

segmentation that can be used in a variety of circumstances.

For the segmentation of lymph vessels we utilize an automatic segmentation method. This is

both desirable, as in this case we are segmenting a large series of images, which would take

more time to label by the user; and appropriate, as with the exception of image quality issues,

there are no occlusions, such as stents or calcification present to require specific user attention.
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We use an optimal surface segmentation on a scaled down image to perform the initial seg-

mentation that is used as a seed for an Hidden Markov Model (HMM) based segmentation of

the vessel walls using the Viterbi algorithm. We also look into a method to modify this to si-

multaneously segment both boundaries, using an s-excess graph minimization, described later,

rather than the standard HMM using the Viterbi we used for the single boundary. This provided

comparable results, but improved the extreme cases, making it more qualitatively suitable for

vessel reconstruction. For the last part of this work, we will endeavor to reconstruct a 3D repre-

sentation of a lymph vessel from confocal microscopy images. 3D vessel reconstruction can be

done using a variety of methods, such as those shown in [101, 102, 103]. The common diagnos-

tic tools used in cardiology are Angiography and IVUS. The aforementioned IVUS and OCT

give a very useful cross-sectional view of the artery, with differing resolutions and penetrance.

However, they do not take into consideration any of the vessels topography, as all the images

are taken from a centrally situated catheter. Angiography, gives a great 2D view of the arterial

system targeted, and is of vital importance in detecting and location occlusions, but gives no

structural view. Combination of the two techniques could add topographical information to the

structure recorded from catheter based approaches.

In this work, we will look at using sequentially produced 2D images (in this case confocal im-

ages of lymph vessels) to expand 2D image segmentation paradigms to create a robust method

to reconstruct vessel structure in 3D. We chose lymph structure as although the image quality

is poor (due to the imaging modality used) it provides a clear inner and outer boundary for

testing the segmentation methodology.

1.4 Contribution

In this work, we present a novel method for semi-interactive segmentation of medical images.

This is a robust method, with a small amount user input to guide the segmentation. This

method is combined with a boundary tracking method in 3D, allowing the segmentation and

reconstruction of vessels and the 3D user assisted segmentation of lymph valve structures.

The main contributions are summarized below:

1. Combined user input. We utilize a novel method based on both region and edge data to

provide a robust segmentation a small number of imprecise user points. This method can
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be used to segment a variety of images, which can be either open or closed curves.

2. Graph pruning with super-pixel segmentation. In order to improve the efficiency of the

above method, we pre-segment the image to prune the graph. This is combined with

region information to increase the execution time of the algorithm. A mean shift algo-

rithm is used to create the superpixel cells. These are then run through a low threshold

canny edge detector, to provide a binary mask of edges. The user input regional data

is utilized to further prune the graph, as edges constrained in a non desired region are

grouped together.

3. Automatic segmentation to reconstruct lymphatic vessel valve regions. We provide

a method to utilize optimal surface segmentation (OSS) and hidden Markov models

(HMM) to automatically detect both vessel walls in lymph vessels, in order to recon-

struct the vessel in 3D. We use a coarse OSS segmentation as the seed input for our

HMM segmentation, which uses a series of Radial Basis Function (RBF) centers to shift

the seed segmentation. This segmentation is performed in polar coordinate images, with

samples taken evenly along the segmentation line. In order to improve the quality of

the lymph vessel images prior to this segmentation, we pre-process them using a Vessel

Enhancing Diffusion (VED) filter to improve the image quality, then process to improve

contrast and to create a cross-sectional shape.

4. Using s-Excess graph to simultaneously segment both borders. Using a modification of

classical HMM methodology, we simultaneously segment both borders using an s-excess

graph minimization algorithm. This includes weights for inter-border arcs, so control

over the thickness of the wall can be maintained. This provides a solution to some of the

error cases in HMM segmentation alone (as there are many images which have broken,

and incomplete borders), whilst maintaining the same overall accuracy levels.

5. Semi-automatic segmentation of lymph valve border. Expanding on our 2D semi-interactive

segmentation we segment the boundary of the lymph vessel in 3D. By constructing the

graph in a similar manner to earlier, we can segment the boundary of the lymph vessel

in 3D. However, as this is working with a much larger graph, we need to minimis the

amount of nodes that are worked on. We do this by pruning nodes too far from a cube

created with minimum and maximum user values. Also, we utilize one of the features

of Dijkstra’s algorithm, and only create nodes for layers as they are needed in order to
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diminish the memory overhead of the graph. Using the border we segmented, we can

then use a minimal surface segmentation to find the border in 3D. This is then smoothed

using a series of RBFs in order to provide the final result.

1.5 Thesis Outline

The rest of the thesis will be organised as follows:

Chapter 2 -Background and Literature Review: Providing an overview of medical imaging

techniques, with emphasis on catheter approaches, such as IVUS and OCT. An overview on

segmentation techniques is presented along wit a discussion of their usage in both medical and

the general field.

Chapter 3 -Semi-Interactive segmentation of vessel borders. This chapter, presents a novel

technique for segmenting borders in arterial images, namely the media-adventitia (IVUS) and

lumenal (OCT) borders. The novel graph construction and energy minimization problems are

discussed and results are presented to compare the findings with other methods in both afore-

mentioned medical applications and a series of other images to demonstrate the versatility of

the method.

Chapter 4 -3D reconstruction of vessel walls. Looking at lymph vessels as a target applica-

tion, segmentation (both individually and simultaneous) of the vessel walls is carried out the

resultant inner and outer boundaries to reconstruct a 3D model of the vessel

Chapter 5 -Lymph Valve reconstruction. Expanding our 2D segmentation method discussed

in chapter 3, we use an adapted version to aid in segmentation of the valve structures of lymph

vessels in 3D.

Chapter 6 -Conclusions and future work. This concludes the thesis with a discussion of the

methods used, and possibly ideas for their later expansion.
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Background
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2.7 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.1 Introduction

Over the course of this chapter, we will look at the anatomical structures of the Cardiovascular

and Lymphatic systems. These two systems are vital to the health of the individual, and form

the main subject for the research presented. After an overview on the systems is given, the

chapter will move on to discuss medical imaging techniques, such as those used to obtain the

raw data for this work. Once the medical background is covered, the methodologies for seg-

mentation and processing of the images will be addressed. An overview of different methods

and approaches, covering many aspects of the field will be given. It is important to understand

the various options available, and the advantages and limitations of each approach to image

segmentation.
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2. Background

Figure 2.1: External anatomy of the heart, adapted from [3]. Showing the coronary arteries.

2.2 Cardiovascular Anatomy

In its simplest form, the cardiovascular system can be thought of as a pump (the heart) and

a system of pipes (the blood vessels). Although this analogy is true in the most basic and

literal sense, the reality is far more complex and interesting. The heart is a specialized muscle

that pumps blood around the body continuously for the whole of your life without any rest

periods. In order for it to accomplish this task, it must have a continuous supply of oxygen

and nutrients. This is achieved through a system of blood vessels ringing the heart called the

coronary arteries. These arteries branch off the ascending aorta (the largest artery) as the left

and right coronary arteries before further subdividing as shown in Fig. 2.1. The branches of

the right coronary artery provide blood supply to the right atrium and ventricles (as well as a

small area of the left atrium and ventricle) and the atrioventricular septum; the branches of the

left coronary artery supply the rest of the left atrium and ventricle as well as the ventricular

septum. Occlusion of any of these vessels can interrupt the blood supply to the heart, leading

to ischaemia and damage.

Arteries, including coronary arteries, consist of three distinct regions. These are the lumen,
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2. Background

Figure 2.2: Anatomy of an Artery, adapted from [4]. The artery wall comprises of layers as
shown, namely the tunica intima (nearest the lumen of the vessel), tunica media, and tunica
externa (also known as tunica adventitia) as the outermost layer.

in the center where blood flows,the vessel wall proper (made up of tunica intima and tunica

media layers), and the tunica adventitia (or tunica externa), a layer of connective tissue around

the vessel providing support. The diameter of the vessel varies with type, the aorta being

the thickest. The thicker vessels have more smooth muscle present in their wall to maintain

pressure on the blood. The tunica intima is the most inner layer of the vessel, made up of

elastic tissue and is lined with endothelial cells, which prevent clotting and take an active part

in controlling blood flow through the release of Nitric Oxide(NO). The internal elastic lamina

separates the tunica intima from the tunica media, which contains smooth muscle and elastic

fibres. There is a thin layer, the external elastic lamina, separating the tunica media from the

adventitia, which forms the outermost layer see Fig. 2.2.

2.3 Cardiovascular Disease (CVD)

A major underlying cause of CVD is coronary artery disease. Coronary artery disease, also
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Figure 2.3: Progression of atherosclerosis, from [5]. Showing the stages of lesion development,
including time-frame and whether the symptoms can be detected.

known as atherosclerosis, is a disease state that leads to thickening and eventually occlusion of

artery walls. Due to the narrow nature of the coronary arteries, they are especially vulnerable to

this. Atherosclerosis is an inflammatory disorder involving the deposition of fatty substances,

such as cholesterol, on the vessel wall. This produces a gradually worsening occlusion of

the artery and can lead to a variety of complications. For example, if the blockage becomes

free to move it could lead to clinical angina (as the blocking effect is transitory). The fatty

deposit can also break off, or rupture. Both of these are very serious, as they can cause full

occlusion of vessels leading to acute myocardial infarction (a “Heart Attack”), either due to

the fatty material itself blocking the artery, or the damage of the rupture provoking the clotting

mechanism and leading to a blood clot (or thrombus) to be formed, see Fig. 2.3.
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2.4 Lymphatic System

The lymphatic system is vital for maintaining healthy functionality in the body; fulfilling this

task by the transport of fluids and immunological cells from and to the blood and interstitial

spaces (see Fig.2.4. The lymphatic system at its most basic is a system of pipes and valves to

ensure unidirectional flow, but unlike the cardiovascular system it is not closed system. Lymph

drains into and out of the organ beds, perfusing the interstitial space and is involved with

homeostasis and the functions of several body systems [104].

The vessels are thin walled and not under pressure, so without the valves it would be impossi-

ble to maintain unidirectional flow. The system works in conjunction with the cardiovascular

system in transporting lymph (made up in the most part from interstitial fluid collected from

the organs), before draining into the cardiovascular system in the subclavian veins. Lymph

vessels are made up of a very thin layer of smooth muscle, lined with endothelial cells and are

surrounded by an adventitia, which secures it to the tissues it passes through. In general, the

valves ensure that lymph flows away from the tissues to lymph nodes and eventually lymph

ducts, then veins. The smallest lymph vessels, lymphatic capillaries, lack the smooth mus-

cle and can even lack the adventitia. Certain disease states can lead to a compromise in flow,

causing lymphedema, decreasing overall health. This leads to painful swelling of limbs and

other complications, and currently, health care is concerned with treating the symptoms, rather

than identifying the underlying cause and preventing the situation. By reconstructing the ves-

sels from the confocal images, we hope to produce a system which we can expand upon, to

examine valve function in lymph vessels, and identify any areas where flow may be compro-

mised. The lymph system, draining from the tissues as it does, is also of key importance in

the metastatic spread of cancer cells, so understanding the flow through the system will help

understand this spread.

2.5 Medical Imaging

The modalities used in medical imaging can be grouped into two very broad categories, namely

invasive and non-invasive procedures. Invasive procedures requires a sensor, or recording de-

vice to be inserted into the target area. In cardiology, this is often achieved by the use of

catheter based approaches. In these catheterization techniques a thin guide wire if fed up into

the target artery (for example a coronary artery), and used to insert a catheter tube. Examples of
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Figure 2.4: Representation of the Lymphatic System [6]

this technique include X-Ray Angiography, Intravascular Ultrasound (IVUS) and Optical Co-

herence Tomography (OCT). X-ray angiography is very widespread, and is used to show the

branching structure of vessels (by directly injecting contrast, that is picked up by the record-

ing unit) and can be used to detect the location of an occlusion or stenosis. Although it is a

gold standard for mapping the arteries and detecting areas of occlusion and narrowing, it does

not give very accurate information of any pathologies present. In order to detect and classify

pathologies such as plaque erosion and rupture as well as clot formation and others, IVUS and

OCT are used. Both these images can be used for diagnosis, and produce a two-dimensional

cross section of the artery, with the probe (inserted along the catheter) at the center. By pulling

the probe back along the catheter (A so-called “pull-back”) a sequence of images can be ob-

tained through the region of the occlusion (usually identified by X-ray angiography).

2.5.1 X-ray Angiography

X-ray angiography is one of several commonplace catheterization techniques in place today.

It provides a diagnostic procedure for identification of occlusions in the vessel. This is done,
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Figure 2.5: The Electromagnetic (EM) spectrum. [7]

however, without providing any information about the type of occlusion or wall thickness.

X-rays are an electromagnetic wave, with a much higher energy and shorter wavelength than

visible light (see Fig. 2.5).

X-rays are produced in a vacuum tube with a hot cathode, and an anode made of a high atomic

material (such as tungsten). A large potential difference accelerates electrons from the cathode

to the anode, where they hit the rotating tungsten disk to provide a focussed beam of x-rays.

These can be detected using a detector based on photographic plates (or in more modern ma-

chines today, a digital detector).

The functionality of x-ray imaging comes from the attenuation of the x-ray itself. X-rays have

a differing penetrance based on the material they pass through. For example, bones cause a

higher degree of attenuation than soft tissue (leading to the classical use of x-rays to investigate

bones and fractures). Certain disease conditions can effect the attenuation characteristics of a

medium too, a factor that leads to x-rays being of great use in identification of cancer. However,

from a cardiology standpoint, it causes a problem as blood and the surrounding soft tissue have

the same levels of attenuation. This problem is solved by the use of a contrast medium (e.g. an

iodinated contrast material) that is injected via catheter inserted via the femoral artery. Modern

methods utilize a technique called Digital Subtraction Angiography, where an image is taken

before and after the addition of the contrast material, so as to digitally remove the surrounding

tissues, leaving only the vessels desired. Angiography images provide a topographical “map”

of the arteries, but present very limited structural information Fig. 2.6. Although the diameter

of the vessels, their shape, and any occlusions can be seen, structural information such as wall

thickness, and the type and quality of any stenoses or lesions cannot be ascertained.
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Figure 2.6: An example angiography image [8]. The layout of the arteries of the left coronary
circulation, and their relative thicknesses can be clearly seen. The arteries visible include the
distal left main coronary artery (LMCA) (left upper quadrant) and its main branches (the left
circumflex artery (LCX), and the left anterior descending (LAD) artery)

2.5.2 Catheter based Imaging techniques: Intravascular Ultrasound (IVUS)
and Optical Coherence Tomography (OCT)

IVUS is a catheter based invasive diagnostic method, widely used in hospitals, using an ultra-

sound probe to produce cross sections of the artery wall. Catheter based approaches, such as

this, provide the clinician with a valuable tool, which can be used to assess the severity of any

stenoses present, to categorize their morphology. Catheter based approaches use a probe that

is inserted into the coronary arteries on a guide wire. This is then pulled back along the wire

(hence the term “pull back” refereing to one series of images) whilst images are recorded. The

tool can be further used by clinicians to measure the vessel diameter (allowing the severity of

any occlusions to be assessed), and the location of any lesions to be identified, as well as many

other clinical and therapeutic studies [105],and can be used for post operative assessment of

stent location [106]. IVUS images can be taken in ‘A’ mode or ‘B’ mode. ‘A’ mode displays

echo amplitude on the y-axis and time on the x-axis, and ‘B’ mode uses “dots” of different

intensities to represent the intensity of the echo received. to In most IVUS B-mode images, a

cross-section of the arterial wall is produced, with three distinct regions: the lumen, the ves-

sel (made up of the intima and media layers), and the adventitia surrounding the vessel wall

(see Fig. 2.7). It is very difficult to differentiate between the tunica media and tunica intima

with IVUS images. The media-adventitia border, which is the target for our segmentation in

IVUS images, is the dividing layer representing the outer arterial wall. In IVUS images, the
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media can be seen as a dark band, with no other distinct features. It is encapsulated by the

adventitia, which is a wide layer of fibrous connective tissue. IVUS segmentation as a cost

function minimization problem has been a popular approach to solve this problem. As can be

seen in Fig. 2.7, IVUS images have many artifacts, mainly due to the mechanism of obtaining

the image or the nature of ultrasound. The most commonly found artifacts include: guide-wire

(the wire used in the procedure interfering with the image), catheter ring-down artifacts (a halo

surrounding the catheter), stents (inserted by a previous medial intervention, can cause bright

regions and shadows on images) and calcification (a large brighter area, with shadow under-

lying, showing a pathology present) shadowing. Any or all these artifacts may be present in

a particular pull back, and all create problems and complexities in the segmentation process,

as they often produce dark occluded regions with no detail or features present. It is in dealing

with these occluded regions, that the inclusion of user input becomes very important.

OCT, like IVUS, is a catheter based technique used in cardiology, however it utilises opti-

cal rather than ultrasound technologies. OCT is a newer approach, debuting in 1991 [107],

which uses light from the near-infrared region of the electromagnetic spectrum (Fig. 2.5),

this enables OCT images to have a higher resolution (15-20µm) than those obtained by IVUS

(100-200µm), but due to the optical nature of the system, have much less penetration (1-2.5mm

compared to 10mm in IVUS), and so are more useful for looking at surface structures in the ves-

sel, see Fig. 2.8. The OCT images, therefore, are segmented to reveal the lumen border, which

is far clearer on these than in the IVUS images (Fig. 2.8). This is clearly visible for the most

part, but in a similar fashion to IVUS images there are a number of artifacts present which lead

to occlusions. These are reflections/shadows caused by the guide wire, reflections/shadows

caused by stents, and other anomalies such as shearing (sew up errors), presence of blood in

lumen etc, see Fig. 2.9 for some examples. These anomalies lead to a characteristic shadowing,

often accompanied by a bright region (such as reflections of stents and the guide wire).

Due to the nature of these artifacts, automatic methods employed in these applications require

a significant amount of pre-processing [108], [109]; a large data set for training set [110], or

a method to remove the artifacts [111]. Our proposed method, by giving the user control to

help the process removes the need for extensive pre-processing or large data sets for training,

allowing user guidance to avoid pitfalls used by image quality or artifacts present. The nature

of the IVUS and OCT images, with very pronounced artifacts lend themselves well to this

semi-automatic approach, with most parts of the image being such that the automatic process
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Figure 2.7: Overview of an IVUS image acquired by 40MHz transducer Boston Scientific
ultrasound machine, showing a selection of the artifacts found in the images: A = Catheter
Region, B = Calcification (a medium to large bright region), C = Shadow region (as result of
calcification), D = Stent (a single small, bright region with underlying shadow), E = Guidewire
shadow (a long regularly shaped shadow region, often extending into lumen with bright regions
along it).

will be suitable, but by allowing user input, the difficult regions (such as shadows and various

artifacts) can be accommodated easily. Interactive segmentation that can efficiently and effec-

tively transfer user knowledge to the segmentation is thus highly desirable in this application.

It also allows us quantitatively evaluate our method, including both efficiency and accuracy.

2.5.3 Confocal Microscopy

Confocal microscopy is a method that allows for the visualization and imaging of 3D volume

objects that are thicker than the focal plane of a conventional microscope using a pinhole,

situated in front of the photo-detector. This serves to attenuate any signals originating outside

the focal region, allowing for “optical slices” to be obtained through an object [112]. This

optical sectioning is much stronger than the depth of focus of the microscope; allowing for the
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Figure 2.8: Overview of an OCT image (Left), compared to an IVUS image (right). Not the
difference in resolution and penetration of the images. Both images have a catheter visible in
the lumen (the dark circle on the IVUS image, and the series of bright rings in lumen (OCT).
Not the lumen is clearly visible as a dark region in the OCT image, which is not the case with
IVUS. Also the lumenal border is much clearer in OVT compared to IVUS, buyt the IVUS
image shows more deep detail (such as the media adventitia border (a dark line)).

objects in the layer of interest to be in focus, and making the capturing of the relevant image

to the computer a simple procedure. Unlike conventional microscopy only one point of the

sample is illuminated at a time in confocal microscopy. During operation, a laser beam scans

the object pixel by pixel, line by line and any light outside of the focal plane is blocked by the

point detector. This data is then reconstructed by the computer into the 3D image I(x,y,z). It is

necessary to build up the image by scanning the microscope over a regular pattern. This pattern

(called a raster) is made up of multiple parallel scanning lines. It is essential to do this, as the

nature of the confocal microscope means that only one point in the sample is illuminated at

any given time, the multiple scans are therefore required to build up the complete image. The

thickness of the focal plane is defined by the inverse of the square of the numerical aperture

of the objective lens, but can also affected by the optical properties of the specimen and the

ambient index of refraction, and is limited by the wavelength of light. A schematic of this

technique is shown in Fig. 2.10.
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A B C

D E

Figure 2.9: Examples of artifacts in OCT images. These are A: Sew-up (shearing, caused
by rapid movement of probe or artery causing misalignment)) error, B Guide-wire reflec-
tion/shadow, C: stents (surgical interventions to treat occlusions in the artery), D: swirls (bolus
of blood in lumen obscuring image) and E: speckles (caused by small amounts of blood in
lumen occluding the light source).

2.6 Image Analysis

Image segmentation is of great importance and commonly used in various applications, from

agriculture [113], surveillance [114] and medical applications [62]. Image segmentation can

be defined as partitioning an image into distinct and meaningful regions, delineating each re-

gion boundary based on a set of extracted features. In medical imaging paradigms, such as

vessel segmentation, the image segmentation is concerned with segmentation of the tubular

like structures from the background for example. There have been several good reviews on the

subject, for example, those by [105, 115, 116]

There are two broad categories of techniques: automatic and interactive, each of which can

be categorised into different classes, such as; simple region-based approaches (e.g. threshold-

ing, energy minimization approaches (which can include combinatorial optimization and de-

formable models), and machine learning based approaches. Methods can also be categorised
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Figure 2.10: Schematic showing the principles of Confocal Microscopy. From [9]. This rep-
resents one point on the image, in order to obtain a complete image, movement through scan
lines or rasters is required.

into the aforementioned bottom-up (or low level) and top-down (high level) approaches. Most

of the methods discussed in this chapter follow a bottom-up approach (to a greater or lesser

degree). These approaches all use some distinct features, such as edges, texture, or just plain

luminance values in the image data to perform a segmentation. Automated techniques (such as

[10] shown in Fig. 2.11 and [117]) are appealing in terms of efficiency, as they do not require

extra work from the user. More often than not, however, prior knowledge about object appear-

ance and/or shape is necessary to achieve meaningful results; and in the medical idiom, any

training or prior knowledge would have to be such that it was enough to deal with unexpected

variations and non-standard data. The situation is further complicated by problems that are

inherent to most medical imaging modalities, such as noise and artifacts. It is therefore, not

always practical, or even possible, to obtain comprehensive prior information and a sufficiently

robust learning algorithm to deal with large and sometimes unpredictable variations that occur

in medical images. An alternative approach to automated segmentation is to allow and encour-

age user input and provide interactive segmentation results to suffice user demand. This has

the advantage of being able to use expert user knowledge to avoid problems, and to inform the

segmentation. This, however, leads to a dilemma; as the increase in the amount and precision

of user input, whilst improving the segmentation is many cases, takes time and is less efficient

and optimum for the user. The goal is to balance user involvement and interaction flexibil-
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A B C

Figure 2.11: An example of automated segmentation of media-adventitia border in IVUS im-
ages [10]. Both appearance and shape priors are necessary to constrain the segmentation. The
results are shown in red and the manual labeling is shown in green. This gives good results
overal, but in regions of shadow or severe occlusion (especially in B) it differs considerably
from the ground truth.

ity, particularly given the ubiquitous imaging device and ever increasing amount of images in

modern age. To effectively and efficiently capture user intent is vitally important, allowing the

expertise of the user to be used, without the system being too labor intensive for the user, or so

inflexible that it cannot adapt to extreme cases.

Another aspect that needs to be considered is what method for separating objects will be used.

This is of vital importance, as different segmentation procedures have their own strengths and

weaknesses; for example, the ability to segment both closed, discrete, regions and open con-

tours may also be important. A large number of automatic segmentation processes will require

the object to be segmented to be discrete. This is not necessarily of use, as in some cases these

methods will not be able to identify the specific region the user wishes to be selected for, which

may not form a closed curve, but may instead be of a more open nature. Hence, methods that

are capable of both may have a wider appeal in medical applications than those, for instance,

can only partition images into disjoint and self-enclosed regions.

2.6.1 Interactive Segmentation

This broad category is defined as requiring a degree of input from the user in order to guide

the segmentation process. The user interaction is conventionally made either by simple mouse

click or drag operations on the region of interest, or on the object boundary; mechanisms

that are familiar to the user, and without specialist hardware and training. For example, in
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Figure 2.12: The four directional edges between pixels, adapted from [11] showing the differ-
ent boundary elements that can occur

Intelligent Paint [118],which is a simple interactive method that allows the user to identify all

the regions inside an object. The object region is interactively expanded by a simple click and

drag operation. Then a homogeneous area that has the same intensity profile is selected, which

is very similar to those techniques adopted in commercial software. Similarly, with Magic

Wand, e.g. in Adobe Photoshop, a user can highlight all the homogeneous area that has the

same intensity profile by simple mouse clicks.

The Intelligent Scissors [20], shown in Fig. 2.16, and Live Wire [11], shown in Fig. 2.17

methods are among early methods to perform on the fly segmentation by allowing the user to

follow the object boundary, instead of region, through a few mouse clicks. These methods are

based on well-known shortest path algorithms, such as Dijkstra’s method, to find the optimal

shortest path between two user points. Shortest path methods have an advantage of segmenting

both open and closed objects. Livewire segmentation as described in Falcão et al [11] treats

a feature as a function to be assigned to each boundary element b = (p,q) of any given scene

C = (C,g) and integer to represent a property value. It creates the scene C as a pair (C,g) finite

2D rectangular array of pixels C and a function g that assigns an intensity value to each pixel

p. Boundary elements are further defined as orientated pixel edges, with a given direction see

Fig. 2.12.

Boundary features which can be looked at include intensity (both inside and outside the bound-

ary), gradient magnitudes, orientation-sensitive gradient magnitudes, and distance from previ-

ous boundary. These boundary features are then allocated cost values using cost functions
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Figure 2.13: Demonstration of the limitation of using hard constraints for user input [12]. User
points away from boundary force the segmentation to move through them, resulting in errors.

(which they refer to as feature transforms). The shortest path between two points is then found

by minimizing the cost of the corresponding boundary elements.

However, often only edge-based features are used to find the shortest path, and more impor-

tantly usually those user points are treated as anchor points that the segmented path has to

go through. This requires precise input from the user, and without post-processing results in

uneven edges as the result is forced to move through the user point, even if it is not on the

strongest edge, see Fig. 2.13.

Another method of segmentation that are commonly used are active contour models (or snakes).

These methods all provide a framework for segmenting a 2D model using a deformable spline

to match the contour. Fitting these splines to the contour is a process controlled by external

constraints, forcing its movement towards features such as lines and edges [74]. Kass et al

represent the position of the “snake” parametrically as:

v(s) = (x(s),y(s)), (2.1)

where s is a spline in the snake. They formulate an energy function for the segmentation as

follows:

Esnake =
∫ 1

0
Esnake(v(s))ds

=
∫ 1

0
Eint(v(s))+Eimage(v(s))+Econ(v(s))ds

(2.2)
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Where Eint represents the internal energy of the spline due to bending, Eimage represents the

image forces, and Econ represents the external constant forces.

Active contour models provide a good quality segmentation, but many suffer from initializa-

tion dependency problems. Typically, this is tackled by adding a prior to the model to give

the segmentation a better initial state or an overall constraint, which may not be always prac-

tical. There are various solutions proposed to alleviate this problem, such as [119] that uses

another automatic segmentation method on a coarse down-sampled image to provide the ini-

tialization for their active contour model, and [13] that uses coarse results extracted by spatial

fuzzy C-means clustering, see example results in Fig. 2.14. There are however other methods

that attempt to achieve global minima, either through global minimization or through deriv-

ing external force field that is initialization independent. For example, in [120, 19], the authors

show that even using conventional gradient based boundary description it is possible to achieve

global minima with gradient descent. Its force field is computed based on global interaction of

image gradient vectors and its force is always perpendicular to the evolving contour. Fig. 2.15

provides a comparative example of classical gradient based methods and the MAC model [19].

With the help of powerful optimization techniques, the method of user interaction has been

expanded, for example, adding object/background strokes, at the same time simplify user in-

volvement compared to painstakingly tracing the object boundary [21, 25, 121, 24, 122, 11, 12].

For example, the user can simply draw multiple strokes inside and outside the object then the

segmentation model can learn the distribution of pixel intensities for both object and back-

ground. These techniques usually are more suited for segmenting closed objects, but not for

open curve segmentation, but in the proposed method we adapt the method so that it can be

used with both open and closed objects.

In terms of optimization technique, graph cut and shortest path search are two of the most

common categories of methods of interactive segmentation. Graph cut algorithms are widely

used to find optimal solution in interactive segmentation at polynomial time complexity and

are most usually used for segmenting closed objects.

Boykov and Jolly [21] (shown in Fig. 2.18) introduced a graph cut based interactive segmen-

tation method by defining unary and pairwise costs of each pixels. The unary cost is inversely

proportional with the probability of each pixel to be in the object or in the background while

the pairwise cost is based on the intensity difference between two neighboring pixels. The
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Figure 2.14: Example of MRI segmentation using active contour, showing the effect of three
different initialization methods [13]. The top row shows the initial curves. The second row
shows the stable curves obtained from the method; The last two rows show the segmented
gray and white matter respectively. The first column shows manual initialization, which gives
unsatisfactory convergence. The center column uses a threshold method based on coarse seg-
mentation and right hand column uses pre-processing as suggested by [13].

principle of graph cut techniques is to divide any graph G = (V,E) into two subsets, one con-

nected to the source (usually labeled s), and one connected to the sink (usually labeled t). The

cut C = (S,T ) is a partition of V . The min-cut/max-flow theory states that the maximum value

of flow from s to t is equal to the minimum capacity over all the s− t cuts.

Many methods have been introduced to extend this method, such as to combine shape prior with

user initialization [22] (shown in Fig. 2.19), Grab Cut [25] and Lazy Snapping [23], shown in

Fig.2.20. In Grab Cut, the authors proposed to use a Gaussian mixture model to build a local

color model to build the cost term. It reduces the user intervention by allowing the user to define

a rectangular window surrounding the object, and also allows iterative interaction to refined the
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Figure 2.15: An example showing comparison among several gradient based active contour
techniques, that are popular in interactive segmentation. User interaction however is simplistic
and generally limited to initialization.Results by row: (a) DVF [14], (b) geodesic [15], (c)
GGVF [16], (d) GeoGGVF [17], (e) CPM [18], (f) MAC [19].

result. Lazy Snapping is also based on using a graph cut over a pre-segmented image using a

watershed algorithm for thresholding. K-means is used to cluster the foreground/background

colors and assign each pixel to the nearest cluster. The method usually incorporates a boundary

editing tool to refine the result. However, this method usually needs multiple user interventions

to correctly cut out the object, due to the simplicity in its cost function, which is often build on

simple image features, resulting in over or under segmentation at the super-pixel stage.

32



2. Background

Figure 2.16: Selected frames from an example of live-wire segmentation [20]. The red dots
show the seed points; the green cross-hair is the free point; the blue contour segments corre-
spond to portions of the set boundary; and the yellow contour segment is the live-wire bound-
ary segment. Top row (left to right) shows selected frames from the interactive segmentation
process and the main image shows the result.

Figure 2.17: Live Lane segmentation example from [11]. The left shows an MRI slice of the
foot of a subject showing the bones talus and calcaneus (marked). The Image on the right
shows a zoomed-in image of a tracing on the boundary of the talus.

33



2. Background

Figure 2.18: An example of graph cut segmentation using s-t cut [21]. The original image is
on the left, and the results are shown on the right. The results are marked ’”O” for object and
”B” for background.

Figure 2.19: Semi-automatic segmentation with minimal user input (green point marking the
center of an object) [22]. This is a modification of star based graph cuts using gradient vector
based image feature

Shortest path is another optimization technique that has been used in interactive segmentation,

e.g. [20, 11, 12]. These methods place the emphasis on boundary based features; edge based

features are used to define the cost between pixels, and can be used on both open and closed

segmentations. One weakness with these methods is a susceptibility to artifacts, such as noise,

and poor quality images with fainter edge features. These can sometimes pose a problem,

and methods are often applied to improve the image quality (in pre-processing) to alleviate

this [123, 124, 125]. Most shortest path methods require the user interactively identifies a

starting point of the path and iteratively adds more seeds around the outline of the object. On

the other hand, the intelligent paint method [118] allows the user to identify regions inside

the object instead of the boundary. The region is interactively expanded by simple click and
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Figure 2.20: Lazy Snapping [23] is an interactive image cutout system, consisting of two
stages: firstly, an object marking stage and secondly boundary editing. In (B), the two user
selections (yellow to indicate the foreground, blue background) are drawn. The box represents
the zoomed section in the (C). In (C) (zoomed) image, the segmentation is shown, with control
points. (D) shows the cut out is superimposed onto another Van Gogh painting.

dragging operations. Shortest path has an advantage of segmenting both open and close end

objects, however many of them only use edge-based features to find the shortest path and the

user points are generally treated as hard constraints, though some methods [12, 126] use soft

constraints. The advantage of soft constraints is that the need for accuracy in the user input

diminishes. This dramatically reduces the effort required in the user input stage, making the

method more useful in situations where the user’s time is valuable.

Incorporating shape prior (a weighting based on a pre-constructed, generalized, shape) into

graph based segmentation has also shown improving the segmentation result, e.g. [127, 128,

129, 24, 10]. Veksler [24] introduced a star shape prior to graph cut, also through user interac-

tion. The star graph cut uses a prior that is generic, not based on a high-level object class (for

example “person”, or “horse”), but rather it exhibits the geometric properties of the object. A

star object is defined by the user specifying the center of region of interest (ROI) as the star

point, and hence all boundary points of ROI lie on the radial spikes from the star point. Addi-

tional points, specifying foreground and background, are often necessary. By allowing the user

to select the centre point, and not calculating it based on geometric centre, more complicated

and convex images can be segmented, provided they are star shaped with respect to the arcs

from the user point. Star shaped graph cut formulates a graph in a similar manner to other graph

cut paradigms, namely a graph G = (V,E) with each edge e ∈ E having a non-negative weight

we. A ballooning term is also used to discourage bias towards the formation of small segments.

However, the method can only segment the convex shapes. A commonly used energy function

35



2. Background

Figure 2.21: Star shaped graph cut. Radial lines from the user point c provide the star shape
[24]. As both p and q are points that lie on the same line through c, and q is closer to c than p.
It therefore follows that if p is labeled object, q must also be labeled object.

for these types of graph cut is:

E( f ) = ∑
p∈P

Dp( fp)+λ ∑
(p,q)∈N

Vpq( fp, fq). (2.3)

The first term is referred to as the data term, and the second the boundary term and measures

how well a given pixel p fits into the background or foreground regions by looking at the

penalty Dp( fp) to assign the label fp to that pixel. To ensure correct segmentation, Dp(0) = ∞

is set for object seeds, and Dp(1) = ∞ set for background seeds (points labeled as such by the

user). The second term, Vpq( fp, fq) is the penalty for assigning labels fp and fq to neighbouring

pixels, which is zero if the labels are the same, but penalizes differing labels. λ ≥ 0 is a weight

for scaling the relative importance of the two terms.

An example showing the arrangement of lines and points is shown in Fig. 2.21. In the example,

if point (pixel) p and q lie on a line through the user centre c with q in between p and c, it

therefore follows that is label 1 for object is given to p, then all points between p and c must

be so labeled. β is a bias added to prevent shriniking in the absence of a strong data term. This

is implemented using the pairwise shape constraint term shown:

Spq( fp, fq) =


0 if fp = fq,

∞ if fp = 1 and fq = 0,

β if fp = 0 and fq = 1

(2.4)
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Gulshan et al. [130] have extended the method to multiple stars by using geodesic paths instead

of Euclidean rays. Other interactive segmentation methods such as a transductive framework

of Laplacian graph regulariser [131] have been also introduced.

2.6.2 Log Gabor Filters

Gabor filters are a family of bandpass filters widely used in many aspects of image processing

[132]. Indeed there have been many applications using these filters such as vehicle identifi-

cation [133, 134], face recognition [135, 136, 137], biometrics [138, 139], and even character

recognition [140, 141]. In our work we use Log-Gabor filters [142] to remove noise based

artifacts from the image prior to segmentation. They can be described in the Fourier domain

using the following equation:

Gk(r,φ) = exp

−1
2

(
log( r

rk
)

σs

)2

− 1
2

(
φ −φk

σa

)2
 (2.5)

where (rk,φk) represents the centre of the filter, and σs and σa represent the scale and common

angular bandwidths respectively. All the filters share one scale bandwidth, and π

4 angular

bandwidths. Log-Gabor filters are common for image enhancement and noise reduction as they

possess a similarity to how the visual cortex processes images [143, 142]. Gabor functions

comprise of two components; one real part, and the other imaginary, with the actual Gabor

function being a multiplication of a Gaussian function and a complex sinusoidal function in

the corresponding spatial domain.

The Log-Gabor function which we use in this work Gab( f ), has a frequency response defined

as a symmetric Gaussian on a log frequency axis:

Gab( f ) = exp(− [log( f\ f0)]
2

2[log(σ\ f0)]2
) (2.6)

where f 0 is the centre frequency of the filter, and s is the filter bandwidth. The Log-Gabor

function has no DC component for any bandwidth filter compared to the Gabor function.
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Figure 2.22: Simple schematic representing shortest path segmentation using Dijkstra’s algo-
rithm. The resultant path is shown with red arrows. The method will select the unvisited vertex
with the lowest cost (in this case 1, calculates the total cost of visiting it and each unvisited
neighbor, and updates the neighbor’s distance if smaller

2.6.3 Shortest Path Methods - Dijkstra’s Algorithm

Shortest path segmentation is an edge based approach to image segmentation. There are many

different methods and algorithms used [144, 145, 146, 147], one of the most common is Dijk-

stra’s Algorithm This algorithm was published by Dijkstra in 1959 [148]. Dijkstra’s algorithm

is a method to find the shortest path between two points (pixels) p and q. The algorithm sup-

poses that there is a point r that exists on the minimal path between p and q. The algorithm

finds these minimal paths from point p to various points r until q is reached. The nodes on

the graph are divided into three sets A, B, and C. These represent the set of nodes where the

minimal path to p is known, those nodes connected to a node just added to A (that is those

nodes to be examined next), and the rest of the nodes in the graph respectively. The edges are

thusly also divided into three sets, with similar groupings. The algorithm thus finds the shortest

path between the node p and every other node r until q is reached. This is not the most efficient

algorithm for calculating the shortest path as it runs in time O(|V |2), where |V | is the number

of nodes in the graph. Fig. 2.22 shows a simple example of Dijkstra’s algorithm. The result

from p to q will include node 1 and 3 and will have length 6.

Modern implementations of the Dijkstra Algorithm however, employ a Fibonacci heap, which
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provides them with a runtime of O(|E|+ |V | log |V |) where E is the number of edges in the

graph [149].

2.6.4 Edge based Detection

Throughout this work, we utilize edge based detection methods to identify features. Edge

detection is ubiquitous in object detection [150], medical imaging [151, 152], as well as in

other image processing applications, and although there are many different mechanisms to

achieve the desired result, most rely on a change in the gradient of specific values (more often

the luminance) that occurs across the border (or edge) [153]. The principle is to assign a value

to a threshold change in luminance (usually in a grey-scale image), this threshold represents

the minimum gradient across the edge that will be defined as a boundary. This will usually be

after performing any pre-processing to enhance the edge features [154].

For a relatively simple edge detector, a step edge with applied Gaussian blur could be used

[155, 156] which uses a gradient magnitude to form the basis of the edge detector. Edge

detection can be classified into several different categories, based on how it works and the types

of pre-processing required. Pre-processing can either be local, regional or global depending on

the requirements of the system. These different methods of preprocessing look at different

size neighborhoods to improve the edge quality prior to detection. Both local and regional

methods apply various size templates to the image, with idealized edge conditions to improve

the edge feature. Global methods apply a filter to the whole image. In our method, our first

stage of preprocessing involves applying one of these global filters. After pre-processing, there

are many different methods that can be used for edge detection. In this work, we mainly use

two different algorithms, Canny and Sobel edge detectors. The Sobel Filter (or Operator) is

a commonly used edge detector in image processing [154, 157, 158, 159], performing a 2-D

spatial gradient measurement on the image. This has the effect of emphasizing regions of high

spatial frequency, which in turn correspond to edges in the image. Applying the Sobel Filter

to a Greyscale image can be used to approximate absolute gradient magnitude at each point. It

is named after the researcher Irwin Sobel, who presented the Operator in his work. The filter

itself consists of two 3x3 matrix kernels that can be applied to a given (x,y) image I. These are

used to map horizontal and vertical changes in gradient, giving the approximations Gx and Gy

respectively (2.10). The image I can be convolved with both Gx and Gy to give the approximate

gradient magnitude G at any given point (2.9).
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Gy(x,y) =
1

∑
k←1

1

∑
l←1

S1(k, l) f (x+ k,y+ l) (2.7)

Gx(x,y) =
1

∑
=k1

1

∑
l←1

S2(k, l) f (x+ k,y+ l) (2.8)

G(x,y) = g2
1(x,y)+g2

2(x,y) (2.9)

Gx =


−1 0 +1

−2 0 +2

−1 0 +1

?I Gy =


−1 −2 −1

0 0 0

+1 +2 +1

?I (2.10)

Where ? represents the 2-dimensional convolution operation.

After the filter is applied, G can be approximately calculated using the equation (2.11).

G =
√

G2
x +G2

y (2.11)

The Canny edge detector [160, 161], expands upon the results obtained from the Sobel Filter.

Taking the gradient magnitude obtained by applying the Sobel filter to the image (2.11), and

applying further processing to it. Firstly, an “edge thinning” technique is applied to the image

resulting from the Sobel filter. This suppresses all non-maximum values for the edge to zero,

resulting in a single, maximum value for each edge. The next stage is to remove erroneous

edges caused by noise in the image. THis is done by setting two threshold values (a high and

low threshold). Edges where the pixel value falls between these are labeled as weak edges, and

those below the low threshold are suppressed. Finally edge tracking is used to select which

weak edges (those connected to a strong edge) should be included in the final image. The

Canny edge detector again is quite commonplace in image processing [162, 163, 164] being

found in many different applications. The direction of the gradient obtained by the Sobel filter

can be achieved [165] using the following formula:

θ(x,y) = tan−1(
Gy

Gx
) (2.12)

The edge detected from the gradient magnitude is quite “blurry”. The Canny filter improves

upon this by using an edge thinning technique. It uses the direction of the gradient to reinforce
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Figure 2.23: Comparison of Sobel (centre) and Canny (right and far right) edge detector (high
and low thresholds respectively) filters applied to an image

edges in a certain direction, and reduce edges in the other directions. This results in the resul-

tant edges being more defined, with less smoothing Fig.2.23. By changing the threshold value

used, the canny edge detector can be used to detect weaker edges. This made it very suitable

for the over-segmentation stage used in our preprocessing.

2.6.5 Radial Basis Function

A Radial Basis Function (RBF) can be used for a wide range of interpolation and smoothing

tasks in a variety of different fields, including smoothing of 2D [166, 167, 168] and 3D contours

[169, 170, 171]. An RBF is a real-valued function, and it derives its value from the distance

from a predetermined point, called a centre, c, with any given function φ being radial if it

satisfies the property φ(x) = φ(‖x‖).

φ(x,c) = φ(||x− c||) (2.13)

There are several different types of RBF commonly used, depending on the approximations

and smoothing required. These can be Gaussian, Multi-quadratic or Poly-harmonic, as well as

Thin plate Splines, amongst others (such as the inverse of the above). When writing an RBF, it

is common to use the term r, where r = ||x−xi||. For a Gaussian RBF, we can use the following

term:

φ(r) = e−(εr)2
(2.14)

RBFs can be used in kernel smoothing, which is what we use them for in this work. A typical

RBF used for kernel smoothing can be represented by (2.15) where y(x) is our approximation
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function, represented by the sum of N RBFs, each of which has a different associated centre xi,

with its associated weight wi.

y(x) =
N

∑
i=1

wiφ(‖x− xi‖) (2.15)

2.6.6 Hidden Markov Model (HMM)

HMM is a stochastic model, in which over a finite set of hidden states, the Markov property

can be assumed to be satisfied. The Markov property represents the “Memoryless” nature of

the series and, for a first order Markov Property, states that for any given state at observation

time t (St), this state is governed by the state at t−1, but is independent of all previous states

before t−1 [172]. What this means is that the current state, confers all we need to know about

the previous states. This must also therefore hold for the outputs, as they must be independent

of the historical states as well. This means that given St , Yt must be independent of all the

previous states and observations. HMMs have been utilized in a variety of fields, such as speech

recognition [173, 174] , classification [175, 176] and tracking [177, 178]. HMM has been

used in the medical field both for segmentation [176, 179, 180] and image processing, such

as image denoising [181]. In this work, we propose multi-border segmentation and tracking

method based on the HMM, in order to delineate the inner and outer vessel borders in lymphatic

images with the presence of noise and occlusions.

In its most basic sense, a HMM is a tool for investigation and representation of a series of prob-

abilities for a selection of observations [182]. We can use HMM for any variable, Yt observed

at time t, provided that we can define its probability distribution and that the observations can

be sampled at discrete times (t must be an integer). In order to be a HMM, certain criteria must

be met. Firstly, our observation at time t must be triggered by a process that is hidden from

the user, and this state which we shall refer to as St maintains the Markov property. The final

assumption we make when assigning the Markov property to a system is that each state St is

also discrete, taking on k ∈ (1, ...,K) integer values.

We can represent this sequence of states using the following equation to show the distribution

of a sequence of states and observations:

P(S1:T ,Y1:T ) = P(S1)P(Y1|S1)
T

∏
t=2

P(St |St−1)P(Yt |St) (2.16)
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Figure 2.24: Representation of a simplified Bayesian network representing the dependencies
in HMM

Where the observations at time t ∈ T are taken for each state S and observation Y . We can

represent this graphically (as shown in Fig. 2.24). This representation of the hidden states and

their observations is known as a Bayesian (or belief) network. We can represent a Bayesian

network as a graph, with each variable we consider being represented as a node. Each node

will therefore be connected to nodes that are dependent on it, and also be connected to those

node on which it depends by using a series of directed and weighted arcs.

In order to use the HMM in our method, we must first define the probability distribution over

the initial state P(S1), the K×K transition matrix used to define P(St |St − 1), and how we

model the output defined by P(Yt |St). It is standard practice to ensure that both the transition

matrix and the output models are not dependent on t. This means that the model must be time

invariant apart from in defining the initial state. Our observations (position of the boundary in

each slice), being discrete, can take one of L values, so we can define our output by using a

K×L emission matrix.

2.7 Optimization

In image segmentation, it is important in most cases that accurate segmentations are performed

with a high degree of fidelity. This, however, isn’t the only requirement in a great number

of situations. For the most part, it is also essential that the segmentation process have some

degree of optimization, to reduce the run-time or the computational cost of the algorithm. One

can broadly separate optimization problems into two categories, being either continuous or dis-

crete, or in some cases, they may be a combination of both. The principle difference between
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the two cases is the type of variable that they deal with. Discrete optimization, for example, is

primarily used in the case where the variables may only take on discrete (most commonly inte-

ger) values. Continuous optimization deals with the opposite case, that in which the variables

are allowed to take on any values permitted by the constraints, so-called continuous variables.

Discrete problems are often very hard to solve, often only enumeration of all possible points

is required in order to obtain a solution; although, fortunately, this is not always the case and

simple (greedy) algorithms can suffice. As well as the two broad categories of optimization, it

is also essential to understand whether the method used provides a global minimization (all the

variables are considered as a whole) or produces localized minima.

2.7.1 Global Minimization

This can be defined as finding the global minimum (or in some cases the maximum) over a

series of n parameters, with or without the addition of constraints [183]. For finding the global

minimum this can be expressed as:

minimise f
x
(x) (2.17)

Where f is the objective function and x is a vector incorporating the variables. If these variables

that enter x are real numbers, then the problem in continuous, and if they are integers, then the

minimization problem is discrete. It is quite common for global minimization problems to be

governed by constraints (such as box constraints that set an upper or lower boundary to the

problem). In this case, the algorithm will find a global minimum within the constraints estab-

lished. This global minimization paradigm will be used in this work, to avoid segmentations

forming undesirable local minima.

2.7.2 Discrete Optimization

In discrete optimization, there is present a set of n discrete variables (such as integers, binary

values, etc.), and the solution is found within a combination of them. An example of this would

be trying to “guess” at a PIN. This seems quite straight forward at first, as all possible com-

binations can be predicted, but the number of combinations soon becomes high. In the trivial

example of the 4 digit PIN, there are 104 combinations, simple for a machine, but time con-

suming for a human. However, in image processing, the number of permutations is increased
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by orders of magnitude. For example, a 512×512 JPG color image has (for one color channel

alone):

512×512 = 262,144pixels

262,144256combinations

(which MATLAB reports as Inf)

(2.18)

As demonstrated above, without tight boundaries, discrete optimization problems become quite

taxing on computational resources and time. As discrete optimization problems are relatively

common in a lot of fields (such as manufacture, engineering, telecommunications, etc.) it is

important to provide algorithms that can find solutions to the problem in faster time than simply

iterating through the possible permutations. Discrete optimization problems can also occur in

graph theory, something that is widely used in image segmentation. The set of all possible

solutions S for any given graph might include the set of spanning trees (a spanning tree of

graph G is a subgraph that includes all vertices) in the connected graph. For any given graph

G = (V,E) comprised of n vertices, there will be nn−2 spanning trees. This creates a problem

in the same order of difficulty as sorting the
(n

2

)
= n(n−1)/2 different edge weights. Another

commonly cited problem is that of the traveling salesman, which has an hypothetical salesman

visiting n sites on his route. Without some governing constraint, this gives (n−1)!/2 possible

combinations, and is in in fact NP-hard, being very computationally expensive. It is generally

considered that any algorithm is theoretically efficient if the number of computational steps

can be solved in polynomial time (i.e. it is not NP-Hard) [184]. In this work, we will utilize a

sequential order to our graph in order to prevent the problem becoming NP-hard.

2.7.3 Continuous Optimization

Continuous optimization methods deal with data that transitions gradually between values in

the range, i.e. continuous data. As discussed in Unger et al [185] these methods are inher-

ently parallel, making them ideally suited to modern GPU applications. It is possible to apply

standard methods, such as max-flow/min-cut, which is traditionally used with discrete opti-

mization, to continuous optimization problems. Strang [186] provided an extension to the

max-flow/min-cut theorem for continuous flow. In the continuous case, it becomes easier to

solve for the minimum cut rather than looking at the maximal flow. In the continuous opti-
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mization problem, the flow is looked at as a continuous flow bounded in a domain plane, and

its direction and magnitude are given by the vector field σ for any point (x,y) where:

σ = (σ1(x,y),σ2(x,y)) (2.19)

By integrating σ ·n where n is the unit normal to the segment, we can obtain the flow across a

line segment. The capacity constraint for this, takes the pointwise form:

|σ(x,y)|= (σ2
1 +σ

2
2 )

1
2 ≤ (c(x,y) (2.20)

In place of a conventional source and sink, the continuous flow exits and enters through the

boundary of the domain, with positive values for flow leaving through the boundary associated

with a sink, and the converse for negative flow (representing, therefore, leaving the boundary

representing the source).

As the balance of flow can be formulated as:

∫ ∫
Fdxdy+

∫
f ds = 0, (2.21)

allowing the problem to be expressed as:

Maximize λ ,

subject to |σ | ≤ c,

σ ·n = λ f ,

divσ =−λF,

(2.22)

As you can see from the graph cut example, continuous optimization problems are generalized

in the form:

Maximize
x

f (x),

subject to gi(x)≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p

(2.23)
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Where f (x) : Rn → R is the objective function; i.e the function to be minimized over the

variable x, and gi and hi form the inequality and equality constraints respectively. This is

defined by convention as a minimization problem 9obviously a maximization problem could

be solved by negating the objective function).
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Chapter 3

Interactive 2D Segmentation: Utilizing
edge and region information to
enhance segmentation
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3.1 Introduction

In this chapter, we proposed an approach combining two different types of user interactions,

i.e. boundary based interaction (utilizing the user input control points) and region based stroke

interaction, to segment medical images from Intravascular Ultrasound (IVUS) and Optical Co-

herence Tomography (OCT) images.

By utilizing a series of soft constraints to guide the image segmentation, in combination with

stroke based region selection we obtain a robust segmentation method, that deals with the qual-

ity issues present in images obtained with these (IVUS and OCT) modalities. Soft constraints
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Figure 3.1: Overview of an IVUS image acquired by 40MHz transducer Boston Scientific
ultrasound machine, and segmentation by the proposed method. (A) Original IVUS image.
(B) User input. (C) Segmentation result.

do not require the segmentation path to go through the points exactly, acting as a guide rather

than a fixed point. The opposite are hard constraints, which require the pathway to travel

through the point itself. In both IVUS and OCT images there are varying amounts of image

noise, and artifacts (caused by both medical conditions and as a result of the imaging method),

which by using the dual method of edge based and region based features the effect of these

on the quality of the segmentation is minimized. By switching to soft constraints, rather than

the more common hard constraints, imprecise user input is allowed without adversely affecting

the segmentation. This use of imprecise user input reduces the time taken for the user to make

user selections (and therefore the convenience of the technique) allowing for an easier balance

between the desire to use expert knowledge to inform the segmentation and convenience of

use for the end user. To further augment this edge based approach, we allow the user to select

regions for foreground interest with strokes; allowing effective combination of boundary and

region based features in a wide variety of image modalities. The user points give the user con-

trol over the segmentation process, allowing errors in segmentation to be easily prevented and

a more desirable result to be obtained. Fig. 3.4 is an example of an IVUS image which shows

the typical quality of the image type where not only artifacts, but pathologies may increase the

difficulty of the segmentation. In both the IVUS and OCT image sets we look at the segmen-

tation results in both qualitative and quantitative fashion, comparing them to other methods of

segmentation. To further demonstrate the versatility of the method, we will then look at some

examples from other imaging modalities, such as x-ray, MRI and CT, and “real world” images

(landscapes, animals, people and objects. In these examples, we demonstrate the capacity of

method to allow both open and closed selections to be made, one of the fundamental features

of our method.
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In this chapter, the principle drive is to investigate image segmentation in images obtained

from catheter based diagnostic methodologies, widely used in hospitals, namely IVUS and

OCT. Due to the differences in both imaging modalities (IVUS having a higher penetration,

but lower resolution, for example) we look at the medi-adventitia border on the IVUS images

(clearly visible as a dark band), and the lumenal border in the OCT data-sets (much more

visible in this modality).

The rest of the chapter is organized as follows: Section 3.2 presents the proposed method, in-

cluding user input, super-pixel segmentation, and multilayered graph segmentation, as well as

an overview of the cost terms and minimization method. Experimental results from segment-

ing medical data sets with ground-truth are presented in Section 3.3. These show the results

for IVUS and OCT images, and quantitative data obtained from these data-sets, demonstrat-

ing the effectiveness of the technique compared to other methodologies. We show a selection

of examples from other medical imaging modalities to demonstrate that the method can be

used for other image types and then show results for generic images, further demonstrating the

versatility and robustness of the method. Section 3.5 concludes the chapter.

3.2 Proposed Method

The proposed method involves following these steps, summarized in Fig. 3.2:

1. The user selecting a series of user control points on the image. These represent the start

and the end point for the segmentation, and the user selected points act as the attraction

points in the shortest path search which results in the segmentation. These user selected

points act in a fashion similar to an elastic band, pulling the segmentation towards them.

In this way, it is possible for the user to influence the segmentation process allowing

them to preferentially select features that they want, but without the caveat that these

points must be precise. In order to enhance the image segmentation, the user can also

select areas for foreground using strokes.

2. With the assumption that the user points are in a sequential order (as without this the

problem will be NP-hard and computationally intensive), we construct a multi-layer

graph with each layer encapsulating a single individual user point, each layer being a

complete rendition of the image. Effectively, we create multiple identical layers, all
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Figure 3.2: Schematic of the stages involved in the method. Starting with user input, a 3D
graph is constructed for n+ 1 layers, where n is the number of user points. Weights are then
assigned, and the shortest path found. This is then converted back to a 2D representation for
output.

made up of duplicates of the image, for each user point added, with the only difference

between layers being the position of the user point on that layer.

3. An energy function is then formulated based on the combination of the attraction force

(that is computed using distance transform based on the next user point), the edge fea-

tures between neighboring pixels, and the discontinuity in foreground probability. This

is then used to assign weights to the edges in the graph.

4. The segmentation problem is then transformed into searching the shortest path in this

layered graph, that is the resulting segmentation is obtained through searching a mini-

mum path in this stack of layers in a manner similar to a 3D object.

Another effect caused by the creation of layers is that order is forced onto the problem. As

the edges between layers are unidirectional, the segmentation must proceed from the first layer

to the last without revisiting a previous layer. With no sequential order to the points, the

problem becomes that of the traveling salesman, and becomes NP-Hard. By using the layered

approach, which ensures sequential transition between layers, the segmentation can be carried
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out in polynomial time, instead of an NP-hard optimization problem, at the same time achieving

global minima.

3.2.1 User Input

The proposed method allows two different types of user input: (a) attraction points to indicate

the edge of the desired object and (b) strokes to indicate region of interest. Fig. 3.3 provides an

example of segmentation using the proposed method. Conventionally, user input to segmenta-

tion is focused on foreground and background specification [21, 25, 121, 24]. For example, in

[25], the user interaction consists of dragging a rectangle around the object of interest and in

doing so the user specifies a region of background that is modeled in separating the foreground

object. Several other methods require user to specify points on the object boundaries instead

[122, 11, 12]. Examples of these methods are shown in Fig.3.4. However, more often than

not, these boundary based user points are treated as anchor points and the segmentation path

has to go through them. This kind of hard constraint is not always desirable. It does not allow

imprecise user input, and it can lead to difficulties in combining region based and boundary

based approaches as discrepancy between different object descriptions is generally expected.

Notably, in [12] the authors introduced soft constraint user point by embedding the user con-

straint in distance functions. The segmentation result is considered to be the shortest path to

loosely connect the user points. However, it is known to be a NP-hard problem. Hence, it

is assumed that the user points are placed in a sequential order and such a constraint reduced

the computational complexity to polynomial time. This user input constraint can be seen to

be generally acceptable as it is intuitive to follow the outline of an object, rather than skipping

around. In this work, we follow this approach to treat boundary based user points. However,

we also allow user to place region based strokes. These strokes are used to model foreground

probability, and the discontinuity in foreground probability indicates the presence of object

boundary. We combine these two types of user input with image features in an energy func-

tional which is then optimized using graph partitioning through finding the shortest path from

the first to last user points. Moreover, we apply a super-pixel segmentation in order to generate

a much coarser, but irregular, multi-layer graph so that the computational cost is drastically

reduced. It also provides a regional support at a low level for the shortest path search in the

graph.
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A B C

Figure 3.3: Edge based detection in IVUS images. From left to right, (A) shows initial im-
age with user selections added,(B) shows the resultant edge map obtained,and (C) shows the
segmentation produced (shown in red), green shows the ground truth, and blue user selections.

A B C D

Figure 3.4: Examples of different segmentation methods on an IVUS image. From left:
(A) Graph cut [21],(B) Seeded Star Graph Cut [24], (C) GrabCut [25], and (D) proposed
method. Red curve shows the segmentation result, yellow for user points and blue for re-
gion selection (in the case of the proposed method), yellow and blue points/strokes for fore-
ground/background regions in graph cut and seeded star graph cut, and yellow for the initial
window of the Grabcut. Green shows the ground truth from manually labeled image.

3.2.2 Pre-processing

The first stage in the segmentation process is to pre-process the images. When looking at

both IVUS and OCT images, there are a lot of artifacts and noise that can hinder a good

segmentation. Noise reduction in IVUS is important as many segmentation systems utilize

edge based techniques, and there are several methods that can be used [125, 124, 187]

In our method, we implement a Log Gabor filter in order to improve the noise present in

the image data and have been shown to improve the quality of images in similar situations

[123]. By utilizing a log-Gabor transform function to act as a bandwidth filter, the noise of the

53



3. Interactive 2D Segmentation: Utilizing edge and region information to enhance
segmentation

image (which is out of phase) can be removed. Using Gabor wavelets instead of log-Gabor, has

problems dealing with certain types of noise, especially those occurring in negative frequencies

relative to the desired image.

3.2.3 Super-pixel Segmentation

Efficient search for the shortest path, for instance, using Dijkstra’s Algorithm on a multidi-

mensional graph is not a trivial task. Many researchers attempted to speed up the Dijkstra’s

Algorithm by e.g. using multilevel scaling [188] or restricting the search space [189] by decid-

ing whether or not the edge will be considered during the searching process. One mechanism

that can be used to minimize the amount of nodes on the graph is Super-pixel Segmentation.

Super-pixel segmentation is a process that groups a set of homogeneous neighboring pixels

together to reduce the complexity of solving further image processing such as segmentation

[23, 118] and object localization [190]. Super-pixel segmentation algorithms vary from graph

based [72, 191] to gradient descent methods [192, 193].

In order to optimism the segmentation, and speed up the segmentation of the images using

Dijkstra’s Algorithm, a graph pruning method was implemented. Graph pruning was achieved

by the utilization of a mean shift method to over-segment the image, and thus create the Super-

pixels. This over segmented image is then used to prune the graph, by only considering the

boundary of the super-pixel regions as a potential paths that can be used to find the shortest

path between two points, the whole process is thus far more efficient. Additionally, this super-

pixel segmentation provides low level regional information to the graph search which relies

significantly on edge information.

Mean shift algorithm [192] is a non-parametric gradient descent method that iteratively shifts

the mean of the region toward the local maxima of the cluster density for a given set of sam-

ples. Mean shift method is suitable for clustering data without any assumption of the cluster

shape. It has been widely used in many applications, such as segmentation [192] and tracking

[194]. Given n data points (pixels) the pixel xi where i = 1 . . . ,n,in the d-dimensional space

Rd , the non-parametric probability function is defined by kernel density estimator (KDE) as

the following:

f̂ (x) =
1

nhd

n

∑
i=1

K(
x− xi

h
) (3.1)

where h is the bandwidth parameter and K is the radially symmetric kernel such as Gaussian

54



3. Interactive 2D Segmentation: Utilizing edge and region information to enhance
segmentation

A B C

Figure 3.5: The use of super-pixel segmentation to identify graph nodes in a single layer in
IVUS image. From left to right, (A) initial image, (B) super-pixel segmentation, (C) represen-
tation of utilized graph nodes (black is used in graph, white is not).

kernel.

K(x) = (2π)−d/2 exp(−1
2
‖x‖2) (3.2)

The local maxima of density is located among the zeros of the gradient ||∇ f (x)|| ∼= 0. So the

mean shift can be derived as the following:

mh,G(x)(x) =
∑

n
i=1 xiG(

∥∥ x−xi
h

∥∥2
)

∑
n
i=1 G(

∥∥ x−xi
h

∥∥2
)
− x (3.3)

where

G(x) = cg,dg(‖x‖2) (3.4)

With g(x) =−K′(x) and mh,G(x)(x) is the difference between the weighted mean, using kernel

G, and x, the center of the kernel. The mean shift vector points toward the maximum increase

of the density and it converges at a nearby point where the density estimate has zero gradient.

Fig. 3.5 provides an example of the mean shift segmentation. Mean shift is preserving the edge

features in the image. The black region, shown in the rightmost of the figure, represents areas

on or close to edges in the super-pixel segmentation, and are used to construct the graph as it

is discussed in the next section. In order to prevent the segmentation being too jagged in IVUS

images, it was necessary to increase the amount of segmentation obtained in this stage.

Cells can be combined if they are all labeled the same by the user, in order to create a larger

super-pixel. In this way, redundant edges internal to regions are not included in the graph. We

apply a Canny edge detector to the super-pixel images to create a binary image which we can
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Figure 3.6: Example of 3D graph traversal. The stack of images on the right show how the
graph is constructed out of a number of layers corresponding to the number of user points
n+ 1. The algorithm finds the shortest path through the layers, solving the minimum cut for
the graphc ut with weights derived from the edges, boundaries and distance from user points.
The final result of the segmentation is shown on the left.

then use to assign nodes to the graph based on whether they are present on the edges of the

super-pixels or not. The Canny edge detector (with a low threshold value) in this case provides

an easy way for obtaining the binary of corresponding edges ready for using in the next stage. A

Sobel filter, due to its smoothed nature, would give more values to the mask (unless a threshold

was set) diminishing the speed increase obtained by the super-pixel segmentation. See Fig. 3.5

for an example of the super-pixel segmentation.

3.2.4 Layered Graph Construction

In order to impose soft constraint for user point, we follow the approach proposed in [12]

to construct a layered graph so that given a set of attraction points we fit a curve to follow

the edges in the image and pass through the vicinity of the given points. The user points are

assumed to be placed in a sequential order, which is acceptable in most applications. The

computational complexity, however, is reduced from being NP-hard to polynomial time.

For each user point, Xi, i ∈ {1,2, ...,k}, we create a new layer of directed graph. This is a copy

of the image layer, with the same edge based weighting. In that way we have a series of layers

equal to the number of user points n, plus an additional layer in order for the weighting of the
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last user point (the sink) to be used, as shown in Fig. 3.6. This results in a multi-layer directed

graph, G = (V,E), where V is the set of vertices, and E the set of weighted edges. For each

pixel p, there exits an edge e to each of its neighboring pixels on the same layer, providing

that they are on the boundaries of the super-pixels. Therefore, a pair of neighboring pixels

(p,q) ∈ V with a corresponding edge e = (vp,vq) also have an edge to the corresponding point

on the superseding layer e = (vpi ,vpi+1), where i represents the current layer of the image. For

each edge, we assign a weight w to build a weighted graph (V,E). These weights are calculated

based on whether the edge is internal to a layer (wi) or trans-layer (wx). By creating the graph

in this way, an order is established with the user points, yet allowing for a global minimum

to be found, rather than a series of pairwise local minima. Due to the size of the graph that

would be constructed, the edge mask created by the super-pixel segmentation is used to prune

the graph that has been constructed. If nodes are not on the edges, then they are not used by the

algorithm. In this way, weights do not have to be calculated for them, and they take no more

part in the computation of the result.

Edges of zero weight are added from the start node s to each pixel in the first layer, and from

the last layer k+ 1 to the terminal node t. This has the effect of making the first and the last

user points elastic and not hard constraints. For example, if the first user point X1 is not located

on an edge, then in the overall minimization it would be of lower cost to enter the first layer at

the nearest point to X1 on a strong edge. In this way, all user points act as soft constraints.

If P is the set of pixels in the image, Ps is therefore the subset of pixels that also fall on the

boundaries of our super pixels, and pi and qi are pixels in layer i giving vpi as the vertex p in

layer i, we can define the set of nodes V as

V = {s, t}∪{pi ∈ Ps∧1≤ i≤ k+1} (3.5)

and thus the set of edges as,

E =



(s,vp1)|p ∈ Ps ∪

(vpk+1 , t)|p ∈ Ps ∪

(vpi ,vqi)|(p,q) ∈ N∧1≤ i≤ k+1 ∪

(vpi ,vpi+1)|p ∈ Ps∧1≤ i≤ k+1.

(3.6)

The segmentation is thus to find the shortest path from the start point s to the end point t, see

Fig. 3.6 across the 3D graph.
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The edges on the directed layered graph are categorized as internal edges wi within individ-

ual layers and inter-layer edges wx. The weighting for these two types of edges is assigned

differently. The internal edges are assigned with two types of weights, i.e. boundary based

edge weights and region based edge weights. The boundary based edge weights are calculated

based on the magnitude of image gradients, created for example with a Sobel filter,, i.e. using

an edge detection function ge = 1/(1+∇I) where I denotes the image or its smoothed version

using, for instance, Gaussian filtering. Hence, for any given edge between neighboring pixels

(vp,vq), we assign a weight (we) according to

we(vp,vq) =
1
2
||p−q||(ge(p)+ge(q)). (3.7)

The region based edge weights are computed from foreground probabilities. The user strokes

placed in the foreground provide an estimation for foreground intensity distribution, which is

then used to evaluate each pixel in the image. The discontinuity in this generated probability

map is then used to compute the region based edge weight in the similar fashion to image

intensity, i.e.

w f (vp,vq) =
1
2
||p−q||(g f (p)+g f (q)) (3.8)

where g f is the edge detection function based on probability values.

By combining in a weight derived from this discontinuity map, we add an extra level of ro-

bustness to the method. As regions not selected as foreground will have an increased cost, if

there exists strong edges that may cause errors in our segmentation, but are not selected as

foreground then the likelihood of the segmentation following these edges is greatly reduced.

This is far more apparent when we look at real world images, as the differing color channels in

these images adds even more strength to the region based weights.

The internal edge weight is thus the linear combination of the boundary based weight and

region based weight:

wi = we +w f (3.9)

The attraction force imposed by user points is materialized through the inter-layer edge weights

wx. We apply distance transform to the user points in each layer of the graph, and the inter-layer

edge weight is assigned as wx = d(vpi ,vp j) where d denotes the distance transform function.

This distance weighting produces isolinear bands of weight around the user point, with increas-

ing weight to go through to the next layer as the distance from the user point increases.
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Figure 3.7: Effect of changing α and β . The Image on the left shows the ratio of these two
constants skewed towards adding more emphasis on the user points, thus reducing the “elastic”
properties. The image on the right shows the other extreme, with the user points being bypassed
in favour of the stronger edge.

3.2.5 Energy Minimization

The energy function for any curve C in our method is a combination of three terms, i.e. for any

arc C between two points pi and q j where the points are

C(p,q) = wx +wi (3.10)

as wx can be written as

α

k

∑
i=1
||C(si)−Xi|| (3.11)

and likewise wi can be written as:

β

L(C)∫
0

g(C(s))ds+

L(C)∫
0

g f (C(s))ds, (3.12)

This is all providing that the points are treated as being in a sequential order, and that the

interconnections between layers are uni-directional. The overall energy function can then be

expressed as:

E(C,s1, ...,sk) =α

k

∑
i=1
||C(si)−Xi||+β

L(C)∫
0

g(C(s))ds+

L(C)∫
0

g f (C(s))ds, s.t.si < s j,∀i < j. (3.13)

where α and β are real constants used to weigh the effects of the edge based and distance based

terms. Fig. 3.7 shows how changing the ratio of these constants can be used to put more or

less emphasis on the control points (even going so far as to remove the elastic property when

the ratio is skewed largely in favour of α .

The first term is used to enforce the soft constraint by the user points, and it penalises the

paths further away from the user points. The second term is the boundary based data term that
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prefers the path passing through strong edges, while the last term is the region based data term

which prefers path traveling through abrupt changes in foreground probability. By using the

layered graph construction, the minimization of the energy functional is achieved by finding

the shortest path from the start point s to the end point t. The Dijkstra’s algorithm is used

to calculate the shortest path in the layered directed graph. Note, the inter-layer edges are

unidirectional so that the path can not travel back to previously visited layers.

The Dijkstra’s algorithm is working on a directed graph G = (V,E) to find the shortest path

between two defined nodes, the algorithm divide the nodes of the graph into two sets; visited

and unvisited nodes. Once the node is marked as visited node, it will not be checked again. The

algorithm starts searching from the starting node s, assigns an initial tentative distance of zero

to the starting node and infinity to all other nodes, and then calculates the tentative distances

for all neighboring nodes, these tentative distances are defined as the summation of the edge

weight wi and the current distance of the beginning node of that edge. The edge weight must

be non-negative value. The algorithm will mark the node that has the minimum distance as a

visited node. The algorithm will repeat the process by calculating the tentative distance for all

neighboring nodes for all visited nodes and only mark the node having the minimum distance

as a visited node until reaching the terminal node t. The running time of Dijkstra’s algorithm

is O(|E|+ |V |log|V |) where E is the number of edges and V is the number of nodes.

3.2.6 Algorithm Optimisation

Due to the nature of the segmentation, this proved to be a non-trivial task. It is essential to

produce a global minimum, rather than a sequence of local minima so the whole segmentation

had to be considered as one problem. This solution is far more computationally expensive than

calculating a series of local minima, but produces a more realistic segmentation (avoiding short

cuts that would be locally beneficial, but detriment the segmentation as a whole). In order to

simplify the graph, we used the methods described previously, which proved acceptable in the

data-sets looked at.

3.3 Experimental Results

To show the effectiveness of the proposed method, we test our method for two different medical

applications. The two applications use medical data-set of IVUS images that has ground-
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Figure 3.8: Effectiveness in imposing user prior knowledge. As in the natural image segmenta-
tion, the user can select different edges by the use of user points. In this case, it can be seen that
there are two possibilities for the media-adventitia border in the image. By placing a couple of
points, the user can steer the segmentation along the path they desire.

truth available for quantitative comparisons, and a set of OCT images. The segmentation of

images in the medical application is very challenging as it generally requires anatomical prior

knowledge, as well as other expert knowledge in some cases, in order to sufficiently perform

the segmentation task. This makes interactive segmentation the preferred approach to this

application. We present comparison to other interactive segmentation techniques. We also

show a more generic set of images, to illustrate the versatility of our method, to highlight how

it can be used for other (medical) applications.

3.3.1 IVUS Image Segmentation

To study the efficiency and efficacy of the proposed method, we apply our method to a medical

image segmentation problem where expert prior knowledge in anatomy is necessary but also

often subjective. Here we need to interactively identify the media-adventitia border in IVUS

images where imaging artifacts are common place.

There have been many different approaches to the problem of segmenting IVUS images, e.g.

[195, 196, 110, 44, 197, 105, 198]. These can be broadly categorized into fully automatic

methods, or semi-automatic methods. In [195] the authors used contour detection and tracing

with smoothness constraint and circular dynamic programming optimization to segment lumen

border. The algorithm assumes homogeneity of the lumen region and high contrast between

lumen and artery wall. Katouzian et al. [196] applied complex brushlet transform and con-

structed magnitudes-phase histograms of coefficients that contain distinct peaks corresponding

to lumen and non-lumen regions. The lumen region is then segmented based on K-means clas-

sification and a parametric deformable model. Homogeneity of the lumen region is critical to

the success of the method. Methods based on region growing, e.g. [197], also suffers from such

limitations, since artifacts and irregularities are very common in IVUS images. Particularly for
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media-adventitia border, the region inside the border is non-uniform as seen in Fig. 3.1. Cal-

cification in arterial wall leads to acoustic shadowing and high reflectance, as well as catheter

and guild wire occlusion and artifacts. Stent placed against internal wall also produces strong

features and acoustic shadows that break homogeneity. Incorporating user prior knowledge

into segmentation hence is often necessary and has been shown to be an effective approach.

For instance, Essa et al. [110] incorporated a shape prior into graph cut construction to regu-

larize segmentation of media-adventitia border. However, these approaches generally require

significant amount of training data and model re-training is often necessary in order to adapt to

new data-set. In [44] dynamic programming was used to incorporate edge information with a

rudimentary prior, this required manual initialization but set the way for other more advanced

techniques for incorporating priors. The work in [198] carried out border detection on the en-

velope data before the scan conversion. The authors applied spatio-temporal filters to highlight

the lumen, based on the assumption that the blood speckles have higher spatial and temporal

variations than arterial wall, followed by a graph-searching method similar to [44]. However,

image features introduced by acoustic shadow or metallic stent would seriously undermine the

assumption.

User initialization is an alternative approach to transfer expert knowledge into segmentation,

e.g. [71, 25, 121, 24, 122, 11, 12]. However, most user interactions are limited to either

boundary based landmark placement or strokes indicating foreground and background regions.

We adapt the approach of combining two different types of user interactions, i.e. boundary

based and region based, to segment media-adventitia border in IVUS. The user points are

treated as soft constraint, instead of hard constraint in most interactive segmentation methods.

We show that this soft user constraint allows effective combination of boundary and region

based features. The method is evaluated on an IVUS data-set with manually labeled ground-

truth and compared against state-of-the-art techniques. Fig. 3.8 illustrates the benefit of using

user interaction to effectively influence segmentation result. Through simple user input, the

expert knowledge of the user can be put into place, whilst being augmented by the automatic

process. Fig. 3.9 and Fig. 3.10 provide several examples of IVUS images (the ground-truth of

media-adventitia layer can be seen in green). Fig. 3.11 shows further examples of IVUS image

segmentation using single method approach and our proposed full method.
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Star Graph cut [24] Seeded Star GC [24] Single Method [12] Proposed method

Figure 3.9: Comparison between ground-truth (green) and (from left to right) Star Graph Cut
[24], Seeded Star Graph Cut [24], Single Method [12], Proposed Method (red). Note that the
user control points used remain the same for both the single and proposed methods, but the
seed points are region selection points in the seeded star method, not to be confused with edge
based user points in the other methods.

3.3.2 OCT Image Segmentation

We also compared our proposed method to other methods in OCT images. OCT is another

catheter based modality used in cardiology. In these images we are segmenting the lumenal

border rather than the media-adventitia border which was targeted in IVUS. We chose this as

OCT has far lower penetrance than IVUS images, but yields a much higher resolution view of

the lumenal border. This makes it favourable for assessing stent placement and other surface

lesions. Comparative examples are given in Fig. 3.12, and a further comparison between the

single method and the proposed full method is shown in Fig. 3.13.
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Star Graph cut [24] Seeded Star GC [24] Single Method [12] Proposed method

Figure 3.10: Comparison between ground-truth (green) and (from left to right) Star Graph Cut
[24], Seeded Star Graph Cut [24], Single Method [12], Proposed Method (red). Note that the
user control points used remain the same for both the single and proposed methods, but the
seed points are region selection points in the seeded star method, not to be confused with edge
based user points in the other methods.

3.3.3 Quantitative Results

In order to evaluate the results, we used a set of 248 IVUS images with ground-truth. They

were taken from pull backs on 7 different patients. The ground truth labeling was obtained

through manual labeling of the border of interest by an experienced third party. These were

then segmented using the proposed method, which was compared to the method using only

the edge detection and not the background/foreground weighting (single method) [12] and star

graph cut (both with single and multiple seed points) [24]. Grab Cut segmentation was not

used for the quantitative analysis, because as can be seen from Fig.3.14 it performs very poorly

in this application. The quantitative analysis was also carried out on the results obtained from

the OCT data. In this case we were segmenting the lumenal edge, which is quite well defined

and regular, so all methods saw an improvement in accuracy. The results were obtained from a
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Single method Proposed method Single method Proposed method

Figure 3.11: Comparison between the Single Method [12] and our proposed Method (red). The
ground-truth in shown in green. Note that the user control points used remain the same for both
methods. 65
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Star Graph cut [24] Seeded Star [24] Single Method [12] Proposed method

Figure 3.12: Comparison between ground-truth (green) and (from left to right) Star Graph Cut,
Seeded Star Graph Cut, Single Method (no regional constraints), and Proposed Method (red)
on OCT images to segment the lumen border. Control points remain the same in both the single
and poposed method, but the seed points are region selection points in the seeded star method,
and are not to be confused with edge based user points in the other methods

similar number of images as before (280) from 7 different pull-backs.

The quantitative comparison is based on a number of metrics, including Hausdorff distance,

area overlap ratio, specificity, sensitivity, and accuracy. Table 4.1 shows the quantitative results

obtained from the IVUS data, and Table 3.2 shows the OCT data. The star graph-cut method

performed reasonably well with both foreground and background labeling. The implicit shape
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Single method Proposed method Single method Proposed method

Figure 3.13: Comparison between the single method [12] and our proposed method (red) on
OCT images. The ground-truth is shown in green. Note that the user control points used remain
the same for both methods.

Figure 3.14: Typical Grab Cut Segmentation results (red) on IVUS images. Ground-truth is
shown in green. It can be clearly seen that the obtained results are considerably out from the
ground-truth.
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Table 3.1: Quantitative comparison of the IVUS data-set. HD: Hausdorff Distance (pixels);
AOR: Area Overlap Ratio (%); Spec: Specificity (%); Sens: Sensitivity (%), Acc: Accuracy
(%). Bold font indicates best performance.

Method HD AOR Spec Sens Acc
Mean 60.57 81.22 89.22 89.86 89.29

Star Graph-cut
STD 15.64 1.00 12.00 1.00 6.52
Mean 43.81 86.05 90.39 93.99 92.17

Star Graph-cut with F/B labeling
STD 23.89 9.00 9.00 5.00 5.65
Mean 46.28 69.34 84.92 89.43 88.12

Single method w/o F/B labeling
STD 9.73 9.24 5.82 10.53 8.76
Mean 33.57 89.93 94.21 93.14 94.41

Proposed method with F/B labeling
STD 5.35 9.16 3.88 5.37 7.67

Table 3.2: Quantitative comparison of the OCT data-set. HD: Hausdorff Distance (pixels);
AOR: Area Overlap Ratio (%); Spec: Specificity (%); Sens: Sensitivity (%), Acc: Accuracy
(%). Bold font indicates best performance.

Method HD AOR Spec Sens Acc
Mean 21.55 91.75 98.09 96.73 97.41

Star Graph-cut
STD 16.07 5.36 1.61 3.99 2.80
mean 21.47 91.66 98.01 97.11 97.56

Single method w/o F/B labeling
STD 14.94 8.21 2.32 4.25 3.28
Mean 20.97 92.31 98.66 97.92 98.29

Proposed method with F/B labeling
STD 15.84 4.99 1.76 3.60 2.68

prior in star graph construction proved useful constraint in segmenting media-adventitia border

that conforms well to this shape constraint. Comparable performance was achieved for the

proposed method without regional support. However, the full proposed method outperformed

the rest. Several typical segmentation results are shown in Fig. 3.9.

To study the robustness of the proposed method, we carried out an initialization dependency

test. We tested our method with 15 user points as initialization. We then randomly remove one

user point each time for testing until we only have 2 points left for initialization. The overall

results using 5 different metrics are shown in Fig. 3.15. The proposed method achieved good

performance with just six user points. Considering in actual application where user input is far
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Figure 3.15: Initialization dependency test. This test was carried out using the IVUS data. The
number of user points placed on the image was increased, and the effect of this on the observed
metrics was recorded. It can be seen that only after a very few number of user points have been
added, the accuracy reaches a plateau, which is an indication of good automation.

more experienced than this random process, even less points may be needed.

3.4 Further results

In order to demonstrate the versatility of the proposed method, we carried out segmentation of

examples from other medical imaging modalities, as well as generic real world images. We

believe that our method could equally be used in many other types of medical (or otherwise)

image analysis, as its ability to segment open as well as closed curves effectively gives it a great

deal of versatility. By showing the results of segmentation of a series of real world images, we

can further show the versatility and robustness of this method.
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A B C

D E F

Figure 3.16: Examples of other medical image modalities. The red is the result obtained, the
blue lines and the yellow circles the region selection and control points added respectively. (A)
Segmentation of the Brain from an MRI, (B) Segmentation of Corpus Callosum from an MRI,
(C) Segmentation of cartilage on knee joint from X-ray, (D,F) Segmentation of Aortic arch
from CT, (E) Lymph Valve leaflet from Confocal microscopic image.

3.4.1 Other Medical Modalities

Using sample images from other studies, we show examples of how various features can be

segmented out of medical images, see Fig. 3.16.

The ability of this method not to be limited to open or closed curve segmentation allows it to be

used in many applications. In Fig. 3.16 a selection of different images are shown, with regions

being selected, or open surfaces. The method copes well under both circumstances, and can

easily be used to segment features of different types.

3.4.2 General Images

The proposed method was also evaluated using the Berkeley Image Database [61]. This data-

set contains images of various types. The methods were used to perform a selection/segmentation
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based on features in the image that would be a realistic segmentation to be carried out (for ex-

ample, object selection, horizon selection etc.) The results from the proposed method were then

compared to other available methods, namely s− t graph cut [21], seeded star graph cut [24],

GrabCut [25], and layered graph search with only point based interaction [12]. A selection of

open and closed curve segmentations were used to demonstrate and compare the results.

The proposed method showed a very favorable segmentation performance compared to the

methods we tested it against. The combination of a background/foreground separation, com-

bined with the edge based approach gave the method a very robust segmentation, being able

to segment an object of interest from an image where other (single methodology based) tech-

niques found difficult to handle, for example if colours were closely related to background, or

if there were many conflicting edges. This method utilizes super-pixels to speed up the seg-

mentation in the same manner as with the medical images. However, do to the nature of real

world images, the increase in speed is more significant (as there are more distinct regions that

can be segmented out using the pre-segmentation step as shown in Fig. 3.19).

The advantage in being able to perform with open or closed curves is again shown in some

of the images (Fig. Fig. 3.17), for example dividing the image on the horizon or segmenting

figures that extend to the edge of the image.

Fig. 3.20 shows comparative results segmenting animal images from complex backgrounds

and Fig. 3.21 provides several comparative results in segmenting images of humans from com-

plex backgrounds. In both these sets, the addition of both edge and region based selections

helps segment the complex image. The benefits of combining the two modalities can be scene

even more in complicated natural images with patterns and textures (for example, in Fig. /ref-

fig:camo where the lizard has a striking pattern, and is set against the rocky texture).

Fig. 3.22 demonstrates the advantages of the inclusion of regional data into the algorithm, in

comparison to [12]. In some cases, where there are edges other than those required, without

the regional selection, the segmentation can lose accuracy. By selecting the region specificity,

in most cases these edges can be ignored without the requirement for more user points, which

would increase the complexity of the graph.
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Graph cut [21] Seeded Star [24] GrabCut [25] Proposed method

Figure 3.17: Examples of other real world images with an open segmentation. From left:
Graph cut [21], Seeded Star Graph Cut [24], GrabCut [25], and proposed method. Red curve
shows the segmentation result, blue for the background strokes, green for foreground strokes,
and yellow for star point and the initial window of the Grabcut. User points in the proposed
method should not be confused with the seed points in the seeded star method, as these are
region selection points. The chosen images represent an open segmentation (the horizon above
the mountain range) and a difficult segmentation (overlapping trees, with similar texture and
large numbers of false edges).

Seeded Star Graph Cut [24] Single Method [12] Proposed method

Figure 3.18: Comparison Showing the benefits of the combined modality in complicated tex-
ture images. From left: Seeded Star Graph Cut [24], Single Method [12], and proposed method.
Red curve shows the segmentation result, blue for the background strokes, green for foreground
strokes, and yellow for star point. User points are the same between the single and proposed
method, but the seed points are region selection points in the seeded star method, not to be
confused with edge based user points in the other methods.
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A B C

Figure 3.19: The use of super-pixel segmentation of real world images, to identify graph nodes.
From left to right, (A) initial image, (B) super-pixel segmentation,(C) representation showing
the nodes used in the graph (black) and those pruned (white).

Graph cut [21] Seeded Star [24] GrabCut [25] Proposed method

Figure 3.20: Segmenting animals from complex scenes. From left: Graph cut [21], Seeded
Star Graph Cut [24], GrabCut [25], and proposed method. Red curve shows the segmentation
result, blue for the background strokes, green for foreground strokes, and yellow for star point
and the initial window of the Grabcut.
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Graph cut [21] Seeded Star [24] GrabCut [25] Proposed method

Figure 3.21: Segmenting human from complex scenes. From left: Graph cut [21], Seeded
Star Graph Cut [24], GrabCut [25], and proposed method. Red curve shows the segmentation
result, blue for the background strokes, green for foreground strokes, and yellow for star point
and the initial window of the Grabcut.
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Original Single method [12] Proposed Method

A

B

C

Figure 3.22: Comparison between single method [12] and the proposed combined approach.
The red curve shows the segmentation result, the yellow the user points (the same between both
methods) and blue to region selection. Note the improved segmentation of the face (ignoring
the strong false edge of helmet strap) in (A), and the difficult shoulder region in (C).
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3.5 Conclusion

We presented an interactive segmentation technique which combines boundary based and re-

gion based object representations. We used this method to segment two sets of medical images

(IVUS and OCT). We adopted a layered graph representation to simplify computation, and a

super-pixel method to improve segmentation speed and efficiency. The proposed method was

compared against a number of recent methods, and the standard graph cut techniques, showing

improved versatility and better results. Where other methods had difficulty with certain image

types, the combined approach was able to segment the desired information. We also show

our method being used to segment different medical images, using open and closed objects, as

well as generic real world images. This we believe shows how versatile the method is, and how

easily it could be used for other applications. The method allows segmentation of both open

and closed objects, so could be utilized not only in the segmentation of shapes such as vessel

walls, organs etc. by to highlight linear features. We show an example of this, segmenting the

end cartilage at knee joint (Fig. 3.16 (C)), but due to the nature of the method, it could be used

to segment features such as fractures on bones, lesions and other such features that do not lend

themselves easily to closed curve segmentation methods.
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3D Segmentation and Reconstruction
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4.1 Introduction

In this chapter, we are concerned with providing a reliable segmentation method for detect-

ing the inner and outer wall boundary in lymphe vessels. We will study images obtained in

a slice-by-slice sequence through the vessel using confocal microscopy. The segmentation

will be used to build a 3D structure representing the walls of the valve region of the target

lymph vessels. This is achieved by the use of techniques involving optimal surface segmen-

tation (OSS), and hidden Markov models (HMM) to segment the vessel walls individually.

We will investigate different methods and compare the results both quantitatively and qualita-

tively. We will then demonstrate a method to simultaneously segment both boundaries using a

novel s-Excess graph minimization solution incorporating additional arc weights for boundary

thickness, and therefore allow constraints to be placed governing this. These constraint arcs
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prevents overlapping of the segmentation results, and also further prevents the boundary result

being “drawn away” by the valve region. Results of this method will be compared to that of

the single segmentation.

In this chapter we will be investigating confocal images of lymphatic vessels. The images used

show a section of the lymph containing the valve structure. As has previously been described in

2.4, lymph vessels are thin walled low pressure structures that rely on valves for unidirectional

flow. It is the hope that by detailed segmentation and reconstruction of these regions it will

be possible to obtain baseline data that can be compared with pathological states. This could

then be used to help understand the underlying cause, which would help focus treatment and

improve quality of life for sufferers.

Figure 4.2 shows an example image of a lymph vessel obtained using a confocal microscope.

2D segmentation is often carried out on confocal images, such as [199], but in our method we

propose using object tracking to provide a method to segment the 3D volume. Object tracking

is traditionally used in a variety of different applications[176, 200, 201, 202, 203] and now it is

also becoming a useful tool in the medical field [204, 205, 206]. In object tracking, the “object”

can be represented in various ways (points, geometric shape, and contours for example). Some,

such as geometric shapes, are more suitable for representing rigid objects; whereas tracking the

object contour can be used to segment a complex and nonrigid object.

4.1.1 3D Segmentation

In medical imaging, identifying 3D surfaces is of utmost importance. It is often the case that

this is done by using a 2D method, as a great deal of work has been carried out in this area [207,

208, 45, 65, 44, 209] but when these methods are extended to segment a 3D volume, usually

by looking at a series of slices, contextual information between the layers that make up the

volume is often lost. There have been attempts to extend these methods into 3D [210, 211] but

these have often proved to be computationally expensive. Another problem with utilizing 2D

methods is that they can produce local minima. One method for 3D segmentation with a global

minimum is Optimal Surface Segmentation(OSS) [212]. OSS provides a polynomial time

method for simultaneously providing a global segmentation of a 3D volume with minimal or

no user intervention, and in our method forms the basis of determining the initial segmentation,

used to initialize the hidden Markov model (HMM).

78



4. 3D Segmentation and Reconstruction of Vessel Borders

4.1.2 Vessel Enhancing Diffusion

Vessel Enhancing Diffusion (or VED) [213] is a method to process vessel like structures to

improve the image. VED has been shown to improve segmentation results of vessel structures

[214, 213]. VED works within the scale space theory framework, using the initial image as

the initial condition. By using a function of the Hessian, it is possible to directionally blur

some parts of the image whilst preserving others. The Hessian eigensystem, H, is used as

it has a direct geometrical interpretation. This allows a “vesselness” filter to be created, and

therefore the diffusion to be steered. Frangi [26] postulated the use of the Hessian eigensystem

for this task, enhancing the vessel by searching for geometric structures that can be considered

“tubular”.

VED works by first analyzing the local characteristics of a particular image I. By considering

the Taylor expansion of this in the neighborhood of a point xo:

I(xo +δxo,s)≈ I(xo,s)+δxT
o ∇o,s +δxT

oHo,sδXo (4.1)

Where From (4.1) we can approximate the value of the image, with ∇o,s representing the gra-

dient vector at xo in scale s andHo,s representing the Hessian matrix with the same parameters.

From the concepts of scale space theory, differentiation of this can be defined from the deriva-

tives of the Gaussian:

∂

∂x
I(x,s) = sγI(x)× ∂

∂x
G(x,s) (4.2)

whilst defining the D-dimensional Gaussian as:

G(x,s) =
1√

(2πs2)
D e−

||x||2

2s2 (4.3)

The γ term is presented in the work by [155], defining the collection of normalized derivatives

obtained. Taking the second derivative of the Gaussian kernel we can generate a probe kernel

to measure changes in contrast between regions inside and outside the scale range±s in various

directions.

The final term in equation (4.1) is used to give the second order directional derivative.
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Figure 4.1: Representation of the second order ellipsoids. Adapted from [26]

δxT
oHo,sδxo = (

∂

∂δxo
)(

∂

∂δxo
)I(xo,s) (4.4)

By utilizing this eigenvalue analysis of the Hessian, it is possible to extract the principle direc-

tions of the local second order structure. This gives us the direction of the smallest curvature,

which corresponds to along the vessel. In this way, the method removes the necessity to apply

several filters in multiple orientations to the image, dramatically reducing the computational

complexity of the solution. From this, in the case of a bright vessel on a dark background (such

as is the case in our images) it follows that the ordering of the eigenvalues |λ1| ≤ |λ2| ≤ |λ3|,
gives the direction along the vessel vess1 when |λ1| ≈ 0 and |λ1| ≤ |λ2| ≈ |λ3| see Fig. 4.1.

Vesso(s) =

0 i f λ2 > 0orλ3 > 0

(1− e−
A2

2α2 ).e
− B2

2β2 .(1− e−
S2

2λ2 ) otherwise
(4.5)

where:

A=
|λ2|
|λ3|

(4.6)

B =
|λ1|√
|λ2λ3|

(4.7)

S =
√

λ 2
1 +λ 2

2 +λ 2
3 (4.8)

The combination gives us the following formulation (Eq. (4.5)) for the measure of vesselness.
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A B C

Figure 4.2: (A) shows original image, (B) shows the image after VED has been applied, and
(C) shows the image after transformation. It should be noticed that the quality of the image
is improved from (A) to (B), with less gaps in the visible image, although there are still some
gaps present int the image.

4.2 Proposed Method - Single Border Segmentation

In our proposed method, we aim to segment both borders of the vessel wall individually. In

order to do this, we first apply preprocessing steps to the image. These involve applying Vessel

Enhancing Diffusion (VED) to the image to reduce the noise and help lessen the detrimental

effect of the occluded areas. The images were then transformed to cross sections, aligned and

scaled to uniform dimensions to aid the training. The stages of pre-processing are shown in

Figure 4.2. Once the images were prepared, OSS was carried out, to be used as the initial

segmentation for the HMM segmentation stage.

4.2.1 Graph Construction

The volumetric image we wish to segment, now comprises of a series of slices through the

lymph vessel. In order to find the optimal surface, we transform these from Cartesian to Polar

coordinates. Each slice representing the (x,z) plane, and position of that slice in the stack

gives the y axis, as if looking at a topographical landscape feature. Our image can therefore be

represented as a 3D matrix I3D(x,y,z). The size in any given dimension can be represented as

X ,Y and Z. The surface can thusly be defined:
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I : (x,y)→I(x,y),where :

x ∈ x = {0, ...,X−1},

y ∈ y = {0, ...,Y −1},and

I(x,y) ∈ z = {0, ...,Z−1}

(4.9)

In this way, any given surface I intersects with exactly one voxel of each column parallel to the

z-axis. We can therefore construct a node-weighted graph G = (V,E) can be constructed for

I. In the graph G each voxel v is connected to column-wise with its bottom neighbor, with its

neighboring voxels in the subsequent layer (with ∆ deflection), and with neighboring columns

(with δ deflection) with ∞ cost; the final voxel in each column has a bidirectional arc to its

neighbor.

4.2.2 Cost Term

For every node V(x,y,z) ∈ V in the graph represents one voxel in I(x,y,z) ∈ I3D with a given

weight w(x,y,z), representing the probability of that pixel being selected. This weight, w, can

be derived from a steerable edge based filter applied to the polar transformed image, which can

be seen in Fig. 4.3 and Fig.4.4. The steerable filter is a linear combination of differentially

orientated instances of a base filter. A set of n order derivatives of Gaussian filters Gn(x,y) in

different orientations are used to highlight edge features along a border. These can be defined

as follows:

Gθ
n (x,y) =

M

∑
j=1

k j(θ)Gθ
n (x,y) (4.10)

where Gθ
n (x,y) is the rotated version of Gn(x,y) at θ orientation, and k j,1≤ j≤M are interpo-

lation functions. Due to the derivatives in the direction being invariant, regardless of rotation,

steerable filters are effective at highlighting orientated structures, in this case the edges, than

other filter types, especially in situations such as in the lymph images where there is a lot of

noise [215]. The cost of any voxel v can be given as wv = g(v) where g is the cost to assign

that pixel to object or background nased on the steerable filter. This allows us to formulate the

problem as a Min Cut/Max Flow problem, cutting from source s to sink t. The total energy

cost E for every voxel in the s− t cut can therefore be represented by:

E = ∑
v∈V

w(v) (4.11)
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Figure 4.3: Figure shows a series of pseudo-color images illustrating the steerable filter show-
ing the inner wall boundary. To the left is a scale bar, illustrating the cost, and to the right of
that are six different examples. Note the inner wall is the upper surface in the image, and the
valve can be seen as the feint top-most object.
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Figure 4.4: Figure shows a series of pseudo-color images illustrating the steerable filter show-
ing the outer wall boundary. To the left is a scale bar, illustrating the cost, and to the right of
that are six different examples. The outer wall is the lowermost border in the images.

84



4. 3D Segmentation and Reconstruction of Vessel Borders

Initial State (From OSS)

True Border

Normal Lines (Length K)

φ =1

ψ = K

ψ = 1

ψ = (K+1)/2

φ =M

Figure 4.5: Schematic representation of the use of RBF centers to construct the HMM using
the OSS results as the initial state

4.2.3 HMM Segmentation

The results from the OSS (shown in Fig. 4.6 are used to set the initial state of our HMM.

We trained the HMM with 1024 image slices from 2 confocal samples, using the unraveled

images that have been transformed into polar coordinates for the voxels in our image. We use

a user selected “center” point to perform the transformation, this is stored in order to return

to cartesian after the boundary has been found. It is computationally very expensive to track

all the border points in the polar coordinates, but in our case, this is unnecessary as a result

of the polar transformation (creating a “curve” shape for our boundary). We use an RBF to

approximate the border of interest, with the hidden states of the HMM referring to the RBF

centers. The border was evenly sampled into M points and from each of these a line segment

is extended either side, perpendicular to the border’s tangent at that point, with line segments

each having K points, with the index of the RBF centers denoted φ = 1, ...,M and the index

along each of these normal lines being denotes as ψ = 1, ...,K where K is an odd integer. Our

initial RBF centers are derived from the result of the OSS, and are located at the centre of the

normal line ψ = (K +1)/2. The steerable filter is used to determine the edge, in this case the

vessel wall, and the emission probability is computed using Gaussian distributions calculated

from the image observation. Our transmission probability is learned from the training set. See

Fig. 4.5 for a schematic of this.
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In our proposed HMM, we denote all possible sequences of hidden states as Q = {q} where

q = {q1, ...,qφ , ...,qM} is one of the possible state sequences (corresponding to possible RBF

center locations) and qφ is the state being on the normal at φ . The observations O of the

HMM are extracted from the normal lines as such that O = {o1, ...,oφ , ...,oM}, and the HMM

is specified by the probability measures λ = (A,B,π). Let Oφ = {oφ ,1, ...,oφ ,ψ , ...,oφ ,K} be the

set of features along the normal φ and oφ ,ψ be a feature extracted from point ψ on the line,

thusly P(oφ ,ψ | FG) and P(oφ ,ψ | BG) are the probabilities of the feature being foreground or

background respectively. The state-emission probability can therefore be defined as:

P(Oφ | qφ ) ∝ P(oφ ,ψ | FG) ∏
ψ 6=qφ

P(oφ ,ψ | BG) (4.12)

We then use the Viterbi algorithm [216], which is a modification of the Baum-Welch algorithm.

The Baum-Welch algorithm uses Expectation-Maximization method to compute the maximum

likelihood in the HMM the probability of moving from a state i at normal φ to new state j at

normal φ + 1, where 1 ≤ φ ≤ M and 1 ≤ i, j ≤ K between states q with two normals φ and

φ +1 as:

ξφ (i, j) = P(qφ = i,qφ+1 = j | O,λ ) (4.13)

In the Viterbi algorithm, the sequence of states q∗ can be efficiently found given the image

observation Ot and the HMM model λ :

q∗= argmax
q∈Q

P(q | Ot ,λ ). (4.14)

Fig. 4.6 and Fig. 4.7 show examples of the normal lines being applied to the initial data for the

inner and outer edges respectively.

4.3 Results for Single Wall Segmentation

The results were drawn from 3,072 slices from 6 different experiments, separate from those

used in the training set. Fig. 4.8 and Fig. 4.9 show the results obtained for segmentation of the

inner and outer walls respectively, before conversion back from polar to Cartesian coordinates.

The results show the improvement of the HMM method (blue) over the OSS alone (red). The

results for the outer wall are significantly better than those for the inner. In both methods

(though less so in the proposed method), this is because the valve extends from the wall, into
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Figure 4.6: Figure shows the position of the normal lines relative to the initial state for the
inner boundary wall.
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Figure 4.7: Figure shows the position of the normal lines relative to the initial state for the
outer boundary wall.
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Figure 4.8: Results for the inner wall of the lymph vessel. Light blue is the proposed method,
red OSS only and green the ground truth

the lumen, this makes it hard to even manually label the slices where the valve originates.

Our proposed method shows a significant improvement in these regions, as well as those with

very poor contrast or missing areas. because the training helps the segmentation to cope with

interference and gaps in the edge.

Table 4.1 provides a quantitative comparison between the proposed method and the results

obtained using OSS alone. The proposed method clearly benefited from HMM and produced

consistently better results.

In Fig. 4.10 and Fig. 4.11, we show some typical results of segmentation of both inner and

outer walls of the vessel using the proposed method. It can be seen that by combining optimal
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Figure 4.9: Results for the outer wall of the lymph vessel. Light blue is the proposed method,
red OSS only and green the ground truth

surface segmentation with HMM, a coherent and smooth segmentation of both boundaries is

achieved in the presence of noise and frequent weak edges. The segmentation is not confused

by the valve regions, however the two walls, with no arcs between them do come very close,

and in some cases can cross over (as shown later in Fig. 4.15). This is undesirable, even though

the quantitative results are good.

The end result is a reconstructed vessel shape. This is shown in Fig. 4.12. It can be seen

that the segmentation method gives a good rendition of the vessel shape from the confocal

slices. There are some areas though where the segmentation does not match the desired (and

biologically possible) ground truth. In examples with little to no definition for large areas of
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A B C

D E F

G H I

Figure 4.10: Results showing the segmented walls (red) on the wrapped images. Note that
despite the strong features resulting from the valve/wall interface, the segmentation preferen-
tially tracks the wall in most cases especially (A), (B), and (C). Note that in (G) it is also not
confused by the valve being close to the wall.
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A B C

D E F

G H I

J K L

Figure 4.11: More results showing the segmented walls (red) on the wrapped images. Note
that the segmentation follows the wall instead of getting confused by the valve features ((A),
(B), and (C) for example), however, where image quality is poor (gaps and lack of features,
such as (J)) then some confusion occurs.
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Table 4.1: Quantitative comparison of the Lymph data-set. HD: Hausdorff Distance (pixels);
AMD: Absolute Mean Difference (pixels) AO: Area Overlap(%); Spec: Specificity (%); Sens:
Sensitivity (%). Bold font indicates best performance.

Method HD AMD Spec Sens AO
Mean 51.0330 7.0631 97.34 91.15 90.06

Outer Wall -OSS
STD 22.59 3.55 0.62 5.56 5.63
Mean 23.31 4.67 99.16 94.80 93.29

Outer Wall -Proposed method
STD 2.88 10.14 0.69 4.6 4.81
Mean 55.52 7.06 96.18 92.73 91.71

Inner Wall -OSS
STD 3.17 13.57 0.81 4.28 4.07
Mean 13.72 3.31 98.49 98.00 96.11

Inner Wall -Proposed method
STD 5.35 9.16 3.88 5.37 7.67

the surface, it sometime happens that the two segmented borders merge. This cannot happen in

vivo and so our segmentation needs to be expanded to prevent this eventuality. In order to do

this, we will re-evaluate the methods used for segmentation, in order to allow for control arcs

to be added governing the distance between the two borders.

4.4 Simultaneous Segmentation of Borders

The logical next stage of this work was to implement a method to segment both borders simul-

taneously. In order to achieve this, we transform the segmentation problem one of minimization

of s-excess graph. Each node in the graph corresponds to one state, and the weight for each

node is defined using its emission probability, and the inter-relation between neighboring nodes

is defined using the transition probability. Using this formulation, an optimal solution can be

found in polynomial time using the s-t cut algorithm.

4.4.1 Minimum s-Excess Graph Construction and Optimisation

The minimum s-Excess graph is a relaxed variation of the minimum closure graph [217]. In our

simultaneous border segmentation method, each hidden state on the normal line corresponds to

a node in the graph, and the cost of which is inversely proportional to its emission probability.

The transition probability is used to define the inter-columns arc cost. The minimization of this

s-excess graph can be effectively solved using graph cut in polynomial time.
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Figure 4.12: Results showing the reconstruction of the vessel from the segmented walls. Inner
wall is represented in yellow and outer wall in red. Note that the segmentation provides good
results for most of the structure but in a region towards the lower portion, there is an anomaly.
This is caused by insufficient feature data in that region, causing boundaries to overlap.

Solving the minimization of closure graph and s-Excess problems has been applied to image

segmentation problems [218, 212, 219, 217]. In Song et al [218] the authors utilise prior infor-

mation, in the form of prior shapes, through encoding them as a set of convex functions. These

are defined between every pair of adjacent columns in the image. We utilise a similar, column

based approach, however we formulate the problem as a tracking one. In our formulation, we

track the problem across consecutive frames, defining the pair-wise cost based on the transi-

tion probability, which is learned from our training data (the same set of training data is used

in these experiments as in the previous ones), and treating the problem as a stochastic process.
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As described by Dorit [217], the s-Excess graph is a relaxation of the closure set problem. A

closed set can be defined as a subset of a given graph, where all successors of any node in the

set are also taken into the set. In the s-excess variation, the successors may not be contained in

the set, but will have a cost equal to the edge cost heading to such successors.

Given a directed graph G(V,E), each node v ∈ V is assigned a certain weight w(v) and each

edge e ∈ E will have a positive cost. The aim of the s-excess problem is therefore to obtain a

subset of the graph nodes S ⊂ V where the total cost of the nodes and the cost of separating

them from the rest of the graph, S′ = (V −S) is minimised. The HMM, is formulated as before,

using M RBF centers (m = 1, ...,M), evenly spread across the surface line (obtained from the

initial state). Each of these having a normal line (k = 1, ...,K) as described above (see 4.2.3

and Fig. 4.5).

E = ∑
v∈S

w(v)+ ∑
(u,v)∈E
u∈S,v∈S′

c(u,v) (4.15)

For each of the borders of interest S in our image, we create a graph GS of M×K nodes,

each node corresponding to a hidden state, and each normal line K representing a column

chain. In our graph construction we have three distinct types of arc present connecting our

nodes. These are intra-chain (connecting the nodes within a chain), inter-chain (connecting

neighboring chains), and intra-border used to define a minimum and maximum distance be-

tween the two borders). Intra-chain arcs occur along each chain Ch(m,k) in our image. For

every node v(m,k) in our image (where k > 1) has a directed arc to the next node in the chain

v(m,k−1) with an assigned weight of +∞. This ensures that the desired border will only in-

sect with each chain (representing the normal line) once only. Inter-chain arcs are defined for

any given pair of chains Ch(m1,k1) and Ch(m2,k2). We establish a set of directed arcs to link

every node v(m1,k1) (on Ch(m1,k1)) with nodes v(m2,k′2) in the adjacent chain Ch(m2,k2),

where 1 ≤ k′2 ≤ k1. Likewise, we connect each node v(m2,k2) on Ch(m2,k2) to v(m1,k′1) on

Ch(m1,k1), where 1 ≤ k′1 ≤ k2. As we have represented each hidden state with a node on

the graph, the costs for the arcs between these can be defined by the HMM transition matrix

A(k1,k2).

The last row of each graph need to be connected in order to for the basis of a closed graph. As

the images we use are unraveled into polar coordinates, we also need to ensure the first and last

chains are connected to each other via the same method as the inter-chain arcs.
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We use the inter-border arcs to define a range for the thickness of the border, and to ensure the

borders never cross each other. These constraints are defined so that:

∆≤ S1−S2 ≤ ∆. (4.16)

For any given node v1(m, k̂) in Ch1(m,k) ∈ G1 there is a direct arc defined connecting v1(m, k̂)

with v2(m, k̂−∆), where k̂≥ ∆ and v2 ∈Ch2(m,k). k̂ corresponds to the index in the image do-

main X×Y of k in the graph domain. Likewise nodes v2(m, k̂) in Ch2(m,k)∈G2 are connected

to v1(m, k̂+∆) where k̂ < Y −∆ and v1 ∈Ch1(m,k). The cost for these arcs is set to +∞.

The cost for each node is calculated from the emission probability at that node. This is done

according to:

C(m,k) =− log(P(om,k|qm,k)). (4.17)

This cost has an inverse correlation with the likelihood that our border of interest passes through

the node (m,k). Thus the weight of any given node w(m,k) on our directed graph can be defined

as:

w(m,k) =C(m,k)−C(m,k−1). (4.18)

The exception to this is the bottom of the chain, i.e.

w(m,1) =C(m,1). (4.19)

Solving this minimum s-excess problem can be seen as an equivalent to solving a standard s−t

cut algorithm [220, 217]. We therefore use the standard s− t cut algorithm [221] to find the

minimum closed set in polynomial time, with a cost of the cut representing the total number of

edge costs separating the graph into the source (i.e. the minimum s-excess graph) and the sink

sets.

4.4.2 Minimum s-Excess Segmentation Results

A sample of our results obtained by utilizing the s-excess method and adding inter-border arcs

to fix minimum and maximum thickness are shown in Fig. 4.13 and Fig. 4.14, with quantitive

results shown in Table 4.2 (with the results from the previous section method included for
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Table 4.2: Quantitative comparison of the Lymph data-set for dual border segmentation. HD:
Hausdorff Distance (pixels); AMD: Absolute Mean Difference (pixels); Spec: Specificity (%);
Sens: Sensitivity (%). Bold font indicates best performance.

Method HD AMD Spec Sens
Mean 55.52 7.06 96.18 92.73

Inner Wall -OSS
STD 3.17 13.57 0.81 4.28
Mean 13.72 3.31 98.49 98.00

Inner Wall -Viterbi method
STD 5.35 9.16 3.88 5.37
Mean 15.6 4.9 99.6 93.6

Inner Wall -Single s-Excess
STD 10.0 3.2 0.6 4.9
Mean 9.8 3.1 99.2 96.9

Inner Wall -Double s-Excess
STD 4.3 1.9 0.8 3.1
Mean 51.0330 7.0631 97.34 91.15

Outer Wall -OSS
STD 22.59 3.55 0.62 5.56
Mean 23.31 4.67 99.16 94.80

Outer Wall -Viterbi method
STD 2.88 10.14 0.69 4.6
Mean 8.1 2.4 99.5 97.8

Outer Wall -Single s-Excess
STD 3.7 0.8 0.5 1.3
Mean 7.4 2.0 99.1 98.7

Outer Wall -Double s-Excess
STD 3.1 0.8 0.6 1.1

ease of comparison). It can be seen that we obtain comparative results using the s-excess graph

method, which is improved with the dual method segmentation. For the most part, these results

are not significantly improved over the method already in place, however they do present an

improvement in certain circumstances, namely very poor data sets. In some cases, when the

borders are segmented individually, in images with insuficient image intensity or missing data

over a significant proportion of the image, it is possible for both borders to merge or overlap

(see Fig. 4.15). The reconstructed vessel is shown in Fig. 4.16.

4.5 Conclusions

Our results show that our proposed method is a reliable approach to automatically segmenting

both inner and outer surfaces of the walls of the lymph vessel. By combining OSS and HMM,

we are able to find a global minimum to the segmentation problem in polynomial time without

97



4. 3D Segmentation and Reconstruction of Vessel Borders

Figure 4.13: Results showing the segmented walls (red & blue) and the manually labeled
ground truth(green) for a selection of different lymph vessels.
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Figure 4.14: Results showing the segmented walls (red & blue) in the wrapped images corre-
sponding to those in Fig.4.13 for a selection of different lymph vessels.
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Single Border Simultaneous Dual Border

Figure 4.15: Failed segmentations obtained from single border segmentation, and the results
shown for those images with dual border segmentation. Note how by using the simultaneous
segmentation of both borders, this problem can be avoided.
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Figure 4.16: Results showing several examples of the reconstruction of the vessel from the
segmented walls using dual segmentation. Yellow represents the inner wall, and red the outer
wall. Note the problems caused by insufficient image features are now resolved.

user intervention despite the low quality, and diffuse nature of the confocal images taken from

the lymph vessels. Also, by adapting our method to the s-excess method, and including arcs

to simultaneously segment both borders we get a result that improved qualitatively although

overall not qualitatively. The improvement for the dual border segmentation lies in the few

erroneous cases where the image quality is very poor. It doesn’t achieve significantly better

results overall, as it is often the case that the border thickness can change dramatically. There

are pronounced thickening in the regions of the valve anchor points, and the border becomes

very thin in regions. In further work, in order to show a significant improvement overall in

the segmentation by utilizing dual border segmentation, with inter-border arcs, some method

would need to be in established to allow for the scaling of the border minimum and maximum

thicknesses on an individual basis for each image.
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3D Valve Reconstruction
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5.1 Introduction

After reconstructing the vessel walls, the next logical stage is to segment the valve in 3D. This

poses a problem, as although (in most cases) finding the tip of the valve is straightforward, the

hinge region presents a significantly greater difficulty. Likewise, regions in the “middle” of the

valve are clear enough, the areas of interface with the wall present a similar problem as the

hinge region. Fig. 5.1 clearly shows some of the difficulties involved in identification of the

lymph valve.

When working in 3D it is important to look at surfaces rather than direct shortest paths [222,

223, 224, 225]. It is a well know phenomenon that although the minimal surface between

two closed shapes separated by height is a catenoid, the shortest path between any two points

A and B on those surfaces is a straight line (This is without taking into account any external

weighting). This can be seen clearly in 5.2 where the shortest path between A and B does not

fit onto the minimal surface between their respective shapes. This makes it difficult to expand

our method directly into 3D, as although we may find the shortest path, their is no guarantee
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Figure 5.1: Images showing the valve region of the lymph vessels prior to segmentation. Image
on the left is from the start region, middle image is centrally situated in the series, and that
on the right is from the terminal region of the series. Note the difficulty in discerning valve
boundaries at the start and end of the sequence.

Figure 5.2: Demonstration of how shortest path does not necessarily follow the minimal surface
for 3D objects. Adapted from [27]

that it will lie on any derived minimal surface. When looking at 3D minimal surfaces, similar

constraints are needed in order to provide a (non null) result. Namely that the surface encloses

a particular region of space, and that it is bounded by a series of points. These constraints

are similar to those found in 2D, being those of a closed object being separated from the

background (for example in a min-cut/max-flow type segmentation), or having start and end

points (such as working with Dijkstra’s algorithm), respectively. In our segmentation, we will

satisfy these constraints by finding the boundary of the desired object first, which will then

constrain the surface segmentation.

There is a great deal of interest in methods to find a minimal surface in 3D, Appleton [226]
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suggested, for example, a method of solving a continuous max-flow algorithm, whereas other

methods have been put forward using geometric constraints [23], regional properties [227], and

shape priors [228] to give but a few examples. Unlike in 2D segmentation, minimal surfaces

must always be closed objects. They can be thought of like blowing a soap bubble, with

the ring used to blow the bubble as the boundary constraining it, and the bubble itself as the

surface. By using an adaptation of our 2D method, we can provide a boundary to meet the 2nd

constraint criteria required for minimal surface segmentation. This will be combined with the

graph construction to provide segmentation of the surface as a whole.

5.2 Proposed Method

5.2.1 User input

Currently we use input from the user to assist in labeling the root and tip of the valve. This is

done using an adaptation of the imprecise user input which was used in the 2D segmentation

method. User points are placed corresponding to the tip and the hinge points on the valve itself.

These user points are used to find the valve boundary, which will be used to find the surface

of the valve. The segmentation forms a closed curve starting and finishing in the same point,

circumscribing the boundary of the valve.

5.2.2 Graph Construction

In order to segment the 3D structure of the valve, we must first construct the problem in the

form of a graph minimization problem. in order to do this, we implement an adaptation of our

previous graph structure.

In this graph, the 3D image structure I3D is a representation made up from multiple image

layers I constructed from the sequential slices of the confocal series. The number of layers

used is 2h where h is the number of slices in the confocal image series. The graph structure

is made up of the slices s from s1 to sn, then the layers are replicated in inverse order (adding

slices sn to s1), to construct a cube of twice the height of the original image stack. We construct

a graph G = (V,E), as before, where V is the set of vertices, and E the set of weighted edges.

For each voxel v, there exits an edge e to each of its neighboring pixels on the same layer

and to its neighbor in the subsequent layer. Therefore, a pair of neighboring voxels (p,q) ∈V

with a corresponding edge e = (vp,vq) also have an edge to the corresponding point on the
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superseding layer e = (vpl ,vpl+1), where l represents the current layer of the image. For each

edge, we assign a weight w to build a weighted graph (V,E). These weights are calculated

based on whether the edge is internal to a layer (wi) or trans-layer (wx). In order to be able to

solve this problem in polynomial time, we enforce an order (as previously for the 2D method)

moving through the image from l1 to l2n where n is the depth of the image cube, and layers l1 to

ln represent moving through the images using the tip terminal point as a guide, then layers ln+1

to l2n are returning using the hinge terminal point. This is done by ensuring that the inter-layer

arcs are unidirectional. We once again use the user points as elastic soft constraints to help

guide the segmentation.

User points are placed for both the ends of the valve (the tip and the hinge), and the source s is

the tip point on layer 1 and sink t is set to the same point(as we need to create the full closed

outline of the valve) but on layer l2n, we also place user points on the ends of the valve for each

layer to act as guide in the segmentation.

Once again, like in the 2D method, edges of zero weight are not added from the start node s to

each pixel in the first layer, and from the last layer 2n+1 to the terminal node t. Again making

sure the first and the last user points elastic and not hard constraints, and all user points are

treated equally.

If P is the set of pixels in the image, Ps is therefore the subset of pixels that also fall on the

boundaries of our super pixels, and pi and qi are pixels in layer i giving vpi as the vertex p in

layer i, we can define the set of nodes V as

V = {s, t}∪{pi ∈ Ps∧1≤ i≤ k+1} (5.1)

and thusly the set of edges as,

E =



(s,vp1)|p ∈ Ps ∪

(vpk+1 , t)|p ∈ Ps ∪

(vpi ,vqi)|(p,q) ∈ N∧1≤ i≤ k+1 ∪

(vpi ,vpi+1)|p ∈ Ps∧1≤ i≤ k+1.

(5.2)

5.2.3 Valve Boundary Detection

The first stage of our valve leaflet segmentation is to segment the boundary. This is done by

using a modified version of our 2D code described previously. Using the constructed graph
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G and manually labeled points for the apex and root of the valve, we assign weights to the

edges in a similar manner as before. The edges on the directed layered graph are categorized

as internal edges wi within individual layers and inter-layer edges wx. The weighting for these

two types of edges is assigned differently. The internal edges are assigned weights a weight

based on edge features, i.e. boundary based edge weights similar to the 2D method are used,

but not region based edge weights. The boundary based edge weights are calculated based on

the magnitude of image gradients, created for example with a Sobel filter, i.e. using an edge

detection function ge = 1/(1+∇I) where I denotes the image layer. Hence, for any given edge

between neighboring pixels (vp,vq), we assign a weight (we) according to

wi((vp,vq)) :=
1
2
||p−q||(ge(p)+ge(q)). (5.3)

The attraction force imposed by user points is materialized through the inter-layer edge weights

wx. We apply distance transform to the user points in each layer of the graph, and the inter-layer

edge weight is assigned as wx = d(vpi ,vp j) where d denotes the distance transform function.

For layers l1 to ln we use the user points corresponding to the tip, and layers ln+1 to l2n use the

user points derived from the hinges. In this way, distance weighting produces iso-linear bands

of weight around each user point, with increasing weight to go through to the next layer as the

distance from the user point increases, favoring transition between layers as close as possible

to the user point without straying too far from hard edges. In this way, finding the boundary of

the valve becomes an energy minimization problem similar to our previous 2D work.

The energy function for any curve C in our method is a combination of two terms, i.e. for any

arc C between two points pi and q j where the points are

C(p,q) = wx +wi (5.4)

as wx can be written as

α

k

∑
i=1
||C(si)−Xi|| (5.5)

and likewise wi can be written as:

β

L(C)∫
0

g(C(s))ds, (5.6)

This is all providing that the points are treated as being in a sequential order, and that the

interconnections between layers are uni-directional. The overall energy function can then be
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expressed as:

E(C,s1, ...,sk) =α

k

∑
i=1
||C(si)−Xi||+β

L(C)∫
0

g(C(s))ds s.t.si < s j,∀i < j. (5.7)

where α and β are real constants used to weigh the effects of the edge based and distance based

terms, the effects of changing these can be seen in Fig. 3.7 in a previous chapter.

The first term in our cost equation is used to enforce the soft constraints placed by the user

as a guideline to the terminal ends of the valve, and it penalizes the paths further away from

these user points, helping the user control the segmentation. The second term is the boundary

based data term that prefers the path passing through strong edges, the images are preprocessed

to improve these images as described above. By using the layered graph construction, the

minimization of the energy function is achieved by finding the shortest path from the start

point s to the end point t through the 3D cube.

As the graph will be very large, and therefore computationally expensive, the graph was con-

structed in segments as needed to prevent it from becoming too big to compute. By using

Dijkstra’s algorithm, as before, this allowed the points on the graph to be loaded in as needed,

we operated on 10 layers at a time, as this provided a sufficient reduction in the size of graph

being worked on in memory. To further reduce the computational overheads, the image was

automatically cropped to a tight box around the region of the valve, by using the manually

input points to give a rough boundary, which was expanded in each direction to ensure the

valve fitted within these confines in its entirety. Once again note, the inter-layer edges are uni-

directional so that the path can not travel back to previously visited layers, to avoid making the

segmentation problem NP hard.

The results of this 3D segmentation, gave the boundary outline for the valve leaflet (see Fig.

5.3).

5.2.4 Valve Surface Segmentation

Once we obtained our boundary, the next stage was to calculate the point cloud for points on

the surface of the valve. For this, the image stack was comprised of layers l1 to ln where n is

the number of slices in the series. Note this is a smaller graph than was used for the border, as

there was no need to have the 2n layers to ensure order in the user points. This was done using

the voxel edge derived intensities for any given voxel v in the image stack, these are based
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A B C

Figure 5.3: 3D Segmentation showing the boundary of the valve leaflets obtained. Note in
regions where the features were difficult to label or absent (such as (A)) then the boundary is
difficult to find and not smooth.

Figure 5.4: Schematic showing the relationship between primal and dual graphs in 3D Adapted
from [27]. Every node in the primal graph is represented as a cube in the dual. Every edge in
the primal becomes a facet. every face and edge and finally every volume a node. In this way
primal edge weights correspond to dual facet weights and vice versa.

on the edge map created using a Sobel filer on the image (pre-processed with a log Gabor

filter). A minimal surface segmentation performed using these weights, based on the method

demonstrated in Grady 2010 [27] with adapted cost functions and weighting, and modified to

return a point cloud rather than faces.

The first stage is to construct a lattice framework to represent the 3D image. We first expand

our original graph construction into a dual graph. From out planar primal graph, we define a

dual graph by replacing each node with a facet, can connecting two nodes if their respective

facets share an edge. This is shown in Fig. 5.4.
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We can therefore define our lattice using the same connectivity as we used in our previous 2D

graph, namely with nodes being connected to their 8 neighbors on their layer, and immediate

neighbor nodes on the layer above and below themselves. The lattice can be represented by set

P = (V,E,F,C) where the vertices v ∈V , edges e ∈ E ⊆V ×V , facets f ∈ F ⊆ E×E×E×E

and cubes c ∈C ⊆ F×F×F×F×F×F , if we work with a 6 connected neighborhood. For

any given edge ei we assign a weight wi, with all weights being positive.

The minimum surface weight problem can therefore be defined as:

m
z

in Q(z) = ∑
i

wizi,sub jecttoBz = r, (5.8)

where z is a positive vector indicating whether the facet is present in the minimal-weight sur-

face. wi is the weight of the facet, which corresponds to the weight of the edge in the 2D graph,

and is defined as:

wi =α

k

∑
i=1
||C(si)−Xi||+β

L(C)∫
0

g(C(s))ds s.t.si < s j,∀i < j. (5.9)

and B is the incidence matrix boundary operator and r is a signed vector indicative of a closed

contour. Once the problem is formulated, it can be resolve by using a Minimum-cost Circula-

tion Flow Network (MCFN) based on work by Bitter et al [229]. This can be formed in terms

of the variable f thusly:

m
f ′

ax zT
0 f ′,s.t.CT f ′ = 0, f ′ ≤ f̃ = w. (5.10)

which requires the finding of the maximum divergence-free flow, passing through an initial

surface z0, which has the capacities given by the weights in the graph.

Once the MCFN has been solved, the results show facets that are to be included in the final

solution. It is then a trivial task to deconstruct the dual lattice back to its primal roots and

generate a node representing the center of the volume indicated by the facet. These nodes will

then be used to generate the final result by having a 3D RBF interpolation applied to them, to

smooth outliers and provide a smooth surface which represents the valve itself.
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5.3 Results

Our results were obtained from a data-set of five confocal series, from different lymph valves.

These individual data-sets (those used previously for the vessel wall segmentation) each com-

prised of around 400 consecutive images of the lymph valve. These were used to construct

the point cloud and surfaces shown. The results from the minimal surface segmentation are

shown in Fig. 5.5 and Fig. 5.6, with the surfaces shown in Fig. 5.7 and Fig. 5.8. These point

clouds represent voxels on the surface of the valve. Finding the surface for the valve is very

problematic, as it is very feint, and often merges into the wall, or exits the side of the frame, the

effect of this can be seen in the alternate views shown in Fig. 5.5. In order to obtain a coherent

surface over these point clouds it is necessary to perform smoothing and RBF interpolation on

the clouds. The surface resulting from this is shown in Fig. 5.6, with a color map applied to

show the bands obtained from the RBF centers. The RBF centers for interpolation were taken

at regular intervals (10 slices) through the image, as this provided an adequate smoothing to

produce a surface, whilst keeping the computational overheads small so the operation is fast,

and the resultant image manageable.

As can be seen from the data, the valve surface segmentation still has some uneven regions.

With a larger data set, in my belief it would be possible to greatly improve on these results

by introducing a shape prior in order to guide the surface segmentation. Fig. 5.9 shows some

of the problems faced by the segmentation, although both these images show a valve that can

be clearly seen (unlike the start and end regions shown in Fig. 5.1). The shape of the valve

changes considerably as you move through the slices in the set, with some severe direction

changes in some cases. Also, due to the nature of confocal images, the fluorescence of the

image is uneven. This was significantly easier to deal with on the vessel wall segmentation, as

the overall shape was regular and constraints could be used.

5.4 Conclusion

The proposed method gives a reasonable segmentation of the lymph valve. It is limited by

several factors however. The first problem is in boundary segmentation, and is the large amount

of user input that is required. This problem is mainly due to the nature of the images which

make even manual segmentation tricky, especially in the early and late stages. In some cases,

this proves almost impossible without pre-processing, as the valve was too feint to be seen
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Figure 5.5: 3D Segmentation results, showing the point clouds obtained from the surface seg-
mentation. From left to right they are: an off center view displaying the valve structure, X-Y,
and X-Z planes, for each data-set. Irregularities in the point clouds are caused by insufficient
features, or artefact on the original images. This makes the segmentation a difficult process, as
in some cases, the artifact is a much stronger “feature” than the desired target.
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Figure 5.6: 3D Segmentation results, showing the point clouds obtained from the surface seg-
mentation. From left to right they are: an off center view displaying the valve structure, X-Y,
and X-Z planes, for each data-set.

on the screen. The proposed method for boundary segmentation does show the versatility in

our 2D method, as it could easily be modified to a 3D role (in the case here of finding the

boundary). The proposed method builds on the work in [27] by expanding the cost function

quite considerably, and modification to the graph construction to allow for 3D segmentation.

The surface segmentation also proved very problematic. The poor quality of the images, couple

with the changing shape and irregularity of the valve made segmentation difficulty. The results

obtained show an acceptable segmentation of such a tricky object, and in my opinion for a

good starting point to expand on this work. In order to inform the segmentation, other methods

could be applied to strengthen the results. Shape prior would make a very good addition to

this method, as it could be combined with the cost terms in our graph construction to penalize

112



5. 3D Valve Reconstruction

Figure 5.7: 3D Segmentation results, showing the surface mapped over the point clouds. Col-
ored bands represent the regions used for the RBF interpolation. From left to right they are: an
off center view displaying the valve structure, X-Y, and X-Z planes, for each data-set. It can be
seen that the surface represents the valve for the majority of the surface, but due to issues with
insufficient features, and artifacts (especially around the hinge area and interface with vessel
wall) there are areas where the segmentation fails.
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Figure 5.8: 3D Segmentation results, showing the surface mapped over the point clouds. Col-
ored bands represent the regions used for the RBF interpolation. From left to right they are: an
off center view displaying the valve structure, X-Y, and X-Z planes, for each data-set. It can be
seen that the surface represents the valve for the majority of the surface, but due to issues with
insufficient features, and artifacts (especially around the hinge area and interface with vessel
wall) there are areas where the segmentation fails.
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Figure 5.9: Processed data showing the valve structure in a single data set. Notice how the
shape and quality of the image changes from the slice on the periphery of the valve (right
image) compared to a slice from the mid region (on the left)

the segmentation from straying from an accepted shape. However, in order to achieve this, a

significantly larger data-set would be require to provide training and test data. Even utilizing

shape prior, the regions near the interface between valve and vessel wall may still prove very

problematic. As can be seen in Fig. 5.1, it is almost impossible to discern where the valve

starts and finishes in these regions, and even in the selected regions, where the valve can be

seen, it differs greatly in shape as you move through the slices Fig. 5.9.
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Chapter 6

Conclusions and Future Work
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6.1 Conclusions

In this work we proposed a reliable and robust segmentation method for medical imaging, that

provided accurate segmentation even in noisy images with artifacts present. This was mainly

adapted towards the requirements for IVUS and OCT segmentation, but was also shown to be

strong at many different types of both open and closed segmentations. This was successfully

expanded into 3D to segment the boundary of the lymph valve. We expanded and added to our

work to perform automatic segmentation and reconstruction of lymph vessel walls in 3D, and

segment out the valve as a 3D surface.

The main contributions are summarized as follows:

1. Combined Region/Edge Based Segmentation, with minimal elastic user input. This ro-

bust method was developed for use in catheter based medical imaging systems, where it

was tested and compared favorably to state-of-the-art methods. It was also shown to pro-

vide high quality segmentation in both other medical imaging situations and real world

images. The nature of its approach allowing open and closed segmentation with a great

deal of accuracy in many situations.
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2. Graph Optimization and Pruning. By uptilting a pre-processing over segmentation using

mean shift, we divided the image into a number of super-pixels. These were used to

prune the graph, removing nodes that were not on the edge, and/or in the same region,

to improve the speed and functionality of the algorithm.

3. We provided an automatic segmentation method in which to reconstruct lymphatic vessel

valve regions. This method utilizes OSS and HMM to automatically detect both vessel

walls in lymph vessels, in order to reconstruct the vessel in 3D. By using a coarse OSS

segmentation as the seed input for our HMM segmentation, which uses a series of RBF

centers to shift the seed segmentation, we have an efficient and accurate segmentation.

This segmentation is performed in polar coordinate images, with samples taken evenly

along the segmentation line.

4. Pre-processing and formatting of confocal microscopic images. In order to improve the

quality of the lymph vessel images prior to segmentation, we pre-process them using a

VED filter to improve the image quality, then process to improve contrast and to create

a cross-sectional shape. This increased the visibility of poorly defined edges, and was

applied in some cases to help confirm manual labeling (as image contrast could be very

poor).

5. Using s-Excess graph to simultaneously segment both borders. Using a modification of

our HMM method, we simultaneously segmented both borders using an s-excess graph

minimization algorithm. This includes weights for inter-border arcs, so control over the

thickness of the wall can be maintained. This provides a solution to some of the error

cases in HMM segmentation alone (as there are many images which have broken, and

incomplete borders), whilst maintaining the same overall accuracy levels.

6. Semi-automatic segmentation of lymph valve border. Expanding on our 2D semi-interactive

segmentation we segment the boundary of the lymph vessel in 3D. By constructing the

graph in a similar manner to earlier, we can segment the boundary of the lymph vessel

in 3D. However, as this is working with a much larger graph, we need to minimize the

amount of nodes that are worked on. We do this by pruning nodes too far from a cube

created with minimum and maximum user values. Also, we utilize one of the features

of Dijkstra’s algorithm, and only create nodes for layers as they are needed in order to

diminish the memory overhead of the graph.
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7. Segmentation of the lymph valve. Using the border we segmented, we can then use a

minimal surface segmentation to find the border in 3D. This is then smoothed using a

series of RBFs in order to provide the final result.

6.2 Further Work

There are several areas where we believe this work can be built upon. Our plans for further

development are to aim to add more automation to the lymph segmentation process. At its

current stage, it uses manual labeling to inform the segmentation of the boundary of the lymph

valve. This is quite a tricky and time consuming process, due to the number of images and

the quality and lack of clarity exhibited in some of them. Once the process has become more

automated, the next task is to co-localism the valve structure onto the 3D vessel reconstruction

for a complete representation of the structure. I believe the best approach (with the larger data-

set now available) would be to use a machine learning system (such as Random Forest) with a

manually labeled set of hinge and tip points and a set of prior shapes for lymph valve shapes. I

do not believe that the use of one feature alone would be strong enough, as (especially for the

hinge) they are very tricky to label. With the added information of a valve shape prior (which

could be obtained by manually labeling or the proposed 2D segmentation) it would probably

be sufficient to train an algorithm with a suitably large training set.

The surface segmentation of the valve itself would benefit greatly from some extra constraints

and features included in the cost function. With a larger data-set, it should be possible to

add some shape prior constraint to the cost function. This would considerably improve the

quality of the results, in my opinion, making them more robust. In order to achieve this it

would require manually labeling several valve series, which is a time consuming task. In this

work, we have looked at finding a single surface that matches the valve. Improvements may be

obtained by treating the valve as a solid closed object with constraints as to its thickness. This

should help avoid some of the problems we have with incomplete valve image data, where the

single surface is drawn to an artefact region as this is brighter than the desired surface. If the

segmentation was to be a closed object, then this could be prevented.

At the time of this work, we had a relatively limited data set (a large number of individual

images, but only 8 complete sets). We now have access to a larger data set (another 15 sets)

so the first stage would be to add more training data to the HMM, and expand on that. The
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plan is with an improved data set, the dual segmentation of internal and external boundaries

could be further improved. At its current stage, it has no significant improvement overall than

the single method proposed, but it does have the advantage that the boundaries never meet

or cross. This is essential if the model is to be useful in the long term, and is the greatest

weakness of the single boundary method. With an increased data set, the goal is to make this

inter boundary thickness another learned feature, with the only manually encoded constraint

being that boundary thickness must be greater than zero.

Another planned expansion to the work is to modify the code for the lymph segmentation

to apply it in the cardiovascular images. This is a non-trivial task as both IVUS and OCT

have strong features that would help this, but also inherent weaknesses that will make the task

tricky. OCT for example, has a clearly defined luminal boarder, abut the media-adventitia

border is a much weaker feature. The converse is true in IVUS images. We hope to expand

on our 2D method to include segmentations of either the media-adventitia border in OCT, or

the lumenal border in IVUS.This will eventually lead to the final goal, which is to be able to

combine this with other modalities (especially angiography) to be able to provide an accurate,

and topographically correct 3D reconstruction of a vessel.
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List of Publications

In addition to the publications listed below, a journal paper is under review.

1. J.-L. Jones, E. Essa X. Xie, Automatic Segmentation of Lymph Vessel Wall using Opti-

mal Surface Graph Cut and Hidden Markov Models, IEEE Engineering in Medicine and

Biology Conference(EMBC) 2015 (accepted).

2. E. Essa, X. Xie, and J.-L. Jones, Minimum s-Excess Graph for Segmenting and Tracking

Multiple Borders with HMM, Int’l Conf. Medical Image Computing and Computer

Assisted Intervention (MICCAI), October 2015. (accepted).

3. E. Essa, X. Xie, and J.-L. Jones, Graph Based Lymphatic Vessel Wall Localization and

Tracking, Graph-Based Representations in Pattern Recognition, pp. 345-354, May 2015.

4. J.-L. Jones, X. Xie, and E. Essa, Combining Region-based and Imprecise Boundary-

based Cues for Interactive Medical Image Segmentation, International Journal for Nu-

merical Methods in Biomedical Engineering, volume 30, issue 12, pages 1649-1666,

December, 2014.

5. J.-L. Jones, E. Essa, X. Xie and J. Cotton, Interactive segmentation of lumen border in

OCT, In Proceedings of International Conference on Computational and Mathematical

Biomedical Engineering (CMBE), December 2013.

6. J.-L. Jones, X. Xie, and E. Essa, Image Segmentation using Combined User Interactions,

In Proceedings of the Computational Visual Media Conference, September 2013.
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7. J.-L. Jones, E. Essa, X. Xie, and D. Smith, Interactive Segmentation of Media-Adventitia

Border in IVUS, In Proceedings of 15th International Conference on Computer Analysis

of Images and Patterns (CAIP), pages 466-474, August 2013.
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