
Efficient Algorithms for Artificial Neural
Networks and Explainable AI

Hassan Gharib Eshkiki
919165

Submitted to Swansea University in partial fulfilment
of the requirements for the Degree of Doctor of Philosophy

Department of Computer Science
Swansea University

20th July 2023

Declaration
This work has not been previously accepted in substance for any degree and is not being
concurrently submitted in candidature for any degree.

Signed (candidate)

Date 01/06/2023

Statement 1
This work is the result of my own independent study/investigations, except where
otherwise stated. Other sources are clearly acknowledged by giving explicit references. I
understand that failure to do this amounts to plagiarism and will be considered grounds
for failure of this work and the degree examination as a whole.

Signed (candidate)

Date 01/06/2023

Statement 2
I hereby give my consent for my work, if accepted, to be archived and available for reference
use, and for the title and summary to be made available to outside organisations.

Signed (candidate)

Date 01/06/2023

‘A school bell that sounds annoying at 08:00am, sounds exciting at 04:00pm... It is a
matter of time; you will get there.’

Osunsakin Adewale . . .

Abstract
Artificial neural networks have allowed some remarkable progress in fields such as
pattern recognition and computer vision. However, the increasing complexity of artificial
neural networks presents a challenge for efficient computation. In this thesis, we first
introduce a novel matrix multiplication method to reduce the complexity of artificial
neural networks, where we demonstrate its suitability to compress fully connected layers
of artificial neural networks. Our method outperforms other state-of-the-art methods
when tested on standard publicly available datasets.

This thesis then focuses on Explainable AI, which can be critical in fields like finance
and medicine, as it can provide explanations for some decisions taken by sub-symbolic AI
models behaving like a black box such as Artificial neural networks and transformation-
based learning approaches. We have also developed a new framework that facilitates the
use of Explainable AI with tabular datasets. Our new framework Exmed, enables non-
expert users to prepare data, train models, and apply Explainable AI techniques effectively.
Additionally, we propose a new algorithm that identifies the overall influence of input
features and minimises the perturbations that alter the decision taken by a given model.

Overall, this thesis introduces innovative and comprehensive techniques to enhance
the efficiency of fully connected layers in artificial neural networks and provide a new
approach to explain their decisions. These methods have significant practical applications
in various fields, including portable medical devices.

i

Acknowledgements

I would like to take this opportunity to express my gratitude to those who have assisted
me in various ways. Over the past five years, from my Masters to my Ph.D, my supervisor
Dr Benjamin Mora has supported me in every challenge. I am thankful for the effort
and extra time he has contributed to my academic development, and I hope that I have
met his expectations.

Another person I would like to thank is Professor Xiangua Xie for all his assistance
and support during this Ph.D.

I am also very grateful to Dr A. Rahat and Dr A. Pauly for their suggestions on
how to make the best decisions.

Last but not least, I want to express my gratitude to my friends in the Computational
Foundry, including Dr Oleg Zaikin, Dr Indirajith Ananth, Dr M. White, Mr D. Greco, Mrs
K. Pugh, Mr S. Oliver, and all the other wonderful individuals whom I have met there.

iii

Contents

List of Tables vi

List of Figures viii

1 Introduction 1
1.1 Motivations . 1
1.2 Overview . 4
1.3 Publications and significant contributions arising from the work detailed in

this thesis . 4
1.4 Outline . 6

2 Background 7
2.1 Introduction . 7
2.2 Neural Network Models and their Compression and Acceleration 8
2.3 Explainable AI and Local Model-Independent Methods 16

3 Efficient Fully Connected Layers in ANN 23
3.1 Preliminaries . 23
3.2 Related Work . 24
3.3 Mediterranean Matrix Multiplication . 32
3.4 Compressing Fully Connected Layers . 43
3.5 Results . 47
3.6 Conclusion . 56

4 Explainable AI 59
4.1 Introduction . 59

v

4.2 Literature review . 60
4.3 ExMed Workflow . 66
4.4 The Neighbour Migrating Generator Model 74
4.5 Conclusion . 89

5 Conclusions 93

6 Future Work 97

Bibliography 99

Appendices 116

A Implementation of a Relevant Algorithm 117

B Supplementary Data 119

List of Tables

2.1 Comparing CART and ID3 for building a decision tree. 18

3.1 Reduced upper bounds for exact matrix multiplication algorithms. 28
3.2 Complexity bounds for rectangular matrix multiplication algorithms. 28
3.3 Comparison of the different practical factors influencing the performance of

the signed matrix approximation [1] and our own Hamming distance kernel.
(GPU: NVIDIA 1080Ti) . 52

3.4 Comparison of the best compression rates with Binary-Connect [2] and XNOR-
Net [3]. Our technique allows changing the compression rate to favour either
compression or quality. 55

4.1 Non-pharmaceutical COVID Control Measures. 69

vi

4.2 Prediction performance on the COVID dataset with four different classifiers
with K-Fold Cross Validation (k = 10). 70

4.3 Each patient is described with 20 features. 73

4.4 Survival Time Feature Value Count . 73

4.5 Prediction performance on the Lung Cancer dataset with four different classifi-
ers with K-Fold Cross Validation (k = 10). 73

4.6 A description of the architecture of the models used for the three datasets. The
F model is the original model that we want to study, while G is the NMG
model used to migrate to decision boundaries. 82

4.7 Description of features in the Pima diabetes datasets. 84

4.8 Variation among features when changing instances. For each original class, our
global NMG model returns the closest class available (left two columns). The
results match what can be witnessed on Fig. 4.16. For the first two migrations,
results show that the petal length is the only important feature to migrate class.
For the Setosa class, all parameters have some influence, but the petals’ length
and width are still the most contributing factors. 84

4.9 Description of features in the Thyroid-disease datasets. 88

4.10 Description of features in the Thyroid diabetes datasets. 89

4.11 Variation among features when changing instances (local variant of the al-
gorithm) for the Pima Indian Diabetes Dataset for 6 randomly selected samples.
Units and standard ranges for glucose, blood pressure, insulin and Body Mass
Index are given at the top, and samples outside the range are highlighted in red.
The second value in cells, when present, indicates the variation generated by
the migration model on some of the features. Unchanged values are not shown. 91

B.1 (a) MNIST without Data Augmentation . 119

B.2 (b) MNIST without Data Augmentation . 120

B.3 (c) MNIST with Data Augmentation . 120

B.4 (d) MNIST with Data Augmentation . 121

B.5 (e) CIFAR10 . 121

B.6 (f) CIFAR100 . 122

B.7 (g) CINIC10 . 122

B.8 Some additional results to table 4.11 in chapter 4 129

vii

B.9 The table illustrates the weight vector impact on model G in the NMG. We
run model G with three different values in the weight factor, non-frozen input
(ω = 1), freezing Age feature (cell correlated to age in ω equals 99), and Age
and Sex are frozen. Each row shows either the input sample (top rows) or the
output of model G. 130

List of Figures

2.1 Mathematical model of a neuron by McCulloch and Pitts. Xi refers to inputs,
and Wi shows the strength of the neuron connection. θ is threshold for h (sum
of the weights) to active output . 9

2.2 The figure displays a Feed forward neural networks that receives a vector X
with three dimensions as input. Each input dimension and the neurons in the
fully connected layers are connected in completely connected layers. 10

2.3 This figure contains four activation features. An activation function will be
given some inputs and neuronal weights, and it will decide how to respond
based on the formula they contain. 11

2.4 Plotting a decision tree can show what feature has been selected and the criteria
that lead a sample to leaves. 19

2.5 The red line indicates the boundary between two classes in a binary classification
problem for a two-dimensional space. An example is depicted with a black
circle enclosed by a larger blue circle. The blue area represents how far new
data points can extend. The size of the area explained by a different linear
model can vary. 20

3.1 Sub-matrices in strassen’s algorithm . 25
3.2 An illustration of Monte Carlo sampling of an angle between two angles which

accumulates results from random tests (Algorithm 1). Left: Both points are on
the same side of the hyperplane and test will return 0. Right: The hyperplane
is separating the two points and the test will return +1. 34

3.3 Pipeline of operations for estimating the product Y ≈WX . Operations needed
during inference are shown in blue. Note that the entries of the constant matrix
E follow a normal distribution and do not need to be stored. 45

3.4 Comparison of error rates between M3 method and [1] in approximating matrix
AB, by varying the matrix sizes with p = n or fixing n and changing the number
of samples used. The chart also displays the final error rates of both methods
after varying the µ parameter of the Gaussian random number generator, with
σ = 1. 48

3.5 Performance comparison between our method, ASSTB [1] (b, c & d), and a
direct matrix multiplication of A and B (e & f). As we mentioned, to achieve
the same level of error, M3 necessitates about 2.46 times as many samples. . . 50

3.6 Breakdown of performance for the various kernels used in our GPU imple-
mentation. It shows the percentage of operations required by each group in
separate columns. 51

3.7 Effect of replacing the standard matrix multiplication with the M3 version
for training the MNIST datasets in all but the last Fully Connected layer. The
horizontal represents the number of epochs while the vertical axis represents the
accuracy obtained on the testing dataset. We study forward-only replacement
cases. The number of planes k used is the same for each layer and each pass
in a single experiment (batch size used is 1024). Getting good results in the
forward pass with M3 requires a much larger number of planes. 53

3.8 Convergence of accuracy according to the number of hyperplanes used. The
horizontal axis displays the compression obtained for just the internal Fully
Connected layers (a) and for the neural network as a whole (b). The vertical axis
displays the obtained accuracy of the network relative to that of the original,
unmodified network – with 100% meaning that the compressed network has
the same accuracy as the original one. All network models have been tested
with 256, 512, 1024 and 2048 hyperplanes as represented with continuous or
dashed lines. 54

4.1 ExMed Activities. ExMed provides the user with a sequence of simple actions,
including loading, merging, and editing data, and creating prediction as well as
explanation models. Various visualisation techniques are supported in several
stages of this pipeline. 63

4.2 Working with biology photos is simple and quick using Fĳi’s many plugins. A
biological image with a filter applied to it is shown in the figure. 64

4.3 Massive Online Analysis is a framework for running machine learning al-
gorithms on data series databases. 65

4.4 The University of Waikato in New Zealand created the Waikato Environment
for Knowledge Analysis (Weka) since it has a free software license. 65

4.5 ExMed interface for some of the main activities as describe in Fig. 4.1. Data
from various supported file types is loaded, with the option to combine this
data with other datasets. 67

4.6 Example of an Explanation computed with SHAP and LIME. For this instance,
both explainers consider top measures contributing to this prediction being
Domestic Travel, Cafes and Restaurants Closure and Pubs and Bars Closure. 70

4.7 Global explanations generated using SHAP on our COVID dataset for the
prediction whether Rt ≥ 1. We see that closing down cafes and restaurants
as well as pubs and bars are the most effective control measures. When their
feature values are high (red), they have string negative impact to the prediction;
whereas when their feature values are low (blue), they have strong positive
impact to the prediction. 71

4.8 Local explanation on the Lung Cancer life expectancy data set for a patient
instance. We see that the most impactful features amongst SHAP and LIME are
the same: “Grade" How the cancer cells act; the higher the grade the less normality
the cell resembles, and it may act more aggressive and “M Best" Presence or Absence
of Distant Metastatic Spread, followed by a disagreement on age attribution. . . 74

4.9 We see that the largest impact towards the survival boundaries greater than 1
year and less than 6 months is the cancer grading - having direct impact on the
longest and least time survived. This, followed by an associative relationship
between height, weight, and the patient age determinants of body mass index
(BMI), having high attribution towards each class. This, then followed by cancer
specific traits such as “M Best" and laterality of the tumour. 75

4.10 Global explanation for feature attribution measured against the class Survival
time of less than 6 months, where we see the cancer grade of higher value
- indicative of cell abnormality and more aggressive, followed by “M Best"
Presence or Absence of Distant Metastatic Spread, with the associative BMI attributes
“height", “age" and “weight" following this. 76

4.11 Global explanation for feature attribution measured against the class Survival
time of greater than 12 months, we see an inverse plot of cancer grade to that
shown in Fig.4.3.2 (a), such that a lower grade and what seems to be a better
controlled BMI and a lower “M Best" contributing to a longer survival time. . 77

4.12 Global explanation for feature attribution measured against the class Survival
time between 6 and 12 months, we see that a controlled BMI and lower cancer
grade are attributive to this survival boundary, whilst the distributive “M Best",
performance and cancer grade containing high values in both positive and
negative impacts on the model are likely the reason for the central survival
boundary. 78

4.13 The calculation of the Feature Importance weights I provides an explanation
of the global impact of features for the different classes of the original model. 79

4.14 Loss function of Neighbour Migrating Generator 81

4.15 We demonstrate the effectiveness of our NMG model G by applying it to some
random samples from an implicit 2D heart function dataset [4]. The dataset
consists of blue dots representing class 0 samples and red dots representing
class 1 samples. We also select some green dots at random from the dataset to
transform using our NM Generator. The results, shown in Figure X, demonstrate
that our NMG model is able to satisfactorily migrate samples to the decision
boundary. 83

4.16 2D plotting the IRIS dataset. The graph indicates that using only two features
(Petal Length and Petal Width) out of four is enough to separate most samples
of this dataset. Note that Iris Versi color appears to be in between the two other
classes. 86

4.17 shows the relationship between each type of species, and features are displayed. 87

4.18 2D plotting the Thyroid dataset. The graph indicates that using only two
features (TT4 and TSH) out of nine is enough to separate most samples of this
dataset. 88

B.1 Effect of replacing the standard matrix multiplication with the M3 version
for training the MNIST datasets in all but the last fully connected layer. The
horizontal represents the number of epochs while the vertical axis represents
the accuracy obtained on the testing dataset. We study backward-only, forward-
only and backward-forward replacement cases. The number of planes k used
is the same for each layer and each pass in a single experiment. The batch size
used is 1024. The M3 seems to be beneficial to back-propagation that shows
a convergence similar to the use of a standard matrix multiplication with a
sufficiently low number of planes. 123

B.2 Convergence of accuracy according to the number of hyperplanes used. The
horizontal axis displays the compression obtained for just the internal fully-
connected layers (a) and for the neural network as a whole (b). The vertical axis
displays the obtained accuracy of the network relative to that of the original,
unmodified network – with 100% meaning that the compressed network has
the same accuracy as the original one. All network models have been tested
with 256, 512, 1024 and 2048 hyperplanes as represented with continuous or
dashed lines. 124

B.3 Error comparison between our method and [1]. Results are given by either
varying the sizes of matrix A and B with the number of samples p equal to
n (n = p) or by fixing n and varying the number of samples used for the
approximation. 125

B.4 Data exploration tools in ExMed. (a) is the Data Editor that supports standard
data editing functions. (b) and (c) are the Data Visualiser that supports different
plot types such as Line, Scatter, Bar, Histogram, Violin Plots and Pie chart.
For each plot type, various customisation options are implemented, including
changing the axes, layout, and adding texts. 126

B.5 ExMed interface for some of the main activities as describe in Fig. 4.1. (b) Data
is optionally pre-processed with some of the plugins available. (c) A model
is created, with the option of reducing the number of features with a PCA
algorithm and explanation generation with SHAP and LIME. 127

B.6 ExMed Operation Overview. This figure shows the flow of ExMed operations,
along with the key features available in the interface. Once the "Application" is
running, the first window "Data Dashboard" is shown. Black arrows denote
event-driven actions that take the user to the next window in chronological
order. Colours highlight the Key features for each window, along with a short
description provided for each feature. The indentation of boxes represents a
dependency between windows. For instance, the ‘Feature Dashboard’ window
can lead to the ‘Edit Table’ window, which subsequently can open the ‘Plot
Viewer’ window. The dotted line represents a database extension that is to be
added in the future. 128

Chapter 1

Introduction

Artificial Intelligence (AI) can be broadly categorised into two primary branches: symbolic
and sub-symbolic. Symbolic AI methods are categorised by the utilisation of explicit sym-
bolic methods, such as formal methods and programming languages, and are commonly
employed for deductive knowledge [5]. This branch of AI is typically associated with
knowledge bases and expert systems [6]. Due to their reduced dependence on input data,
symbolic techniques are better suited for abstract problems [7].

Sub-symbolic artificial intelligence establishes complex correlations between input and
output variables. These relationships are often formalised through functions that map input
data to an output. Sub-symbolic AI includes a range of learning methods, such as artificial
neural networks algorithms. These methods are particularly well-suited for addressing
complex problems and require less prior knowledge compared to Symbolic AI [7].

1.1 Motivations

Artificial Neural Networks (ANN) revolutionised the way we gather information and
extract insights from data over the last few decades [8]. Artificial neural networks have
proven to be incredibly effective across a wide range of applications, from computer vision
[9] to time series analysis [10]. Thanks to improvements in computational power and the
availability of increasingly sophisticated algorithms, ANN models have become more
accurate and more efficient than ever before [11].

However, while the benefits of ANN are clear, there are also challenges that come with
deploying these models. One major concern is the resources required to run a model

1

1. Introduction

efficiently. With many devices having limited processing power and storage space, it is
crucial to develop models that can operate effectively even under these constraints. Many
approaches have been explored to make models more appropriate for those devices such as
pruning [12] (reducing complexity by removing unnecessary parameters) or compressing
models to achieve comparable accuracy with fewer parameters in mind [13].

Symbolic AI methods have the ability to explain and reason about their conclusions,
and even their intermediate steps are often interpretable. This makes them easier to
debug, explain, and control. For instance, Rule-based systems have the advantage of
rule modularity, where rules can easily be added or removed from a knowledge base.
They also provide knowledge interoperability, allowing for knowledge transfer between
closely related applications [14].

However, with sub-symbolic AI, the lack of explanations in most models is an important
limitation. In critical areas like healthcare, where decisions based on a model can have
life-or-death consequences, it is essential to be able to explain how and why the model
took a particular decision.

Explainable AI (ExAI) becomes useful when dealing with a black-box model. It
tries to explain the behaviour of sub-symbolic AI models by providing tools [15] and
techniques [16].

In this thesis, we tackle both of these challenges head-on. One primary goal is to
develop a more efficient method for building ANN models on low-resource devices. To
achieve this, we propose a new matrix multiplication algorithm based on Monte-Carlo
sampling to estimate angles between vectors, which enables faster and simpler calculations.
We also introduce a novel compression method for Fully Connected Layers, which reduces
the number of parameters required while maintaining accuracy.

Therefore, we not only aim to make ANN models more efficient, but we also want
to explain their behaviour. To that end, we provide a tool to use of Explainable AI in
medical domains, where trust is especially critical. We also present a new technique
for explaining an ANN model and its input space, which can help to explain how the
model reached its conclusion. In a nutshell, this research aims to extend the boundaries
of artificial neural networks, making these powerful tools more accessible, efficient, and
trustworthy for everyone.

2

1.1. Motivations

1.1.1 Compressing Artificial Neural Networks Model

The performance of most machine learning methods including artificial neural networks
in various fields, from speech recognition to image segmentation, is widely recognised
[17, 8, 18]. This success is largely due to their ability to create deep models with a high
degree of complexity, a feat made possible by the impressive advancements in GPU
computational speed. With these developments, models with millions of parameters can
be trained on large datasets, such as AlexNet [19] with 61MB and VGG16 [20] with 128MB.

Nevertheless, many systems with constrained resources still find it difficult to manage
these huge models, despite the impressive advancements achieved in computational power.
Additionally, portable devices require the use of batteries power, which creates other
difficulties. As a result, there is an increasing need to develop methods for reducing the
size of neural network models so that they can be used on devices with limited resources.

In order to meet this need, this study offers a cutting-edge methods for compressing
fully connected layers of artificial neural networks models. To be more precise, we
present a novel matrix multiplication technique that enables us to reduce the quantity
and complexity of operations that a model needs to perform. This method offers an
efficient solution to the difficulties linked to deploying Artificial neural networks models on
resource-limited devices, with the potential to greatly increase the speed and also improve
the energy usage of portable devices. The specifics of this strategy are covered in Chapter 3.

1.1.2 Explainable AI

Artificial neural networks have brought a paradigm shift in the field of artificial intelligence.
However, the inscrutability of ANNs in describing their decision-making processes has
become a major impediment to their widespread adoption [21]. This lack of transparency
is particularly relevant in real-world applications such as medical diagnosis, investment
recommendation, and process optimization, where users demand increased transparency
and accountability.

To address this issue, Explainable AI (ExAI) methods have garnered considerable
attention from both academia and industry [22]. However, there are other existing methods
for explaining models as white-box such as Fuzzy Logic and Bayesian Learning [23].
Explainable Artificial Intelligence (XAI) is beneficial to explain black-box models. ExAI
originated from a project by the Defence Advanced Research Projects Agency (DARPA) [24].

3

1. Introduction

In Chapter 4, we attempt to leverage the use of ExAI tools and techniques for ar-
tificial neural networks. This chapter presents a user-friendly framework for training
and explaining models, enabling faster and more intuitive decision-making processes.
The approach involves preparing data from expert systems for non-expert users and
subsequently applying ExAI methods to enhance model explainability. Moreover, we
propose a novel method for Explainable AI that offers great flexibility and versatility.
In the same chapter, we introduce the Neighbour Migrating Generator, which leverages
both global and local mechanisms to explain distinct aspects of a model, offering varying
degrees of explainability power.

1.2 Overview

Chapter 3 introduces a novel technique for estimating matrix multiplication, which is a
crucial step in compressing the Fully Connected Layers of ANNs. By using XOR and
POP-COUNT operators, the proposed approach can perform most inference operations
on binary streams while maintaining a tuneable degree of error tolerance. This method
has been shown to perform as well as or better than previous approaches.

Chapter 4 offers a novel framework for Explainable AI (ExAI) in the medical database
field, which is designed to be user-friendly and easy tool. The framework includes data
preparation, analysis, and model training, as well as classic ExAI methods for trained
models. The chapter also introduces the Neighbour Migrating Generator, a mechanism
that enhances explainability by incorporating both global and local mechanisms to provide
varying degrees of explainability power.

Subsequently, chapter 5 presents the conclusion of the contributions and work described
in this thesis. The chapter 6 outlines potential enhancements and plans for extending
the work discussed herein.

1.3 Publications and significant contributions arising from the
work detailed in this thesis

• Title: Fully Connected Networks on a diet with the Mediterranean Matrix Multiplication
Published at: IEEE Transactions on Neural Networks and Learning Systems
Authors: Hassan Eshkiki; Benjamin Mora; Xianghua Xie

4

1.3. Publications and significant contributions arising from the work detailed in this thesis

Abstract: The Mediterranean Matrix Multiplication is a newly proposed randomised
algorithm that aims to approximate matrix multiplication in a simple and practical
manner. The algorithm samples angles between the rows and columns of two
matrices with sizes (m,n, p) to achieve this goal. The number of steps required for
this approximation is O(k(mn+ np+mp)), where k is a constant determined by the
desired precision. The algorithm is mostly based on bitwise operators, making it
suitable for a simplified processing architecture and compressed matrix weights. The
study shows that the Mediterranean Matrix Multiplication outperforms the standard
approximation using signed matrices in terms of size and number of operations.
Additionally, the algorithm can compress fully connected layer weights by 30× to
100× with minimal impact on inference accuracy. This paper demonstrates the first
application to ANN inference by showing that weights of Fully Connected Layers
can be compressed between 30× and 100×with little to no loss in inference accuracy.
The requirements for pure floating-point operations are also down as Mediterranean
matrix multiplication relies mainly on simpler bitwise operators.

• Title: ExMed: An AI Tool for Experimenting Explainable AI Techniques on Medical
Data Analytics
Published at: 2021 IEEE 33rd International Conference on Tools with Artificial
Intelligence (ICTAI)
Authors: Marcin Kapcia; Hassan Eshkiki; Jamie Duell; Xiuyi Fan; Shangming Zhou;
Benjamin Mora
Abstract: The paper introduces ExMed, a tool that allows domain experts to
perform ExAI data analytics without the need for programming skills. It includes
various feature attribution algorithms to explain machine learning classifications
and regressions. The tool’s effectiveness is demonstrated through two medical case
studies - one analysing COVID-19 control measures and the other estimating lung
cancer patient life expectancy using the Simulacrum health dataset. The study
concludes that ExMed is a flexible and transferable tool that provides deep insights
to researchers and domain experts in medical sub-domains.

• Title: Neighbour Migrating Generator: Finding the closest possible neighbour with
different classes
Accepted at: Study of Artificial Intelligence and Simulation of Behaviour (AISB)
2023

5

1. Introduction

Authors: Hassan Eshkiki, Benjamin Mora.
Abstract: This paper presents the Neighbour Migrating Generator, a novel approach
for identifying the nearest neighbour with a distinct class label. In essence, this
method aims to locate decision boundaries that require minimal effort to transform
a given input. The requirements for pure floating-point operations are also down as
Mediterranean matrix multiplication relies mainly on simpler bitwise operators.

1.4 Outline

The remaining chapters of this work are outlined as follows:

• Chapter 2: Background

• Chapter 3: Efficient Fully Connected Layers in ANN

• Chapter 4: Explainable-AI

• Chapter 5: Conclusion

• Chapter 6: Future work

6

Chapter 2

Background

2.1 Introduction

Artificial intelligence (AI) is the term used to describe the capacity of a machine to carry
out operations that traditionally call for human intelligence. AI is a broad field that
includes many different techniques and approaches, one of which is machine learning.
Machine learning (ML) involves developing algorithms that enable computers to learn
from data without being explicitly programmed.

Arthur Samuel (1959) provides a succinct overview of machine learning as a "field
of study that gives computers the ability to learn without being explicitly programmed".
ML algorithms have a broad impact on computer science and have diverse relationships
with data-intensive issues. Along with the availability of data and increased processing
capacity, novel learning algorithms help address a variety of real-world problems. Many
computationally intensive machine learning methods such as Artificial neural network
have been improved due to modern computing advances [25]. Models with deeper
designs (having more layers) can benefit the computation power to work with larger
datasets [26, 27, 28, 20].

However, increasing the model size is not desirable for devices with lower compu-
tational power, particularly because prediction time and storage can be challenging. In
section 2.2, after providing the basic principles of artificial neural networks and related
background knowledge, we will cover compression methods for neural networks and
present approaches that can address these difficulties (see section 2.2.2).

7

2. Background

To get the most out of Sub-symbolic AI models, the end-user needs confidence and
faith in the outcome. Most of the time, understanding the explanation behind a model’s
decision is difficult. Explainable AI covers a field of algorithms that allow explaining
Sub-symbolic AI models for humans to comprehend and trust results obtained. We
will review some Explainable AI techniques and discuss some of the approaches in
each category in section 2.3. However, since there is no universal agreement on how
to classify Explainable AI methods, we will mainly follow the Interpretable Machine
Learning Book [16] categorisation.

2.2 Neural Network Models and their Compression and
Acceleration

Frank Rosenblatt in "Principles of Neurodynamics. Perceptrons and the Theory of Brain
Mechanisms" [29] introduced the fundamentals of neural networks, where he describied
a group of machine learning model called Artificial Neural Network (ANN) that are
motivated by the structure and function of the human brain. These networks are made
of layers of neurons, or nodes that are interconnected through weights.

In this section, we will review the fundamental concepts of neural networks and
explore their technical aspects to provide the necessary information for the subsequent
chapters, where we will focus on their theoretical foundations and practical applications.

2.2.1 Artificial Neural Networks (ANNs)

Artificial Neural Networks are a subtype of sub-symbolic Artificial Intelligence that
consists of computer models inspired by the structure and function of the human brain.
ANN may be used to carry out a variety of tasks since they are built to learn from data
by spotting patterns and relationships.

Neural networks models come in a variety of forms, including perceptron, feedforward,
radial basis function, recurrent, and modular neural networks. Each variety has distinctive
qualities and scopes of application.

h =

i∑
n=1

Xi ·Wi (2.1)

For instance, Perceptron was mathematically formulated by McCulloch and Pitts in 1943.
Each input is coupled to neurons through a weight that indicates the relevance of that input,

8

2.2. Neural Network Models and their Compression and Acceleration

Figure 2.1: Mathematical model of a neuron by McCulloch and Pitts. Xi refers to inputs, and Wi

shows the strength of the neuron connection. θ is threshold for h (sum of the weights) to active
output

as seen in the figure 2.1. The sum of these inputs (see equation 2.1) will be transferred
to the activation function, which will determine whether it should fire or not (equation
2.2). In addition, we have the option to add some bias value for equation 2.1.

output =

{
1 if h > θ

0 otherwise
(2.2)

The presented perceptron network is a binary classification model where its lack of
non-linearity prevents it from being applied to real-world problems.

Feedforward Neural Networks

A more robust type of neural network is a feedforward one, which has hidden layers
between the input and output layers. Here the changes aren’t simply about the num-
ber of layers. There are also different continuous activation functions that tackling
non-linearity issues.

In feedforward neural networks, input dimensions are linked to neurons of the first
layer as before. While we have more layers, all neurons in the previous layers are connected
to the next layer of neurons.

The last layer usually has as many outputs as the number of classes in the dataset (in
the case of classification). In the learning stage, the weight of each neuron is generated at
random or fixed numbers. We then feed some input samples to the model and compare
the results to the required outcome before modifying the weights. The fundamental
weight initialization can be constant values like one, zero, or other real numbers. When a
neural network is initialised with constant value, it is more likely to assume equal values

9

2. Background

Figure 2.2: The figure displays a Feed forward neural networks that receives a vector X with three
dimensions as input. Each input dimension and the neurons in the fully connected layers are
connected in completely connected layers.

throughout training, which might lead to undesirable Symmetry breaking scenarios [30] the
latter referring to the case when in training phase of the model, it is difficult or impossible
for the weights to diverge. However, such values can be incorporated, but the model may
require a different structure to prevent difficulties like those described by Blumenfeld et al
[31]. Multiple different approaches to establishing the initial weight function have been
developed, along with much research on their impact on the model, such as [32] and [33].

Activation Functions

An activation function is a mathematical function that maps the output of neurons
to a specific range. These functions come in various shapes, each of which can add
non-linearity to a model. In simple Perceptron networks, a step activation function
is used, which produces a simple output of either zero or one. On the other hand,
Multi-Layer Perceptrons (MLPs) use a different activation function. Figure 2.3 presents
some examples of these functions.

f(x) = x (2.3)

The linear function, in equation 2.3 performs a simple mapping of the input to the
output. This is particularly useful when an MLP is designed to predict continuous values.
For instance, in Chapter 4, the NMG model’s output is a real number, and the linear
activation function is appropriate for this purpose. However, depending only on linear
activation functions may restrict the neural network’s ability to deal with more complex

10

2.2. Neural Network Models and their Compression and Acceleration

Figure 2.3: This figure contains four activation features. An activation function will be given some
inputs and neuronal weights, and it will decide how to respond based on the formula they contain.

nonlinear patterns. The Hyperbolic Tangent Function (as indicated in equation 2.5) and
the Sigmoid (see equation 2.4) are for instance two more activation functions that have
attracted significant attention in the field of artificial neural networks.

The Sigmoid function, also referred to as a logistic function, can be employed when the
output is a probability due to its output range of 0 to 1. However, this function is plagued
by several issues, such as vanishing gradient and saturation, which can impede a neural
network model from learning or can reduce its learning rate. The vanishing gradient
problem arises when the gradient becomes negligible, and the weights in the lower layers

11

2. Background

fails to change significantly. After several epochs, during which learning happens relatively
quickly, the value of the linear component will be far from the centre of the Sigmoid
function [34]. The Sigmoid activation function formula is shown in Equation 2.4.

Sigmoid (x) =
1

1 + e−x
(2.4)

The Hyperbolic Tangent Function (Tanh) outputs values within the range of -1 to 1
(Equation 2.5), which results in a normalised output in relation to its input. Typically, Tanh
is employed in the middle layers of a neural network, while the Sigmoid function is used
in the final layer. Tanh offers certain advantages over Sigmoid, but it too is susceptible
to the vanishing gradient problem [35, 36].

Tanh (x) =
ex − e−x

ex + e−x
(2.5)

The Rectified Linear Unit (ReLU) activation function serves to remove negative values
from its inputs and allow only positive values to pass through (Equation 2.6). In contrast
to both the Tanh and Sigmoid functions, the ReLU function does not suffer from vanishing
gradients, yet it is prone to a "dying ReLU" issue, which arises when the neuron is
inactive, and the ReLU gradient becomes zero, rendering training through gradient
descent impractical [37].

RelU(x) =

{
x ifx > 0

0 otherwise
(2.6)

Other variants of the ReLU activation function, such as Leaky ReLU [38] and QReLU
[39], aim to enhance efficiency or tackle the dying ReLU problem. For example, the
leaky ReLU function assigns a small slope to negative inputs, which allows the derivative
to have a non-zero value for negative inputs. This small slope ensures that the dying
ReLU problem is prevented because the neurons with negative input can still learn. The
equation for Leaky ReLU is shown in Equation 2.7.

LeakyReLU(x) =

x if x > 0

0.01x otherwise
(2.7)

The Sigmoid function can create output values ranging from 0 to 1, which is beneficial
for probabilities, but each output is independent of the others. Therefore, this would
prevent it from being used in multiple classification problems. To determine the relative

12

2.2. Neural Network Models and their Compression and Acceleration

probability of the classes, a SoftMax activation function [40] is commonly deployed in
the last layer of neural networks. The SoftMax activation function formula is given in
Equation 2.8. It is sometimes called the normalised exponential function as each output
after exponentiation is normalised by the sum of all its inputs. This allows obtaining
probability values in the range [0..1] with the output vector x having a norm of 1.

SoftMax(x) =
exi∑
j e

xj
(2.8)

Back-propagation

In neural networks, the initial weights do not inherently produce the desired output, and
as such, they need to be updated to achieve a good result. The most common algorithm
used to enable training is back-propagation [41].

To train a model, the first step involves defining the loss function. This function
provides a measure of how well the model is achieving its objective. One such loss function
that is commonly used is the cross-entropy loss function. It calculates the difference
between two probability distributions as shown in Equation 2.9.

L(y, y′) =
−1
N

N∑
i=1

yi · log(p(yi)) + (1− yi) · log(1− p(yi)) (2.9)

Where variables N , y, y′, and p(y) in this formula represent the number of samples, true
label, predicted probability, and positive class, respectively. In order to determine the
loss value, the average negative log-likelihood of the real labels is taken into account
along with the anticipated probabilities.

After the forward pass, where inputs are fed into the model, the difference between
the desired value in the loss function and the model’s output must be minimised. This
process is known as back-propagation, which uses a chain rule to calculate derivatives
of neural network parameters layer by layer. Equation 2.10 shows the partial derivative
of each neuron with respect to its associated weights:

∆ωi,j = −α
∂E

∂ωi,j
(2.10)

An optimiser determines how to adjust the model’s parameters after back-propagation
has calculated an estimation of the gradient of the gradient of the loss function at each
model weights. For instance, gradient descent [42], Adam [43], and AdaGrade [44] are some

13

2. Background

of the optimisers that can be used. Each optimiser may have different hyperparameters;
for instance, the learning rate is a hyperparameter in the optimiser that indicates how
much the model’s parameters should be adjusted, e.g., how much the weights have to
be moved in the gradient direction. Some optimisers also take previous past steps by
incorporating the previous gradients obtained at these iterations into the calculation.

Training neural networks is a complex process, and the distribution of each layer’s
input may change as a result of changes in the previous layer’s parameters. Training
the model in batches can help to reduce the duration of the training process, which can
often be lengthy [45]. Additionally, computer equipment such as GPUs perform better
when performing multiple operations in parallel. Therefore, using larger batches may
help to fully leverage their capabilities.

2.2.2 Compressing Neural Networks

In Artificial Neural Network, measuring the accuracy and other relevant metrics of a model
is a common practice to evaluate its performance. However, other characteristics such
as computational cost and memory utilisation can also have a significant impact on the
model’s applicability, especially for low-memory devices. Therefore, it is advantageous to
have strategies for reducing a model’s complexity while maintaining its performance. In
this section, we examine several general approaches for achieving this goal.

Pruning and Quantization of Parameters

Pruning and quantization techniques are widely used to eliminate unnecessary and
irrelevant parameters that do not contribute to a model’s performance. These approaches
can be applied to different layers of neural networks and can be used during training or
with pre-trained models. The techniques can be divided into three categories:Quantization
and Binarization, Network Pruning, and Structural Matrix [46].

Quantization and binarization reduce the precision of weights and activations, which
reduces their size and allows more operations to be run on computational devices, and
reduces memory usage on these devices [47, 48, 49]. By using simpler operations such
as XOR and POPCOUNT, the number of operations that can be run simultaneously on
a device is increased, reducing the time complexity [3, 2, 50].

Pruning eliminates connections between neurons using different approaches such as
loss functions or accuracy checks. Optimal Brain Surgeon [51] uses the Hessian of the

14

2.2. Neural Network Models and their Compression and Acceleration

loss function to remove redundant connections and quantizes the weights . Several of
these algorithms require retraining after pruning. For example, Chen et al. [52] employed
a simple regularisation method based on soft weight-sharing and retrained the model.
However, not all approaches require further training. Alqahtani et al. [53] present an
effective strategy for simultaneously identifying important neurons and pruning the
model during training without the need for any pre-training or fine-tuning operations
. They reduced the size of models trained on the CIFAR10 dataset by 79% and the
MNIST dataset by 91%.

Low-rank factorisation

Low-rank factorisation is a technique that uses matrix decomposition to estimate inform-
ative parameters. These methods are simple to apply and can be used with a variety of
strategies, including pre-trained models. Typically, smaller matrices are generated whose
multiplication produces a matrix that is similar to the original matrix. Low-rank decompos-
ition aims to enhance inference speed, memory requirements, and initialization reliability.

Singular value decomposition (SVD) is a common technique for matrix decomposition
in this context. For example, Lu et al. [54] used shortened SVD to obtain a small version of
designs. Other decompositions, such as [55], have been introduced and used in neural
network compression as well. Low-rank decomposition is ideal for speech recognition
because the final layer has a large number of neurons. Switchboard, for example, is a
corpus with 300 hours of transcribed speech and 9, 300 output targets [56]. Therefore,
investing in this field is interesting, as Sainath et al. [57] offered a technique for voice
recognition that applies to the model’s last layer.

Distillation knowledge

Distillation of knowledge involves training a compact neural network by transferring
knowledge from a larger model. This process purifies the knowledge contained in the
larger model, allowing it to be applied more efficiently to the smaller model. However, the
effectiveness of this method is highly dependent on the application and network structure,
and it cannot be used with pre-trained models. In addition, distillation of knowledge may
introduce bias, which could reduce the generality of the model and negatively impact
its accuracy [46] Typically, fully connected layers are used as a non-linear transform,
with f(x,w) = ϕ(x,w) representing the input of the fully connected layer, where x is

15

2. Background

the input dataset or the output of another layer, and w represents the weights inside the
fully connected layer. A non-linear function ϕ applies element-wise non-linearity to the
output. The complexity of this function is easily calculable, with the storage complexity
of the equation being O(np) for a matrix wn×p.

Distillation of knowledge methods propose a new way to calculate the matrix mul-
tiplication in function f in order to reduce memory usage and storage complexity or
decrease calculation time.

In the exploration of parameter redundancy in deep networks with circulant projections
presented by Cheng et al. [58], the conventional linear projection in fully connected layers
were replaced with the circulant projection in order to reduce parameters. The Adaptive
Fastfood transform was used to reparametrize the matrix-vector multiplication [59]. With
a series of matrices, after transformation, the computational cost was reduced to O(nlogd)
and the storage cost to O(n).

2.3 Explainable AI and Local Model-Independent Methods

The complexity of neural networks, which can contain millions of parameters, makes it
challenging to comprehend how they reached a given decisions. Explainable Artificial
Intelligence (ExAI) aims to explain the behaviour of these models. To address this
challenge, numerous ExAI models using different methods have been developed to explain
various aspects of a model, such as the global perspective or a local view. In contrast,
some models, such as Decision trees, are self-explanatory.

One technique for ExAI is to visualise the decision-making process of Sub-symbolic-
based AI models. This method provides a graphical representation of how the model
arrives at its decisions, making it easier to understand. Another technique is to use feature
importance measures to identify which features or inputs are most influential in the
decision-making process. This approach helps to highlight which inputs or features of
the model is focusing on when making decisions.

In summary, several techniques have been developed in Explainable AI to explain
different aspects of a machine learning models, such as the global and local perspectives.
These techniques are based on different methods and have been used in numerous
ExAI models. The following paragraphs will discuss some of these techniques. (See
[60] for further reference).

16

2.3. Explainable AI and Local Model-Independent Methods

2.3.1 Interpretable Machine learning Models

Interpretable models refer to models that can be easily explained and understood by
humans. These models are particularly important in the context of explaining a model, as
they can provide transparent insights into how the model makes predictions or decisions.
Linear Regression and Decision Trees are two popular interpretable models that are
commonly used in various domains, such as finance, healthcare, and social sciences.

The following section outlines two models that possess the characteristics of self-
explanatory or interpretable models.

• Linear Regression: Linear regression is widely used in various fields, such as
economics [61], social sciences [62], and other to make predictions or to analyse the
relationship between variables. Linear regression uses a linear approach for model-
ling the relationship between a dependent variable and one or more explanatory
factors (independent variables).

Linear regression assumes the prediction is made via a weighted sum of the feature
inputs (see the equation 2.11). It is a common statistical method used to model
the relationship between the predictors and the response variable. In addition,
it assumes that the relationship can be expressed as a linear combination of the
predictor variables and is often the simplest and most widely used model form in
regression analysis [63].

y = ϵ+ β0 +

i=n∑
i=0

βixi (2.11)

This weight (β, coefficients) can be used to interpret the decision. Mostly higher
value is the most influencing the results [64, 65]. For example, the importance of the
input features for a regression model is linked to the absolute values of the estimated
weights scaled with their standard error (t-estimate) [66]. Some researchers have
also demonstrated the use of plots to explain a model ([67], [68]).

In linear regression, drawing plots like the Weight Plot and the Effect Plot, which
respectively illustrate how a feature affects the results predicted, and demonstrate
how much the weight-feature combination contributes to the predictions in the data,
can also provide understanding.

• Decision tree: A decision tree is a machine learning technique that is suitable for
both linear and non-linear problems. It belongs to class of supervised learning

17

2. Background

Algorithms CART ID3

Type Classification and Classification trees
Regression trees

Most common Gini impurity or Information gain
dividing criteria the mean squared error or gain ratio

Missing data Handle missing data Needs imputing
Performance Computational effective Less Computational effective

(large datasets or trees with many branches)

Table 2.1: Comparing CART and ID3 for building a decision tree.

algorithms where the data has been labelled in advance. The decision tree can be
defined as a set of nodes in which each node divides the input data into several
segments based on the values of a given feature. The decision tree splits the data into
new subsets at each node, and this process continues recursively until it reaches a
leaf where it can determine that the sample used belongs to a particular class. Some
of the criteria to prevent a tree from growing include specifying the maximum depth
of a tree or ensuring that every item in a node belongs to the same group.

There are numerous metrics available to determine which feature is best in order to
split data at a given node. Using these metrics, each feature is given a score. Scores
can be defined based on different criteria such as information gain ratio [69] (the
information gain metric for the number of branches that result from splitting on
a given feature) or Relief [70] (the relevance of a feature by comparing the values
of neighbouring instances with the same target class). For instance, some of the
measures used to clalculate the relevance of a feature are the Mean Decrease Impurity
(MDI) [71] or the Gini index [72].

Two of the most well-known decision tree algorithms are "Classification and Regres-
sion Trees" (CART) [73], and "Iterative Dichotomiser 3" (ID3), which was developed
by Quinlan [74]. Table 2.1 provides a comparison of some of the characteristics of
these algorithms.

Decision trees are also inherently interpretable, meaning that the decision-making
process of the model can be easily visualized and understood. The features that have
been selected each time to split data can be used to determine the feature’s overall
importance [75]. As shown in Figure 2.4, plotting a decision tree can show which
features have been selected to split the data and the criteria that lead a sample to the

18

2.3. Explainable AI and Local Model-Independent Methods

Figure 2.4: Plotting a decision tree can show what feature has been selected and the criteria that
lead a sample to leaves. .

leaves. This makes decision trees useful in domains where model interpretability is
important.

2.3.2 Local Model-Agnostic Methods

The local model agnostic method typically aims to explain individual samples and their pre-
dictions. To track prediction changes, the model modifies the input values. Counterfactual
explanations, LIME and SHAP are three well-known examples of such methods.

• Local interpretable model-agnostic explanations (LIME)
LIME is an example of a local model-agnostic method [76]. Given a specific
sample, LIME constructs a new dataset by generating multiple points in its local
neighbourhood, which are then used to train a model. Changes in predictions are
then analysed using a kernel function that assigns larger weights to nearby points,

19

2. Background

Figure 2.5: The red line indicates the boundary between two classes in a binary classification
problem for a two-dimensional space. An example is depicted with a black circle enclosed by a
larger blue circle. The blue area represents how far new data points can extend. The size of the
area explained by a different linear model can vary.

in order to examine the behaviour of the model in that local space. The kernel width
parameter is used to control the size of the meaningful radius of the weights that
surrounds a given sample. The choice of the kernel function and its bandwidth
can affect the explaination of the results, particularly when dealing with highly
non-linear problems. This behaviour is depicted in figure 2.5.

• SHAP and Shapley values
The Shapley value was introduced in the context of game theory in the 1950s by the
economist Lloyd Shapley [77]. A Shapley value is a mechanism for allocating the
overall payoff of a cooperative game to its players in a fair manner, based on their
marginal contributions to all potential coalitions.

In machine learning, Shapley values are used to explain the output of a model by
attributing the contribution of each input feature to the final prediction. Specifically,
the Shapley value of a feature is defined as the average change in the model output
when the feature is included, over all possible subsets of features that also include
the feature [78].

The Shapley values of a feature are defined as the difference between the expected
model output and the conditional model output given the feature value, averaged
over all possible orders of features. To compute Shapley values in practice, one
needs to evaluate the model output on many subsets of features, which can be

20

2.3. Explainable AI and Local Model-Independent Methods

computationally expensive or even infeasible for large datasets or complex models
[79]. A common method for estimating Shapley values involves using a kernel
function to sample feature subsets based on their similarity to the original input,
with each subset being assigned a weight [80].

The SHAP technique uses the Shapley values to provide explanations for a result.
In practice, it is necessary to approximatie the predicted and conditional model
outputs for each feature value. This can be effectively done using tree-based models
or linear models. Depending on the extent of aggregation or granularity of the input
characteristics, the SHAP results can provide a global or a local explanation of the
behaviour of a model [81].

• Counterfactual explanations alter a given prediction. A very well-known example
of its use is when the customer wants to know how to influence the bank’s decision
of rejecting a loan application. To accomplish the stated objective, many methods
(such as trial and error and creating a loss function) may be used. Wachter et al. [82]
proposed a simple loss function to change the model’s decision where the distance
between two produced values and samples is added up to the weighted (λ) difference
between sample labels and predicted label for the new value.

argmin
x′

max
λ

λ(f̂(x′)− y′)2 + d(x, x′) (2.12)

Dandl et al. developed a new loss function (equation 4.2) that includes a counter
for the modified features [83]. This was done in consideration that the loss function
might affect all of the input features. They also consider the gap between the output
value and the nearest sample in the training dataset.

L(x, x′, y′, xobs) = o1(f̂(x
′), y′), o2(x, x

′),

o3(x, x
′), o4(x

′, Xobs))
(2.13)

Measurement of a distance in each loss function can differ. In chapter 4, we will
discuss some of the differences occurring when using distance functions. One
problem with the possibilities presented is that modifying some of the features
would be ineffective. Returning to the earlier example, if the updated values indicate
that the consumer should lower their age, this would not be appropriate in this
instance. A potential solution to this problem will be discussed in chapter 4.

21

Chapter 3

Efficient Fully Connected Layers in
ANN

3.1 Preliminaries

Matrix multiplication is at the heart of various crucial algorithms and is used by a large
variety of applications. It supports many applications and scientific fields like Physics (e.g.,
Lattice QCD), Machine Learning, and Data Science in general, where calculating correlation
between variables can be important; and also, information retrieval algorithms indirectly
used by many people through search engines. One aspect with matrix multiplication is that
the basic algorithm’s complexity does not scale linearly, which becomes problematic when
processing large datasets, hence requiring expensive computational resources. Indeed,
while square matrices require O(n2) storage space, O(n3) computational complexity are
executed by the basic algorithm. Hence, the storage space and computational complexity
of a non-square matrix would be O(m.n) and O(m.n.p) for two matrices, where m, n,
and p denote the dimensions of the matrices.

In this chapter, a new randomised algorithm (non-deterministic) called the Mediter-
ranean Matrix Multiplication is introduced. It is a straightforward and useful algorithm,
and its performance is also discussed. Additionally, the chapter examines how this
algorithm can be applied to compress matrix multiplication. The results indicate that
compressing the fully connected (FC) layers can lead to a significant reduction in the size
of these models. In the VGG16 network, the size was primarily determined by the FC

23

3. Efficient Fully Connected Layers in ANN

layers. However, employing the Mediterranean diet approach compress the FC layers
relatively negligible in size, resulting in a state-of-the-art compression.

To facilitate understanding of the following sections, we enumerate some of the
symbols used hereafter:

• A,B,C, Y,W,X : Matrices and vectors (X and Y) such that C ≃ AB and Y = WX

(W being a weight matrix, X a layer input and Y its output).

• Ai, Wi: Rows i of respective Matrices A and W .

• Bj : Column j of Matrix B.

• k: Number of trials/hyperplanes used (and the main trade-off factor between
precision and complexity, with the error decreasing at a rate of O(k−0.5)).

• m: Number of rows of A, C, W and Y .

• p: Number of columns of B and C.

• n: Number of columns of A and W , and number of rows of B and X . When
discussing square matrices, we will assume that all dimensions are of size n.

• ϵ: Error made on the approximation.

• ϵ′: A constant arbitrarily close to zero used for the complexity notation.

• 1− γ: The confidence level for the error that occurs.

• ω: A complexity constant for square matrix multiplication algorithms such that their
complexity is expressed as O(nω).

• α: A complexity constant for rectangular matrix multiplication such that the product
of an n× n matrix by an n× nα matrix is known to be achievable in O(n2+ϵ′) [84].

3.2 Related Work

Matrix multiplication has undergone significant improvements in performance and effi-
ciency in recent years due to major advancements in algorithm and hardware architecture

24

3.2. Related Work

Figure 3.1: Sub-matrices in strassen’s algorithm

design. New techniques, such as block matrix multiplication [85] and low-rank mat-
rix approximation, have been developed to reduce the computational complexity of
matrix multiplication.

The progress made in algorithms and hardware architecture designs have enabled
significant improvements in the performance and efficiency of matrix multiplication,
opening new possibilities and discoveries in various fields [86].

In addition, specialized hardware, such as tensor processing units (TPUs) [87] and
graphics processing units (GPUs) [88], have demonstrated superior performance over
CPUs for matrix multiplication tasks that can be divided into parallel tasks. This parallel
processing is especially useful in deep learning applications, where large matrices are
frequently multiplied during the training of neural networks.

3.2.1 Advances in Matrix Multiplication

The conventional technique for matrix multiplication entails calculating each element of
the product matrix by summing the products of the corresponding rows and columns
of two input matrices. Several research studies have shown that the standard approach
for multiplying matrices can be improved. Strassen’s algorithm [89], for example, divides
and conquers the original matrices’ block partitions through a sequence of operations to
create seven temporary matrices. The algorithm works recursively dividing each matrix
into sub-matrices of approximately equal dimensions, such as A1,2, which refers to the
second block in the first row of matrix A as figure 3.1. This algorithm is used for the
seven products of these sub-matrices as shown below:

25

3. Efficient Fully Connected Layers in ANN

M1 =(A1,1 +A2,2)(B1,1 +B2,2)

M2 =(A2,1 +A2,2)B1,1

M3 =A1,1(B1,2 −B2,2)

M4 =A2,2(B2,1 −B1,1)

M5 =(A1,1 +A1,2)B2,2

M6 =(A2,1 −A1,1)(B1,1 +B1,2)

M7 =(A1,2 −A2,2)(B2,1 +B2,2)

(3.1)

After calculation Ms, the final results C is obtained with the equation 3.2. Instead of
performing 8 multiplications to calculate the product of two matrices, as in the standard
matrix multiplication algorithm, Strassen’s algorithm only requires 7 multiplications and
lowers matrix multiplication’s time complexity to O(nlog2 7).

C1,1 =M1 +M4 −M5 +M7

C1,2 =M3 +M5

C2,1 =M2 +M4

C2,2 =M1 −M2 +M3 +M6

(3.2)

Similar to the previous method, Don Coppersmith, and Shmuel Winograd [90] introduced
another approach in which the input matrices are divided into four smaller matrices.
However, this approach transforms the matrix multiplication problem into a polynomial
multiplication problem. The product of the smaller matrices is expressed as polynomials,
which are evaluated at specific points. The resulting values are then used to interpolate
a new polynomial that corresponds to the product of the original matrices.

In addition, a Fast Fourier Transform (FFT)-based algorithm can be used to accelerate
matrix multiplication when the matrices are transformed into the frequency domain. First,
a Discrete Fourier Transform (DFT) is applied, and then element-wise multiplication is
performed. The final result is obtained by performing an inverse DFT [91].

GPUs and TPUs can benefit massively from parallel algorithms. Many approaches
have been proposed to improve the performance of matrix multiplication on GPUs [92].

26

3.2. Related Work

The key is to distribute the computation between multiple threads where it can be done
concurrently. The computation can be divided based on multiple memory hierarchies,
where sub-tasks use different levels of memory, or multiple computation resources such
as threads or machines [93, 94, 95].

The discovery of new algorithms for matrix multiplication that are efficient for hardware
and have reduced complexity has been explored using machine learning methods. Fawzi
et al. [86] applied a reinforcement learning algorithm to improve upon the best-known
matrix multiplication algorithms. They formulated the discovery process as a single-player
game called Tensor-Game. In each step of Tensor-Game, the player selects how to combine
different entries of binary matrices (each cell representing a multiplication of a× a, where
a is the size of the matrices) to perform the multiplication. A score is assigned based
on the number of selected operations required to reach the correct multiplication result.
This approach is also capable of finding efficient multiplication algorithms for specific
hardware. Dominguez et al. [96] demonstrated that the search for matrix multiplication
algorithms can be formulated as an Ising-Hamiltonian optimization problem.

3.2.2 Computational Aspects

Matrix multiplications are usually computed in a deterministic way but can also be
calculated in non-deterministic fashion. Given the identical input matrices, deterministic
matrix multiplication yields the same result each time, making it a predictable and de-
pendable technique. However, both randomised numerical linear algebra and probabilistic
algorithms can be advantageously for multiplying matrices, which while it may seem
surprising at first, can generate various outcomes for the same input matrices. The precise
requirements and limits of the current application can determine whether deterministic
or non-deterministic matrix multiplication should be performed.

In the field of deterministic matrix multiplication, researchers have long been interested
in finding algorithms that can multiply two matrices with high efficiency. Two types
of matrix multiplication algorithms that have been extensively studied are rectangular
matrix multiplication and square matrix multiplication.

Table 3.1 provides a summary of the upper bounds on the complexity of exact matrix
multiplication algorithms, expressed in terms of the exponent ω (their complexity is
expressed as O(nω)). This table includes the various works that have improved upon the
original upper bound of ω < 2.808 established by Strassen in 1969.

27

3. Efficient Fully Connected Layers in ANN

Algorithm Upper Bound (ω)

Strassen [89] ω < 2.808

Pan [97] ω < 2.796

Bini [98] ω < 2.78

Schönhage [99] ω < 2.53

Romani [100] ω < 2.52

Coppersmith-Winograd [90] ω < 2.5

Strassen [101] ω < 2.4785

Coppersmith-Winograd [102] ω < 2.375

Stothers [103] ω < 2.374

Williams [104] ω < 2.373

Le Gall [105] ω < 2.3728639

Table 3.1: Reduced upper bounds for exact matrix multiplication algorithms.

Rectangular matrix multiplication, on the other hand, involves multiplying a matrix
with non-square dimensions by a matrix with square dimensions. This type of matrix
multiplication has important applications in areas such as image processing and data
analysis. Table 3.2 summarises the upper bounds on the complexity of rectangular matrix
multiplication for different matrix dimensions, assuming certain conditions are met. The
table includes the upper bounds on the complexity of multiplying a Rn×n matrix by a
Rn×logn matrix, as well as the complexity of multiplying an n × n matrix by an n × nα

matrix and an n × nα matrix by an nα × n matrix.

Type of Multiplication Matrix Dimensions Complexity Bound

Rn×n × Rn×logn n× n, n× log n n2 +O(n2) [106]
n× n by n× nα α < 0.172 O(n2+ϵ) [107]
n× nα by nα × n α < 0.30298 O(n2+ϵ) [108]

Table 3.2: Complexity bounds for rectangular matrix multiplication algorithms.

Non-deterministic algorithms have also been studied extensively. Indeed, many
techniques where randomised algorithms have been shown to improve on the algorithmic
complexity when compared to deterministic ones, although only approaching the ideal
solution to a given precision. Freivalds’ paper [109] originally demonstrated the usefulness
of randomised algorithms to linear algebra by showing that the likelihood of C = AB

can be asserted to a given, arbitrarily high probability. The running time of Freivalds’
algorithm isO(n2), contrasting with the known limits of deterministic algorithms for matrix

28

3.2. Related Work

multiplication at the time of publication. Further research on randomised algorithms
has been carried out to approximate specific results in linear algebra, including Singular
Value Decomposition (SVD) and low rank approximations. One can cite some notable
achievements by [110, 111, 112] and [113]. More recently, [114] has shown how to find
two correlated d dimensional vectors belonging to a set of n vectors with a complexity
less than O(n1.62 + nd). In general, if the sole purpose is to identify highly correlated
vectors in a k dimensional space ([113]), a nearest-neighbour search can suffice ([115]).
Indeed, these are problems that can easily be solved by performing matrix multiplications
at some stage, but this does not necessarily need to be the case.

If one wants to compute an actual product of two matrices to a given precision, there
are several iterative solutions exhibiting an O(n2) complexity per iteration for calculating
the estimation. This obviously implies a trade-off between the complexity constant and
the final precision wanted, with the precision factor until now being included in the
complexity result as a representation for the extra number of iterations needed. While not
all applications using matrix multiplications are able to deal with some error margins,
there are important areas where such an error could be acceptable or needed. Often,
this is due to the sheer amount of data and dimensions to be processed, giving no other
option than using approximation algorithms. For instance, Cohen and Lewis [116] have
demonstrated an approximation of a series of matrix multiplications in the context of
information retrieval and pattern recognition where the number of features/dimensions is
often in the order of 106 or even higher. Their algorithm works by creating a layered graph
where each node of a layer represents a row of a matrix. This graph is then processed
using a random walk that samples the final result in a Monte Carlo fashion. The main
focus in [116] being the finding of highly correlated data, a good strategy for that purpose
is often to quickly identify the largest dot products before performing higher precision
calculations on them by for instance computing the relevant dot products fully. It is easy
to see that one can approach the row/column dot product value defined as equation 3.3:

n∑
k=1

aikbkj (3.3)

By considering a random subset of all the products aikbkj as an approximation. This
selective sampling approach is sensitive (i.e., exhibiting unbounded variance) however
to the input values of the two matrices ([117], [118]), usually when high frequencies are
present in the data. To circumvent this problem, it was proposed in [119, 120] to select

29

3. Efficient Fully Connected Layers in ANN

a limited number of dimensions using an importance sampling scheme in accordance
with the lengths of rows of A and columns of B, which guarantees a bounded variance
for the estimation.

While not improving theoretical bounds, research restricted to Boolean matrix multi-
plication has nevertheless led to specific complexity results and produced more practical
algorithms. The famous Four-Russians algorithm ([121]) led to a reduced complexity of
O(n3/ log2 n) for multiplying Boolean matrices. This result was superseded by a com-
plexity of O(n3(log log n)2/ log9/4 n) in [122]); O(n3(log log n)3/ log3 n) in [123]; and finally
Ô(n3/ log4 n) in [124] – currently the best-known bound of this type.1

From a purely theoretical point of view, other ways to reduce the strict number of
arithmetic operations used for performing matrix multiplication exist. O(n2 log n) was
demonstrated by [125] while a better bound of O(n2) was achieved in [126] and [127].
However, these results are achieved by using extra-large integers or real values that usually
have a binary size in the order of O(n). This allows “packing” several operations into a
single theoretical arithmetic operation that cannot however be executed in O(1) steps on a
regular computer. In general, while the lowest bound value for ω is not yet known, many
have conjectured that the true value for ω is 2 for a deterministic algorithm.

A different, more streaming-oriented approach is the one proposed in [118] and based
on random projections principles as described by Johnson and Lindenstrauss ([128]).
At the heart of this technique is the computation of an ASS⊤B product, where S is a
Johnson-Lindenstrauss Transform (JLT) sign matrix. Indeed, [118] demonstrated that to
achieve an error less than ϵ with a confidence level of 1− γ. For example, ensuring.

Pr(||AB − C||F < ϵ||A||F ||B||F) ≥ 1− γ (3.4)

The number of steps required is as below:

O((mn+ np+mp)× (log(1/γ)× ϵ−2 + log(1/γ)2)) (3.5)

This bound was further improved [1] to

O((mn+ np+mp)× log(1/γ)× ϵ−2) (3.6)

, which can theoretically be reduced to O(n2) steps for sufficiently large n values if fast
rectangular matrix multiplications are used.

1The Ô notation is used to remove the poly(log logn) factor in the expression of the complexity.

30

3.2. Related Work

Since the pioneering work by Strassen [89] demonstrating a sub-cubic complexity,
many deterministic and non-deterministic techniques for matrix multiplication have
been proposed, as any progress made on such a fundamental concept can have a large
impact. Nevertheless, there are issues plaguing the more theoretically optimal algorithms,
and especially the deterministic ones. Typically, the presence of very large complexity
constants coupled with algorithms which do not benefit much from the stream-oriented
modern processor architectures (vs random access) make these low-complexity algorithms
difficult to use in practical applications. In the last decade or so, randomised iterative
algorithms that are able to get closer to an optimal complexity of O(n2) have gained
attention. These algorithms also exhibit a run-time complexity constant as a non-linear
function of the desired precision and usually in the order of ϵ−2. Nevertheless, there is a
point to using approximation algorithms as some applications that handle large datasets
do not necessarily need an exact solution. For instance, finding approximate correlations
quickly may be preferred to finding exact solutions in firm real-time systems (For example
financial services and high-frequency trading), especially if the error variance can be easily
quantified or at least estimated. Drineas and Mahoney have recently shown ([129]) that
various scientific areas can benefit from randomised linear algebra algorithms.

Finally, several algorithms have been proposed for specific, typically sparse matrices
that can be considered "compressible". In [130], it was shown that two sparse square
matrices containing at most m elements could be multiplied in O(m0.7n1.2 + n2+O(1))

steps. [131] demonstrated that if a matrix AB has a sufficiently low number of not close
to zero entries per column (< nα, where α is the best-known exponent for rectangular
matrix multiplication), then a compressed sensing algorithm exists that executes in O(n2+ϵ)

time steps. [132] demonstrated a randomised algorithm running in O(n2sω/2−1) that can
compute the product of two Boolean matrices if they contain at most s non-zero entries,
where ω is the best-known exponent for matrix multiplication [105]. Pagh [2013] improved
on those results by demonstrating an algorithm for computing AB exactly with high
probability, in time O(N + nb) in the case where A and B have at most N non-zero entries
and AB has at most b non-zero entries. Similarly, [118] and [133] computed Alon Matias
Szegedy (AMS) sketches [134] in a way that reduced complexity. For this, hash functions
are chosen such that they can be processed separately on matrices A and B. Counting
sketches are then mainly done in the frequency domain to accelerate the count before
decompressing the final result in the space domain. Kutzkov [135] worked on similar

31

3. Efficient Fully Connected Layers in ANN

principles using AMS sketches and for the first time demonstrated an algorithm running
in O(n2+ϵ) when AB has fewer than O(

√
n) non-zero elements.

Overall, the Mediterranean diet has similar advantages to some of these approaches
[3, 136, 137, 59] for inference as it combines predominant binary operators, low rank
matrices and random projections in one framework.

3.3 Mediterranean Matrix Multiplication

This section proposes the Mediterranean Matrix Multiplication, a new, simple, and practical
randomised algorithm that samples angles between the rows and columns of two matrices
with sizes (m,n, p) to approximate matrix multiplication in O(k(mn + np +mp)) steps,
where k is a constant related to the precision desired. The random sampling pattern, as
discovered initially by Goemans and Williamson [138], ensures the estimation of each
entry of the resulting matrix in constant time for a given precision. While the theoretical
complexity can be shown to be equivalent to the one proposed in [1] - i.e., n2 + O(n2)

when using fast multiplication algorithms of square matrices, the number of instructions
carried out is mainly bounded by bitwise operators, amenable to a simplified processing
architecture and compressed matrix weights. Results show that the method is superior in
size and number of operations to the standard approximation with signed matrices.

Our new algorithm will therefore improve upon past research on randomised al-
gorithms for matrix multiplications by firstly showing better convergence results for
correlated rows and column, and secondly allowing various packed bit-wise operations
that can be carried out at a faster pace than equivalent fused-multiply-and-add operations.
Our GPU implementation will for instance take advantage of fast population count units
available on modern architectures.

3.3.1 Monte Carlo Sampling of angles between vectors

We introduce a complexity analysis for the M3 algorithm proposed in this chapter. At the
heart of these algorithms is a relatively simple principle of randomly sampling the angle
between two vectors. This principle was initially introduced in [138] to provide a good
approximation to the solution of the Max-Cut problem, but curiously never found its way
into a matrix multiplication algorithm. In this chapter, it was noticed that the probability
of having a random plane separating two vectors (i.e., the probability of getting opposite

32

3.3. Mediterranean Matrix Multiplication

dot-product signs) was proportional to the angle formed by these two vectors. Others have
since used this principle successfully and applied it to produce algorithms identifying
similarities (e.g., [139] with the aim of providing good hash functions).

This work finds a new scope of application for this idea by subsequently integrating it
inside a simple Monte Carlo process eventually leading to a lower matrix multiplication
complexity bound.

The starting point of our Monte Carlo evaluation is the expression of a dot product
between two vectors as:

Ci,j = AiBj = ||Ai|| · ||Bj || · cos θij . (3.7)

From there, one notices that the angle value θij is the only limiting factor in establishing a
minimal complexity result for matrix multiplication. Indeed, all the necessary ||Ai|| · ||Bj ||
vector norm products can be calculated in O(n2) steps. If we can estimate the angle for
every entry Ci,j in k steps with a simple Monte Carlo sampling process, then we know
that the variance in the estimation will be proportional to 1/k. Furthermore, if we can
compute a given number of k trials “for free” (i.e., in constant time per entry) as n increases,
with a relationship k = f(n) and f being a monotonic function that tends to infinity, the
relative error made can then be factored out of the complexity expression. This allows
the existence of a lower complexity bound for matrix multiplication approximation, with
our main theorem expressed as follows:

Theorem 3.1 Let ϵ, ϵ′ and γ be three positive real values arbitrarily close to 0. The product
of two square matrices A and B can be approximated as a matrix C with an algorithmic
complexity equivalent to that of a rectangular matrix multiplication (i.e., either O(n2+ϵ′)

or n2 +O(n2) steps), while satisfying

Pr(||C −AB||F < ϵ||A||F ||B||F) ≥ 1− γ (3.8)

While a similar result has already been given in [1], we will demonstrate that it is still
valid when sampling angles instead of using randomly signed matrices.

3.3.2 Sampling principles

Lemma 3.2 Let Ai and Bj be two non-collinear vectors of any length, and P be the 2D
plane defined from a linear combination of these two vectors and the origin as shown
in Fig. 3.2. The angle between these two vectors can be approximated with a Monte

33

3. Efficient Fully Connected Layers in ANN

Figure 3.2: An illustration of Monte Carlo sampling of an angle between two angles which
accumulates results from random tests (Algorithm 1). Left: Both points are on the same side of the
hyperplane and test will return 0. Right: The hyperplane is separating the two points and the test
will return +1.

Carlo simulation (Algorithm 1) that initialises the angle to 0 and then repeats k − times1)
Choosing a random line Lϕ of P crossing the origin; 2) Adding π

k to the angle when Lϕ
separates the two vertices Ai and Bj .

The justification for this lemma is simple and has been discussed in detail in [138].
We will provide a thorough explanation of the proof and examine some of its prop-
erties for completeness.

Proof. Let θ be the angle between two unit vectors as defined by the arc-cosine of the
vectors’ dot product, and within the range [0..π] (i.e., the complement of the reflex angle).
This angle can be defined as shown in Fig. 3.2 by the integral over the section related to
the angle

θ =
1

2

∫ 2π

0
Box(Ai, Bj ,Lϕ)dϕ. (3.9)

Where Box is a box function that returns 1 if the line Lϕ separates the two vertices Ai and
Bj , and 0 otherwise. Note that since Lϕ is equivalent to Lϕ+π, the final result needs to be
divided by a factor of two. The mathematical principles to estimate this integral using a

34

3.3. Mediterranean Matrix Multiplication

Algorithm 1 Iterative dot product approximation by angular sampling.
Input: Row Ai, column Bj and a number of iterations k.
Output: An approximation Cij such as Cij ≃ AiBj .

C ′
ij = 0

NormAi = ||Ai||
NormBj = ||Bj ||

for s = 1 to k do
Es = RandomNormalDistribution(σ = cst, µ = 0)
DotAi = Ai · Es

DotBj = ET
s ·Bj

if (DotAi ·DotBj < 0) then
C ′
i,j = C ′

i,j + 1

Ci,j = cos(πkC
′
i,j) ·NormAi ·NormBj

Monte Carlo simulation are well established and θ can be evaluated as

θ̂ =
k∑

t=1

π

k
Box(Ai, Bj ,Lϕt)) =

π

k

k∑
t=1

Box(Ai, Bj ,Lϕt)), (3.10)

, where k is the number of random tests desired, with k > 0. Finally, we have been
assuming that the vectors are not collinear as we would not be able to define a 2D plane
otherwise. If this is the case, Ai and Bj will always be on the same side of the separating
line and the approximated value for the angle will be 0, which is as expected.

It is useful to determine the statistical properties of such a test (Algorithm 1), which
can be established from classical statistical analysis. If we assume that the Lϕ space is
sampled uniformly, then our box test is a Bernoulli trial of well-known success probability
θ
π and performing k samplings will result in a binomial distribution, which leads to
the following lemma:

Lemma 3.3 There exist a sufficient number of iterations k, an error margin ϵ decreasing as
k increases, and a confidence level 1− γ such that:

Pr(|Ci,j −AiBj | ≤ ϵ · ||Ai|| · ||Bj ||) ≥ 1− γ (3.11)

Proof. The main statistical property of interest to us is the evaluation of the error made
for the estimation within some level of confidence. Firstly, as we are dealing with a

35

3. Efficient Fully Connected Layers in ANN

well-established sum of Bernoulli trials (i.e., a binomial distribution), the variance on the
estimation θ̂ is given by

Var[θ̂] = Var
[k∑
t=1

π

k
Box(Ai, Bj ,Lϕt)

]
=

k
π2

k2
Var[Box(Ai, Bj ,Lϕt)] =

π2

k

θ

π
(1− θ

π
)

(3.12)

Also, the expected value E(θ̂) is trivially equal to θ. Note that

θ

π
(1− θ

π
) ≤ 1

4
, θ ∈ [0..π]. (3.13)

Therefore, the maximum variance is achieved for θ = π/2 and is bounded by

Var[θ̂] ≤ π2

4k
. (3.14)

Hence, the error on the real angle is expected to decrease proportionally to the square
root of the number of trials k. Note that we have voluntarily remove the θ

π (1−
θ
π) factor

when generalising this result to all possible angles later on. Should we have some a
priori knowledge about the minimal or maximal values of the row-column angles, such a
constant could be re-introduced in the subsequent estimation of the error bound.

A similar 1/k convergence rate is encountered in algorithms exposed in [120] and [1],
with the exception that it is now weighted by a constant in the range [0..π2/4]. Small
angles will therefore require fewer iterations while angles close to π/2 will need 2.46×
more samples to reach the same error level.

We are now interested in the statistical error ϵ that results from approximating an angle
with k trials, in conjunction with a confidence level of at least 1− γ. This can be expressed
as

Pr(|θ̂ − θ| ≤ ϵ) ≥ 1− γ. (3.15)

From the variance and expected value of the Bernoulli trials, one can use Chebyshev’s
inequality to obtain a bound for the error defined as

Pr
(
|θ̂ − θ| ≤ ϵ

)
≥ 1− θ(π − θ)

kϵ2
. (3.16)

The ϵ value is therefore linked to the chosen number of iterations k and the confidence
level γ as follows:

ϵk,γ =

√
θ(π − θ)

kγ
, γϵ,k =

θ(π − θ)

kϵ2
and kϵ,γ =

θ(π − θ)

γϵ2
. (3.17)

36

3.3. Mediterranean Matrix Multiplication

The actual property we are interested in is the estimation of the error made on cos θ̂

as it is the value needed to compute the final dot product evaluation. The cos function is
monotonic in the range [0..π], with | cos′ θ | ≤ 1. Therefore

∀θ1, θ2 ∈ [0..π] : | cos θ1 − cos θ2| ≤ |θ1 − θ2|. (3.18)

Which simply implies

Pr(| cos θ̂ − cos θ| ≤ ϵ) ≥ 1− θ(π − θ)

kϵ2
≥ 1− γ. (3.19)

We conclude that for any ϵ and γ in the range [0..1], there exist a number of iterations
kϵ,γ such that one can estimate the value cos θ̂ with an error margin ϵ at a level of confidence
1− γ. For any given confidence level, the decrease rate in the error is proportional to 1√

k
.

It follows that the error made on the evaluation of each Ai ·Bj product is bounded with a
given confidence level expressed as 3.20.

Pr
(
|Ci,j −AiBj | ≤ ϵ · ||Ai|| · ||Bj ||

)
≥ 1− θ(π − θ)

kϵ2
≥ 1− γ. (3.20)

Supposing that there is an algorithm allowing this bound for every entry of the result
matrix, the global error bound needs to be expressed in relationship with the Frobenius
norms of A and B to be comparable with other results in the area.

Lemma 3.4 There exists a sufficient number of iterations k that verifies:

Pr

(
||AB − C||F ≤ ϵ||A||F ||B||F

)
≥ 1− γ (3.21)

Proof. We have

Pr

(
||AB − C||F ≤ x

)
≥

Pr

(
m,p∑

i=1,j=1

(
||Ai|| · ||Bj || · | cos(θ̂ij)− cos(θij)|

)2

≤ x2

)

≥ Pr

(
m,p∑

i=1,j=1

(
||Ai|| · ||Bj || · |θ̂ij − θij |

)2

≤ x2

) (3.22)

37

3. Efficient Fully Connected Layers in ANN

Where x is a positive value. We now calculate the expected value of the inner sum

E

(
m,p∑

i=1,j=1

(
||Ai|| · ||Bj || · |θ̂ij − θij |

)2
)

=

m,p∑
i=1,j=1

(
||Ai||2||Bj ||2 ·E

(
(θ̂ij − θij)

2
))

=

m,p∑
i=1,j=1

(
||Ai||2||Bj ||2 ·

(
Var

(
θ̂ij − θij

)
+E

(
θ̂ij − θij

)2))
=

m,p∑
i=1,j=1

(
||Ai||2||Bj ||2 ·Var

(
θ̂ij
))

(3.23)

We know from (3.14) that the variance on every angle estimation can be bounded, leading
to

E

(
m,p∑

i=1,j=1

(
||Ai|| · ||Bj || · |θ̂ij − θij |

)2)
≤

π2

4k

m,p∑
i=1,j=1

||Ai||2||Bj ||2 ≤
π2

4k
||A||2F ||B||2F

(3.24)

Markov’s inequality can now be used to finalize an upper bound. Combining (3.22), (3.24)
and (3.25), we get

Pr

(
||AB − C||F ≤ x

)
≥

1− x−2E

(
m,p∑

i=1,j=1

(
||Ai|| · ||Bj || · |θ̂ij − θij |

)2) (3.25)

Let x be ϵ||A||F ||B||F . We finally obtain

Pr

(
||AB − C||F ≤ ϵ||A||F ||B||F

)
≥ 1− π2

4kϵ2
≥ 1− γ (3.26)

We therefore conclude that for any values ϵ and γ in the range [0..1], there exists a large
enough integer k verifying the hypothesis.

Even though this proof requires k to be in the order of O(ϵ−2γ−1) as it is derived from
a Markov inequality, it is well known that binomial distributions will lead to a ϵ−2 log(1/γ)

bound when k is finite, which is similar to the best known bound given in [1].

38

3.3. Mediterranean Matrix Multiplication

3.3.3 Basic algorithm

We now extend the randomised algorithm 1 respecting the bound described in the previous
section to all entries of Matrices A and B. Let vectors Ai, Bj , Es be three non-collinear
vectors of Rn, with Es chosen randomly on the hypersphere centred on the origin and
defining a unique orthogonal hyperplane Ps. The intersection of Ps with the 2D subspace
P ′

i,j — defined from a linear combination of vectors Ai and Bj — provides a random line
Li,j,s inP ′

i,j that crosses the origin. It also ensures randomness with a uniform distribution
over the angle, as initially demonstrated by [138]. As such, Li,j,s is our random, uniformly
distributed line that can be used for sampling the angle, which also follows the statistical
convergence properties enunciated earlier. We can now make the whole process efficient
with O(mn+ np+mp) steps per iteration by re-using the very same Ps hyperplane for all
dot products occurring in a matrix multiplication. Note that choosing a random plane
ensures the uniform distribution of Li,j,s for all the P ′

i,j planes. Hence, the basic test
simply consists first of computing the signs of all dot products AiEs and ET

s Bj , which
requires O(mn+ np) operations per random split. Obtaining opposite signs at a given s

iteration, with s ∈ [1..k], means that Ps is a plane separating vectors Ai and Bj . This sign
test will need to be repeated O(mp) times (or O(n2) times in the context of square matrices)
to cater for all possible dot product combinations (Ai, Bj). Hence, the complexity of the
basic algorithm over k iterations is O(k(mn+np+mp)). Finally, once all the angle cosines
have been sampled, a post-processing scale of complexity O(mn+ np+mp) will multiply
each result entry by the respective norms ||Ai|| and ||Bj ||.

To generate a uniform and unbiased distribution on the hypersphere as required by
the algorithm, it suffices to generate vector Es entries randomly using a random number
generator following a normal distribution (i.e., with a fixed parameter σ and µ = 0) for
each dimension independently. Importantly, the likelihood of choosing Es orthogonal
to Ai or Bj becomes infinitely small as the range of distinct floating point values tend to
infinity. One limitation with this algorithm though, is that the error made on each Ci,j

entry will decrease at a rate of k−1/2, similar to results obtained by [120] and [1].

3.3.4 Reformulated algorithm and Complexity Bounds

As mentioned by Clarkson and Woodruff [1], to improve on the trivial complexity bound
obtained in (3.26), one needs only to notice 1) that the error decreases as the number of
iterations k increases; and 2) that Algorithm 1 can be broken down into three rectangular

39

3. Efficient Fully Connected Layers in ANN

matrix multiplications, which allows us to compute k iterations for “free" (i.e., with the
same algorithmic complexity of computing one iteration,) where k << n but k also
increases with n. To do so, we can write the whole algorithm as in algorithm 2.

To allow acceleration of rectangular matrix multiplications, an integer k must be
chosen for instance such that k = ⌊nα⌋ (cf., algorithms from [84] and [108]); or such
that k ≤ log n ([106]). Indeed, algorithm 2 in its first stage multiplies the Rn×n matrix
A with an Rn×k matrix E made of k random vectors of Rn, and similarly multiplies
B with E⊤. The second stage, which counts the number of separating planes, will
require 2kn sign extraction operations to be performed beforehand. This thresholding will
process every entry of the two temporary matrices AE and E⊤B such that their respective
entries are set to 1 when (AE)i,j > 0 and (E⊤B)i′,j′ < 0 , and -1 otherwise. Finally,
the two thresholder sign matrices of respective sizes Rn×k and Rk×n will be multiplied
together, which, if implemented as a rectangular matrix product, is also possible with
a complexity of either O(n2+ϵ′) if k < 0.30298 [108] or n2 + O(n2) for k ≤ log n [106].
This also completes the proof for theorem 3.1.

Algorithm 2
Algorithm 1 rewritten as a product of three rectangular matrix multiplication resulting in
a theoretical O(n2+ϵ′) or n2 +O(n2) algorithmic complexity.

Input: Matrix A of rows Ai, Matrix B of columns Bj .
Output: The resulting matrix entries Cij such as C ≃ AB.

for i = 1 to n do
NormAi = ||Ai||
NormBi = ||Bi||

k = f(n) ▷ k = floor(nα) or k = floor(log2(n))
E = RandomNormalDistribution(σ = cst, µ = 0) ▷ O(n2)
A′ = AE ▷ Rectangular Matrix multiplication
B′ = E⊤B ▷ Rectangular Matrix multiplication
for i = 1 to n do

for j = 1 to n do
A′

i,j = (A′
i,j > 0) ? 1 : −1

B′
i,j = (B′

i,j < 0) ? 1 : −1
C ′ = A′B′ ▷ Rectangular Matrix multiplication
for i = 1 to n do

for j = 1 to n do
Ci,j = cos(

π(C′
i,j+k)

2k) ·NormAi ·NormBj

40

3.3. Mediterranean Matrix Multiplication

3.3.5 Practical considerations

As improvements in the complexity of matrix multiplications are sometimes not practical,
this section discusses the details behind an implementation of matrix multiplication
approximation algorithms on modern architectures like GPUs. Algorithm 2 can be broken
down into three stages. The first stage will compute WE and E⊤X , where E is a matrix
made of k columns. It would therefore seem natural for k to be smaller than n as otherwise
the computing effort would be similar to that of a basic “exact” matrix multiplication
algorithm. This however is not a strict requirement for our algorithm as it performs
most operations bitwise and therefore any value k < 32n could be beneficial. One could
also use a random number generator to create E, removing the need to store this matrix.
However, we can actually process up to k = n separating hyperplanes by convolution
in mn log(n) (WE) and n log(n) steps (E⊤X) if E is chosen as a Toeplitz matrix with
columns defined from a rotated random vector. Indeed, our hyperplanes must be chosen
independently, and it is easy to see that the columns of a randomised Toeplitz matrix
satisfy E(EiEj) = 0, i ̸= j. Furthermore, using a Toeplitz matrix we only need to create
and store the first column E0 of E, and possibly every subsequent column Ei such that i
(mod n) = 0 (n being the number of columns of our weight matrix W).

In the next stage, thresholding ofWE andE⊤X can be performed inO(2kn) operations
and thus has no influence on the overall complexity of the process. The last stage is what
differentiates our algorithm in practical terms from other algorithms like Clarkson and
Woodruff’s approach ([1]). As thresholding is not embedded in the random matrix but
comes later in the pipeline, the final operation is a pair-wise computation of hamming
distances of complexity O(kmn), which is simpler to carry out than a full-blown matrix
multiplication. It can for instance be implemented with Boolean matrix multiplication
algorithms like the Four-Russian algorithm ([121]), which would reduce the number of
computations by a log(n) or even a log2(n) factor for practical matrix sizes. However,
this will require implementing look-up tables and adding various barriers in the flow of
operations, therefore limiting parallelism. Even though current GPUs allow fast look-up
operations, the throughput obtained for random lookups in tables more than a few kilobytes
would be low when compared to the throughput of other simpler operations like FMA ones.
Modern processor architectures, however, include population count instructions that can
output sums of 32 bits (e.g., NVIDIA CUDA cores) or 64 bits (e.g., all modern X86 CPUs)
integers at every clock cycle. Being able to process so many elements at once natively

41

3. Efficient Fully Connected Layers in ANN

is likely to be competitive with any algorithmic speedup we could get from Boolean
matrix multiplications. Table 3.3 therefore summarises the differences between the signed
matrix approach and ours that we must consider for obtaining maximum performance in a
practical context. While bitwise operations have a much higher throughput in general as we
process chunks of 32-bit elements at a time, our approach needs three logical instructions
for every corresponding Fused Multiply-Add (FMA) instruction carried out in a regular
matrix multiplication. More precisely, processing bitstream chunks can be implemented
with three ALU instructions and three reads and one write as sum+ = popcount(X ⊕ Y).
Furthermore, our method requires approximately 2.46 more samples to obtain the same
error level but at the same time only requires a single hamming distance kernel to be run,
contrasting with the three matrix multiplications required for computing ASSTB. As
such, using bit-wise operators to compute Hamming distances may theoretically result in
an effective 13× speedup, based on the assumption that each compute unit can output
one operation per clock. This potential speedup is high, especially as we have not been
able to find a better implementation design that could match the performance of the
population count instruction. All in all, our Mediterranean multiplication requires 1 XOR,
1 POPCOUNT and 1 ADD to process 64 planes in parallel, instead of requiring a single
Fused Multiply-Add (FMA) [1] for every plane, but also requires approximately 2.46×
more samples in the worst case to obtain the same variance as [1]. While we will not
analyse energy efficiency, we also hypothesise that the underlying circuits to implement
⊕, integer ADDs and POPCOUNT operations are much simpler than FMA circuits and
could consume less energy overall if implemented on a specialised circuit.

3.3.6 GPU Implementation

All kernels implementing the steps described above have been developed using the CUDA
platform, with the kernel pipeline shown in 3.3. This environment provides us with
optimized kernels for linear algebra operations like matrix multiplications and batched
Fourier transforms already. In theory, most of the kernels we have implemented or reused
(i.e., multiplication, binarizing, norm and regularization kernels) should run at a very
fast pace as their complexity is O(n2). In practice, they require expensive O(n2) memory
reads/writes, and therefore their execution time may not be negligible. The four FFT
kernels execute slightly more floating-point operations as their complexity is O(n2 log n).
It must however be noted that while matrix multiplication kernels usually get close to the

42

3.4. Compressing Fully Connected Layers

peak floating-point GPU performance (assuming an O(n3) algorithm), GPU FFT kernels
are usually less efficient as memory accesses and barriers create additional parallelisation
challenges. Therefore, the FFT kernels will have an impact on performance for practical
matrix sizes. In contrast, the Hamming distance kernel has a complexity of O(kn2) when
processing the two n2 bitstreams A′ and B′. Bitstreams are encoded and manipulated
as 64-bit integers in our code, which delivers better performance even though current
CUDA hardware and instructions like POPCOUNT work natively on 32-bit integer only.
As this kernel processes k separating planes, one can simply restrict computations to two
kn submatrices belonging to respectively A′ and B′. The kernel itself can otherwise be
optimized similarly to GPU matrix multiplications kernels, just replacing floating-point
instructions by 64-bit integer ones that perform population counts. A crucial optimization
however is to limit memory transfers by loading submatrices to shared/local On-GPU
memory before computing hamming distances from the submatrices.

3.4 Compressing Fully Connected Layers

This section demonstrates a first application of M3 in the ANNs by showing that weights
of Fully Connected layers can be compressed between 30× and 100× with little to no loss
in inference accuracy. The requirements for pure floating-point operations are also down
as our algorithm relies mainly on simpler bit-wise operators.

Artificial Neural Networks (ANN) are composed of layers of neurons, which are
connected by weight matrices. These matrices need to be updated to optimal values using
back-propagation. Matrix multiplication becomes the most time-consuming process in an
ANN because the number of weights can be quite large, particularly when Fully Connected
(FC) layers are used. The computation of the dot product between each input feature and
each neuron in an FC layer necessitates a large number of matrix multiplications.

Therefore, it is not surprising that extensive work has been done to optimize this part
of the learning process. One popular way to do so is to use lower precision calculations,
with register sizes between 4 to 16 bits being implemented nowadays on specialised
hardware. A popular format showing little loss in overall precision is bfloat16, which
is currently preferred to the more standard IEEE 16-bit half-precision floating point
format in ANNs applications [47].

While it is unclear what the best precision to use is and what are the reasons behind
this, some researchers have been able to push it to a limit of 1 bit by using binary network

43

3. Efficient Fully Connected Layers in ANN

models. In BinaryConnect [2], Courbariaux and Bengio provided a training algorithm
to restrict weights to {1,-1}, therefore improving storage by a factor of 32 (compared to
FP32) with little impact on the error rate. As integer or FP prevision calculations were
still required, XNOR-Nets were proposed in [3], allowing binarized (0 or 1) weights,
operations, and input. Recently, a more flexible model using a variable number of bits
(e.g., 1 to 3) has been proposed in [140].

As reducing precision reaches its limits quickly, other approaches have focused on
compressing matrices as a whole. A survey of some of the approaches is provided in
[46]. A typical way to compress matrices in scientific applications is to use a low-rank
approximation, where the less important eigenvectors of the kernel are typically removed
[141, 142, 143]. Novikov et al [144] improved on low-rank approximation by proposing
tensor decomposition and demonstrated several-fold improvements in the compression
of Fully Connected layers.

Random projection methods in ANNs have been popularised with kitchen sinks [136],
making kernel methods more scalable. The Fastfood transform [137] and then Deep Fried
networks [59] improved on kitchen sinks by reducing memory space and processing time.
At the heart of these methods is a diagonal random matrix (thus reducing storage costs
from O(nd) to O(n)) combined with fast transforms that can approximate the weight
matrix of a Fully Connected Network [59].

3.4.1 Using the Mediterranean Matrix Multiplication in ANNs

A natural question is whether this algorithm can still find a place in applications bounded
by tensor operations, like artificial neural networks. Although using it directly for training
models was not ideal due to the relatively large error propagation, we were able to
successfully compress the fully connected layers of a ANN for data inference.

As an input X is progressing through the layers of an artificial neural networks it
follows a sequence of matrix multiplications. For an FC layer, we can write this operation as
Y = WX where matrix W represents the weights an FC layer and X the input. Replacing
a standard matrix multiplication with the M3 one requires the calculation of WE and
E⊤X , where E is a random matrix of k columns, and binarizing these results similarly
to algorithm 2. The pipeline for this is given in Fig. 3.3. We therefore need to calculate

44

3.4. Compressing Fully Connected Layers

Figure 3.3: Pipeline of operations for estimating the product Y ≈WX . Operations needed during
inference are shown in blue. Note that the entries of the constant matrix E follow a normal
distribution and do not need to be stored.

first Bin(WE) and Bin(E⊤X), with

Bin(X) = {Bin(Xi) }, with Bin(Xi) =

{
1 Xi ≥ 0

0 Otherwise
(3.27)

Note that the Bin operator, unlike in algorithm 2, is applied symmetrically to both matrices
as we optimise code with XOR (⊕) and POPCOUNT operators instead of using multiply
and add operators. It is now trivial that Bin(WE) can be pre-calculated before prediction
phase as both matrices W and E are already known. Therefore, we can store the FC layer
as a stream of binary data that, depending on the chosen number of hyperplanes k, may
become significantly smaller than the original weight matrix W . We also need to store the
vector of norms {|Wi|} for the last step of the algorithm, but this space is almost negligible
as this represents only a single floating-point value per row of W .

We would logically need to store a copy E as well to multiply it with the input X that
is unknown at this stage. We do however have two options here given the random nature
of this matrix. We can either store a random seed number and produce the same random
number on the fly or store a single column vector of random numbers and rotate this vector
to generate up to n− 1 extra columns of E, in the same spirit as the Fastfood transform [137]
or Deep Fried networks [59]. It is important to notice that this gives us the opportunity to

45

3. Efficient Fully Connected Layers in ANN

compute the product E⊤X with a low number of floating-point operations by computing
it in the frequency domain. As such, the complexity of the FC layer is mainly bounded
by the operation combining the two binary streams obtained, which is represented in
algorithm 2 by a standard matrix multiplication but can be implemented from simple
XOR (⊕) and POPCOUNT operators. These two operators require far fewer transistors
than floating-point units and can be done on 32 or 64 bits at a time on modern hardware.
Hence, the M3 not only provides a way to compress FC layers during prediction, but also
provides a simplified logic with far less emphasis on floating-point operations.

3.4.2 Training the Neural Network

Training needs to reflect the changes we have made to the way our FC layers work. This
section describes how we ensure that a graph-based tool like TensorFlow is still able to
learn patterns correctly once we are introducing our Mediterranean multiplication.

We initially train the neural network in a standard way. For some datasets (MNIST),
we also augment the training dataset by adding rotated and translated samples to provide
better results ([145, 146, 147]). We then consider that Convolutional Layers (CL), if present
in the model, are trained and we focus on replacing the standard FC layers’ multiplications
with the new Mediterranean Matrix Multiplication. Indeed, FC layers are usually located
at the end of a neural network. For each FC layer l we associate a unique constant random
matrix El with entries following a normal distribution. This matrix is in our tests generated
from a pseudo Random Number Generator (RNG) along with a unique seed and is created
either on the fly (no storage requirement) or just from the stored columns El

i (mod n)=0 of
El as all other columns El

i can be calculated from a single-hop rotation of El
i−1. Rotating

columns is preferable to just generating all the numbers from a RNG as it allows making
use of the FFT algorithm to perform matrix multiplications efficiently.

From there, we can process forward, and back propagations as follows, assuming that
the CLs are already trained and the output they produce will not change for the training
dataset. The forward propagation is calculated by simply replacing the regular matrix
multiplication by our M3 variant in the FC layers, hence computing WE and ETX at this
stage. We however keep the regular matrix multiplication algorithm when performing
back-propagation because the M3 pipeline is not differentiable, which has also the benefit
of learning the extra level of error introduced in the forward pass without introducing

46

3.5. Results

new errors in the back-propagation step. We then simply use the weight matrix W as
the gradient for back-propagation in our TensorFlow implementation.

3.5 Results

This section presents the practical results obtained from the implementation of the M3

method in a GPU, as well as its applications in neural networks. In order to compare
the error performance of our method with [1]. We conducted experiments with different
parameters and evaluated the results using standard metrics.

The implementation of the M3 method on a GPU yielded significant improvements in
computation time, enabling faster and binary operations for large matrices. Specifically,
we observed a speedup factor of 10× compared to standard multiplication.

Furthermore, we evaluated the performance of our method in the context of neural
network training and found that it outperformed existing methods in terms of compressing.
Specifically, our approach achieved an average improvement of 10% in the final test accuracy
compared to the state-of-the-art method. Overall, the results demonstrate the effectiveness
and practicality of the M3 method in addressing the computational challenges of large
matrix multiplication, and its potential for improving the performance of compressing
neural network models.

3.5.1 Testing Environment

All tests are performed on an Intel 4770K processor running at 3.9GHz and coupled with
16 GB of RAM and an Nvidia GeForce GTX 1080TI Graphics card (11GB). TensorFlow
2.0 is used and runs on a Linux distribution.

3.5.2 Error analysis

To test the Mediterranean Matrix Multiplication, we create two matrices A and B using
random number generators. Entries of these two matrices match a normal distribution
with θ = 1 and µ = 0, except for one specific test where we analyse the effect of µ on the
final error obtained. While it is difficult to allow for all possible distributions arising from
specific circumstances, a normal distribution was thought to be representative of various
processes. It must be noted that the content of the two matrices A and B itself should not
affect performance tests but could potentially affect the accuracy of final approximation.

47

3. Efficient Fully Connected Layers in ANN

Figure 3.4: Comparison of error rates between M3 method and [1] in approximating matrix AB,
by varying the matrix sizes with p = n or fixing n and changing the number of samples used.
The chart also displays the final error rates of both methods after varying the µ parameter of the
Gaussian random number generator, with σ = 1.

All floating-point computations are performed using the standard IEEE 32-bit precision.
Errors in the approximation are measured after executing a full matrix multiplication
and computing, where AB is obtained from a CUBLAS kernel call and C is the final
estimation. Results are compared both to standard matrix multiplication and to ASS⊤B,
where S is a random sign matrix.

∥C −AB∥F /∥A∥F ∥B∥F (3.28)

It can also be seen that Clarkson and Woodruff’s method exhibits a lower error for
the same number of iterations, with a measured error ratio close to π/2. This means
that to get a similar error one needs to compute 2.46×more planes with our algorithm,
which still compares favourably as our pipeline is processing 32 or 64 bits per instruction
vs. one. However, these variance results are obtained for the worst-case scenario where
rows of A and columns of B are generated with µ = 0, resulting in almost orthogonal
vectors. By varying µ (Fig. 3.4e) so that these rows and columns become more correlated,
the error produced by our technique is actually reduced dramatically and tends to 0, a

48

3.5. Results

direct consequence of the Bernoulli trials (cf. Eq. 3.12). This is an important fact as it
demonstrates the significant superiority of sampling angles to find correlated data over
the original method of signed matrices.

As expected from our theoretical analysis, the error decreases linearly according to the
square of the number of iterations when using normally distributed inputs (Fig. B.3). One
can also observe some variance in the final error made when the µ parameter becomes
large. This can be explained as follows. In general, the obtained errors are very close to the
theoretical ones for µ = 0 as there is usually very little variation over the error measured
due to the large number of entries in the final matrices. However, signed matrices perform
badly in that regard when rows of A and columns of B become similar as the entries of C
tend to be highly correlated due to computations becoming very similar for all entries. Our
algorithm may also more subtlety inherit this problem, but as the error tends to zero, so
does the error variance, which makes it more stable than the standard ASS⊤B approach. It
must finally be noted that we used n = k = 8192 in this particular test as using single-float
precision provides limited accuracy which may affect the error calculation. This comes to
light in Fig. 3.4 where the error ratio between the two techniques starts differing noticeably
from the theoretical π/2 for n = 16384 but in the favour of our algorithm.

3.5.3 M3 CUDA Implementation

This section provides test results for a simple CUDA implementation of the multiplication
(Fig. 3.3) of two random matrices with varying parameters. Kernels are currently
optimized for power of two sizes, with a minimum size n of 256. A maximum matrix
size of 16384 (1GB per matrix) has been tested, due to GPU memory limitations. Results
(single floating-point precision) are compared both to standard matrix multiplication and
to ASS⊤B, where S is a sign matrix. Computing ASS⊤B just requires three CUBLAS
calls and therefore can be considered optimal and optimized.

Table 3.3 summarises the factors affecting performance between the use of signed
matrices [1] and the proposed method. While our technique requires more samples to
estimate dot products at angles close to π/2 due to a higher variance, it also benefits
from most operations being done by binary operators that can process 64 bits at a
time (as implemented) to calculate the Hamming distance. However, a breakdown
of the performance of the different components of the pipeline (Fig. 3.6) also shows

49

3. Efficient Fully Connected Layers in ANN

Figure 3.5: Performance comparison between our method, ASSTB [1] (b, c & d), and a direct
matrix multiplication of A and B (e & f). As we mentioned, to achieve the same level of error, M3

necessitates about 2.46 times as many samples.

that operations with a theoretically negligible complexity have a significant impact on
performance, especially when the matrix size is small.

Figure 3.5 shows the performance gains obtained with our new technique and compare
them to both a standard multiplication and Clarkson and Woodruff approach [1]. As
expected, some significant speedup is obtained for large matrix multiplications, where
our method is measured to be up to 4.64× as fast as the use of signed matrices [1] after
correcting for the higher variance per iteration, and as implemented. When compared
to a standard matrix multiplication, we can be up to 10× faster, depending on the
maximum error tolerated.

50

3.5. Results

Figure 3.6: Breakdown of performance for the various kernels used in our GPU implementation. It
shows the percentage of operations required by each group in separate columns.

3.5.4 Training Artificial neural network with M3

We study in Figs. 3.7, and B.1 the effect of directly replacing the standard matrix
multiplications with our M3 version in the training of two ANN models with respectively

51

3. Efficient Fully Connected Layers in ANN

Table 3.3: Comparison of the different practical factors influencing the performance of the signed
matrix approximation [1] and our own Hamming distance kernel. (GPU: NVIDIA 1080Ti)

Factor Signed Matrices [1] Our Approach
Theoretical Complexity
- Square matrices

O(n2) O(n2)

Base variance /
Sampling constant

1 for all angles (Fig. 3.4e) π2/4 ≈ 2.46 @ angles π/2
and −π/2 0 @ angles 0 & π

Core arithmetic instruc-
tions per sample per
entry

1 Fused Multiply and Add 1 POPCOUNT, 1 XOR, 1
ADD
(32- or 64-bits instruction)

Other performance
factors

3 matrix multiplications
needed.
6 floating-point operations
per sample per entry.

3 binary operations per
sample
per entry. 32 or 64 bits
processed per instruction.
Extra operations of lower the-
oretical complexity taking
a non-negligible time (Fig.
3.6).

Peak throughput as
measured

∼10 TFlops ∼82 TBits/s as implemented

Kernel implementations CUDA libraries only
(3 matrix multiplication)

Own Hamming distance
kernel (Fig. 3.3)

two and three dense layers of the MNIST models (no data augmentation) being replaced.
The replacements are made in either the forward pass, the backward pass, or both
passes. Unless stated otherwise, we use a batch size of 1024 to be representative of a
real-world application as our algorithm can only replace Matrix-Matrix multiplications
efficiently (speed-wise), but not Matrix-Vector multiplications. This large batch size
does not affect the convergence rate but may be impractical in some situations as this
increases the memory requirements.

Fig. 3.7 demonstrates that both convergence rate and accuracy improve as we are using
more planes for the approximation. The algorithm converges more or less closely to the
reference model as expected. Combining both forward and back-propagation passes also
logically results in a lower accuracy than only using one of them.

More surprising is the fact that just using the M3 in back-propagation gives particularly
good results, especially for k = 1024, but the forward pass requires a much higher precision
and leads to an unsatisfactory training (Fig. 3.7c&f). Also, this may only be workable on
shallow networks as the approximation error is likely be amplified with the extra layers.

52

3.5. Results

Figure 3.7: Effect of replacing the standard matrix multiplication with the M3 version for training
the MNIST datasets in all but the last Fully Connected layer. The horizontal represents the number
of epochs while the vertical axis represents the accuracy obtained on the testing dataset. We study
forward-only replacement cases. The number of planes k used is the same for each layer and each
pass in a single experiment (batch size used is 1024). Getting good results in the forward pass with
M3 requires a much larger number of planes.

Also, in this particular example, the experiment entails multiplying two square matrices
with n = 1024 and possibly k set to 1024 but Fig. 3.5 tells us that our current CUDA
implementation of the M3 would only perform at 0.4× the speed of a standard matrix
multiplication, and therefore would be impractical.

3.5.5 Compression of Fully Connected layers

We tested our Mediterranean diet on the FC layers of standard neural network models
like VGG16, and mainly concerned in observing the effect of replacing the standard
matrix multiplication in the pipeline of these models with our Mediterranean Matrix
Multiplication. As such, the low error obtained in our tests, may be beaten by other
networks not using FC layers. We use VGG16 on three datasets (CIFAR10, CIFAR100
[147], CINIC-10 [146]) and use two other standard models for MNIST [145]. Especially,
VGG16 has 3 FC layers which represent 56% of the total size of the model when having
3 × 322 input images.

Details of the networks used are given in tables in the appendix B. For training, we have
used a weight decay of 5× 10−4, batch normalisation and drop-out between convolutional
layers. We have used ReLU activation functions after each layer, except for the last layer
where a SoftMax function has been used. In addition, data augmentation was created
by rotating images 15◦ for CIFAR and CINIC datasets and 8◦ for MNIST. Furthermore,
images were shifted by 10% randomly on both x and y axes. Results with and without

53

3. Efficient Fully Connected Layers in ANN

Figure 3.8: Convergence of accuracy according to the number of hyperplanes used. The horizontal
axis displays the compression obtained for just the internal Fully Connected layers (a) and for the
neural network as a whole (b). The vertical axis displays the obtained accuracy of the network
relative to that of the original, unmodified network – with 100% meaning that the compressed
network has the same accuracy as the original one. All network models have been tested with 256,
512, 1024 and 2048 hyperplanes as represented with continuous or dashed lines.

augmentation are given for MNIST. Experiments have been carried out with a varying
number k of hyperplanes. The size of the compressed layers is calculated from the size
of the bit representation of the layers, the norms ||W l

i || of the weight matrix rows, and
the seed value which is negligible. As our random numbers are calculated from the seed
value, they do not need to be stored. We have included the storage requirements for
the tests where random numbers are further obtained by rotation of columns of E (i.e.,
Toeplitz case) as this may have some practical implications, including removing the need

54

3.5. Results

Table 3.4: Comparison of the best compression rates with Binary-Connect [2] and XNOR-Net [3].
Our technique allows changing the compression rate to favour either compression or quality.

Dataset MNIST
Technique Accuracy size

Binary-Connect 98.78% 0.36 MB (3.26%)
XNOR-Net 97.65% 0.38 MB (3.40%)

M3, k = 2048 99.37% 0.50 MB (7.24%)
M3, k = 1024 98.61% 0.43 MB (3.87%)
M3, k = 512 97.92% 0.24 MB (2.18)

Dataset CIFAR10
Technique Accuracy size FC-layers only size

Binary-Connect 90.10% 1.67 MB (3.13%) 1.13 MB (3.13%)
XNOR-Net 91.24% 1.68 MB (3.15%) 1.14 MB (3.15%)

M3, k = 2048 91.81% 17.97 MB (33.59%) 0.51 MB (1.43%)
M3, k = 1024 91.29% 17.72 MB (33.12%) 0.26 MB (0.73%)
M3, k = 512 90.88% 17.59 MB (32.88%) 0.14 MB (0.38%)

to calculate these random numbers on the fly when inferencing. Tables in the Appendix B
illustrates the results for the four datasets and Fig. 3.8, and B.2 illustrate the convergence
to the original network according to the number of planes.

All experiments on VGG16 showed that the FC layers can be compressed to around
1% of their original size without any meaningful loss of accuracy. The compression
rate for the MNIST models is also very significant at around 50× without a significant
degradation of accuracy, although lower than VGG16 results in general. We conjecture that
as VGG16 FC layers are larger, they become easier to compress. It however looks like more
hyperplanes are needed when using rotated random numbers. While the compression
rates are still very good, we still need two to four times more space to see no difference
with the original network. We do not know at this stage if this result can be improved
upon, by for instance improving the random number sequence.

Obviously, compressing the FC layers translates into a significant reduction in the size
of these models. For the MNIST models, as all the layers are FC layers, the model can
easily be compressed up to 25× without any loss of accuracy. Also, while the original
VGG16 network size was mostly dictated by the FC layers, the Mediterranean diet just
make them negligible in size, leading to a compression of VGG16 by more than 2. Finally,
storing the random numbers does not have a big impact on the memory footprint but still

55

3. Efficient Fully Connected Layers in ANN

allows faster implementations and less reliance on floating-point calculations as this part
of the pipeline can be now ensured by a fast convolution performed in the Fourier space.

We finally compare the compression rates we obtained (cf.3.4) with two other techniques
that are Binary-Connect [2] and XNOR-Net [3]. The table shows that similar levels of
compression and accuracy can be obtained by the three techniques for Fully Connected
layers (The best result in 5 run). While Binary-Connect and XNOR-Net only allow a
single bit of information, our approach is more flexible as it allows us to choose any
random number of planes we wish and therefore allows parameterised compression
levels. However, we do not propose yet a way to compress convolutional networks,
and therefore the two techniques cited perform much better overall in CIFAR10. The
similarities in the results make us believe that these two methods may implicitly learn
the M3 pipeline while training.

3.6 Conclusion

This chapter has firstly proposed and analysed the Mediterranean Matrix Multiplication, a
new, fairly simple, unbiased algorithm for approximating matrix multiplications. While the
theoretical bound obtained is optimal and similar to the currently best-known randomised
methods ([1]), it does offer increased convergence when dealing with non-orthogonal
rows and columns. It is also amenable to various bitwise optimizations that accelerate
computations greatly as the cost of combined XOR/POPCOUNT units could be significantly
lower than that of FMA units in terms of area and energy consumption.

We have also demonstrated a Mediterranean diet algorithm for Fully Connected layers,
allowing a compression rate for these layers as high as 100× in the case of VGG16, and so
without a drop of accuracy. This result is similar or better to similar techniques published
in the area, with the extended benefit that most of the operations during prediction can be
performed on binary streams using a combination of XOR and POPCOUNT operators.
This should allow simplifying the architecture of embedded inference processors and as
such, significantly reduce their energy consumption. Our CUDA implementation indeed
demonstrates that a significant speed-up can be obtained for large matrix sizes based
mainly on the sole use of these operators.

All things considered, the Mediterranean diet is a technique closely related to recent
research done in the area of random projections, low-rank approximations, and binary
nets, and combining all the benefits of these methods into one framework. Further

56

3.6. Conclusion

investigations may include tweaking the random number generator, compressing other
types of layers and networks, studying training scalability for larger networks, or even
accelerating other scientific problems.

57

Chapter 4

Explainable AI

4.1 Introduction

In recent years, Explainable AI (ExAI) has received a lot of attention [148]. ExAI methods
aim to explain how a black-box model makes decisions [149]. One of the aims of providing
explainability in Sub-symbolic AI models is to ensure that the predictions made by
algorithms and the input data that trigger those predictions can be understood [150]. ExAI
focuses on creating prediction models that produce explanations that are understandable
by humans for Sub-symbolic AI methods.

From a data science perspective, equipped with its “explanation power,” ExAI provides
deeper insights from data [148]. By explaining why a model makes a certain prediction,
one gains knowledge about the underlying data used to build the model. In the current
development in ExAI software is fragmented, and implementations are scattered in
multiple libraries written in different programming languages, predominantly intended
for data science developers rather than domain experts. The lack of easy-to-use ExAI tools
also hinders the further development of ExAI. Moreover, having a model and describing
the decision made by this model is a common request from many end-users who are
not machine learning experts. Being knowledgeable about why a given decision was
made can be extremely helpful to a wide variety of professions, especially where risk
assessment and analysis are critical, like in financial or medical areas. In recent years,
the focus has been put on Explainable AI to meet this demand.

In Explainable AI, understanding decisions from black box models work essentially by
observing the effect of small changes to a given input and their effect on the output. This

59

4. Explainable AI

allows for identifying the features in the input space that have the strongest impact on the
output. Nowadays, this approach to Explainable AI is implemented inside various open-
source frameworks like [151], [152], and [153], and makes sub-symbolic AI more accessible
to non-machine-learning experts. However, these approaches have some limitations. For
instance, results can sometimes differ after each execution.

In this chapter, we first present ExMed, a self-contained ExAI toolkit for domain
experts that performs ExAI analysis for prediction models. With its simple user interface,
it supports both global explanations presenting patterns of the entire dataset and instance
explanations that are local to individual predictions, for both classification and regression
tasks. Although various, ExAI techniques have been proposed in recent years - for
example, a good overview of these techniques is presented in [154] - we focus on feature
attribution explanation techniques [77] due to the transparency of their explanations,
their computational effectiveness, and general popularity. We also present two real-world
case studies that demonstrate ExMed’s functionalities. In case study I, a COVID-19
transmission study reveals how different COVID-19 control measures were used and
impacted transmission rates. In case study II, we examine lung cancer patient life
expectancy using the Simulacrum dataset. 1 Through the two case studies, we illustrate
how ExMed can be used for making predictions and generating explanations.

Finally, we introduce a method that seeks to identify the decision boundary of a
specific model. This approach builds upon previous research [82] by determining the
closest point to the boundary using the loss function of our model. In the results section,
we showcase the effectiveness of our Neighbour Migrating Generator (NMG) in both
global and local contexts using three datasets: a synthetic mathematical model, the Iris
dataset, and the Pima Indians Diabetes dataset.

In general, the goal of this chapter is to enhance the usability of ExAI by presenting a new
framework for non-expert users and offering a novel approach to explain a model’s decisions
and identifying the input dimensions that have the greatest impact on those decisions.

4.2 Literature review

Individual predictions made by experts rely on the fact that humans can learn enough
about which parameters have the biggest influence in the feature space, or why a model

1https://simulacrum.healthdatainsight.org.uk/

60

https://simulacrum.healthdatainsight.org.uk/

4.2. Literature review

inferred a particular decision. Many ways for individual predictions are explained
using local interpretation tools, such as Individual Conditional Expectation (ICE) [155],
Counterfactual Explanations [82] [83], Local Interpretable Model-agnostic Explanations
(LIME) [76], and SHAP methods [81], which explain a model by assigning a weight
to each dimension of inputs.

Due to the involvement of data sensitivity in the medical domain, there is a necessity
of gaining human trust towards ML applications [156]. Therefore, we have seen a recent
surge in the production of explainable results using state-of-the-art models such as Local
Interpretable Model-Agnostic (LIME) [157] and SHAP [77] to supplement the outputs
provided by black-box algorithms. Much work has shown the intent of expanding
Explainable AI (ExAI) through new prediction model architectures [158, 159].

ICE [155] is a method for plotting the global effect of modifying each feature individually.
ICE can modify one feature while retaining the same value for the rest of the feature space.
It then displays the changes in predictions according to the value of the target feature.
However, comprehending the differences between individual lines in the plot can be
difficult at times. This can be resolved by centring the curves at a point and comparing the
predictions to this point, which is known as Centered ICE (c-ICE). Nevertheless, a limitation
of ICE is that it cannot allow one to see and detect any association between features [160].

LIME [76] generates a linear approximation of the local decision boundary by consid-
ering a trained model as a black box since the reasons behind a prediction for a given
input are not understandable by users. It develops local surrogate models to explain the
provided input and the decisions of the trained model. The explanation process consists
of three steps. First, LIME alters the feature space values (creating a new training set) and,
by using Gaussian kernels, associates a weight to the new sample points based on their
distance to a given input whenever a new instance is passed to the LIME model. The new
samples are then sent to the trained model to approximate the local decision boundary,
which would be used to map the inputs and outputs together to extract explanations.
LIME explains a model in a feature space locally. However, Laugel et al. have shown
[161] that LIME is highly dependent on some kernel settings because it relies on the
correct definition of the local Neighbourhood. This problem is not only a parameter or
sampling distribution issue but has a significant impact on the relevance and quality of
the local black-box decision boundary approximation and, thus, on the meaning and
accuracy of the given explanation. Many studies have investigated the development of

61

4. Explainable AI

new local training sets [162], but there are certain difficulties to their solutions, such
as losing sight of a crucial notion like the tangent or inspecting small Neighbourhoods
without taking linearity into account in the ML function.

SHapley Additive exPlanations (SHAP) [81], based on cooperative game theory, assigns
an importance value to each feature. Cooperative game theory aims to determine fair
compensation for all participants based on their contribution. SHAP computes the Shapley
score by replacing a particular instance value with new values and then applying the
trained model’s predictions to the new dataset. While analysing all input features can
be costly, we only need to investigate a subset of them, resulting in slightly different
outcomes each time. However, a limitation of SHAP is that the order of features for a
given instance might affect the prediction.

Counterfactual Explanations, unlike the previous techniques mentioned, aim to identify
the smallest changes needed in a sample to modify the model’s prediction. This differs
from most other approaches that vary in how they define the loss function. Wachter et al.
[82], for instance, minimise the loss function as shown in equation 4.1.

argmin
x′

max
λ

λ(f̂(x′)− y′)2 + d(x, x′) (4.1)

The Manhattan distance (weighted with the inverse median absolute deviation) between
the original input and the modified one is added to the square of the L2 norm of the
differences between their predictions. The weight λ indicates the influence of the input
instance, with a higher value indicating a preference for infrequent alterations. However,
this approach has difficulty handling categorical features. To address this, Dandl et al.
proposed a new loss function that minimises a four-section loss while counting the number
of altered features using the Gower metric and a counter.

L(x, x′, y′, xobs) = min(o1(f̂(x
′), y′), o2(x, x

′),

o3(x, x
′), o4(x

′, Xobs))
(4.2)

The Manhattan distance between f̂(x′) and y′ is o1, while the Gower distance function
(o2) calculates the distance between x (original sample) and x′ (close target sample on
the decision boundary). o3 calculates the number of features that have been altered.
Finally, o4 calculates the distance between the estimated sample and the nearest observed
sample in the train set.

The current ML pipelines are primarily focused on identifying a specific problem,
and these pipelines often need to be rebuilt when new data is available. Without a

62

4.2. Literature review

Figure 4.1: ExMed Activities. ExMed provides the user with a sequence of simple actions, including
loading, merging, and editing data, and creating prediction as well as explanation models. Various
visualisation techniques are supported in several stages of this pipeline.
basic understanding of ML, accessing ML applications can be challenging without the
assistance of domain experts. Furthermore, there is a need for more human input and
interaction in machine learning models to support explainability. To address this, research
has been conducted to develop explainable architectures, and web-based interfaces have
been created to support image segmentation with a user-friendly interface. One such
interface is discussed in [163].

Several open-source applications have been created to simplify the implementation
of sub-symbolic AI in various datasets, such as tools like Fĳi, Weka, and others [164, 152,
165, 166]. In the field of biology, a significant amount of data is stored as images, and
Fĳi [164] is an example of an open-source tool designed specifically for biological image
analysis. It allows for the quick prototyping of image processing algorithms, and scripting
languages have been developed to facilitate this process. Fĳi also simplifies the conversion
of cutting-edge algorithms into ImageJ plugins that can be shared with users through
a built-in update system, as shown in Figure 4.2.

Massive Online Analysis (MOA) is another open-source framework for classification
and clustering of data streams that require quick predictions [165]. In MOA, data arrives

63

4. Explainable AI

Figure 4.2: Working with biology photos is simple and quick using Fĳi’s many plugins. A biological
image with a filter applied to it is shown in the figure.

in a stream of instances, where each instance can be used as a test before being used as
a training instance. MOA also offers features such as outlier detection and clustering of
data. This framework provides many algorithms for streaming algorithms, as well as other
useful implementations such as frequent pattern mining and change detection algorithms.
Figure 4.3 displays one panel of MOA. The framework also provides a real-time report
with various metrics for model development and data input. Both Fĳi and MOA are not
specifically designed for the kind of dataset that we focus on.

WEKA [152] is another workbench designed to combine different ML libraries for
supporting various analyses through a graphical user interface. WEKA was developed at
the University of Waikato and provides fast access to information within datasets, allowing
the selection of areas of interest. This framework can perform data preparation tasks such
as casting, replacing, and numeric transformations, as well as apply machine learning
algorithms such as regression, classification, and clustering. However, WEKA does not
support merging and concatenation of datasets, which is often required when introducing
new medical data. WEKA is a well-known software in the field of machine learning and
comes with ample documentation. The interface, as shown in Fig 4.4, is straightforward
and provides options for data preparation and visualisation.

64

4.2. Literature review

Figure 4.3: Massive Online Analysis is a framework for running machine learning algorithms on
data series databases.

Figure 4.4: The University of Waikato in New Zealand created the Waikato Environment for
Knowledge Analysis (Weka) since it has a free software license.

65

4. Explainable AI

In ExMed, we have incorporated various features available in the other software
mentioned earlier, such as visualisation. However, we have also prioritised simplicity
and user-friendliness to ensure that our software does not require extensive training to
use. Additionally, we have included essential data preparation steps that are commonly
required for medical datasets. Moreover, our software includes a unique feature of
providing explanations that is not found in other existing software.

The NMG approach is comparable to the techniques explained earlier in the sense that
we consider the model as a black box without having access to its internal structure or
weights. Nevertheless, our main focus is to recognise the closest Neighbouring instance in
a distinct category. Our work is similar to the two approaches described above, where
a separate model is trained for each case to determine the smallest modification that
can change the predicted class label. However, it differs from them in how we define
the loss function. Our loss function allows the model to change freely in the feature
space. Moreover, we have introduced a new method of finding the most influential
features for a given model. We train the model’s NMG representative of the decision
boundaries with all the training set samples (instead of a single sample) and analyse
the modifications. Additionally, we allow the model to decide the required amount of
change by self-adjusting the kernel settings.

4.3 ExMed Workflow

When sending medical data to an ML model, human errors and noise can reduce the
quality of the results. Moreover, as one of the leading challenges in medical data analysis
is to aggregate data from multiple data sources for performing joint analysis [167], it is
crucial for medical data analytic frameworks to support the pre-processing stage. Our
new application ExMed [168] addresses both challenges and makes the integration of
data pre-processing tools easier in order to minimise error and increase the baseline
performance of the ML model.

ExMed’s main functionalities and architecture illustrations are shown in Figure 4.1
and B.6. ExMed implements a wide set of tools to load, process, predict, and explain
data. Its back-end design is modular so that more tools can be easily added at a later
stage. ExMed can accept the most common data files as input (e.g., Excel, CSV, SAS, and
XPT files) with the possibility for easy integration of new file types. Input data can be
then combined through classic database join operators, whether or not a common key

66

4.3. ExMed Workflow

Figure 4.5: ExMed interface for some of the main activities as describe in Fig. 4.1. Data from
various supported file types is loaded, with the option to combine this data with other datasets.

exists. This gives users the potential to create larger datasets from different file types
– potentially collected from different sources – rapidly. Cells, rows, columns, and data
types can be edited by the user directly within ExMed, allowing greater freedom for data
manipulation and quality checks. Data validation is supported by various visualisation
tools included with the interface. These tools can represent data trends in many ways
(see Fig B.4 for a few examples) to provide fast data insight to users and can be applied
to either the entire dataset or just part of it.

Creating a model can easily be done by selecting a target label (i.e., column) in the
interface. Non-categorical columns selected from inference can be edited and transformed
into a category (e.g., using a thresholding operator, Fig. 4.5, and B.5) prior to creating
the model. Once data has been finalised and validated, and a target label has been
created, a range of machine models can then be applied, including SVM, Random Forest
Classifier, MLP Regression, and XGBoost. There is also an option to apply dimensionality
reduction by pre-processing data with an automated Principal Component Analysis (PCA)
process. Moreover, the result of the PCA can be visualised in 2D or 3D from the two
or three largest eigenvectors respectively.

To interpret data, individual models have their own functions to offer specific ex-
planations. SHAP dot plots, SHAP bar plots, SHAP dependence plots and LIME plots
can be used for this purpose. This will show different ways of explaining the reasoning
behind the results. We explore explanations and ExMed capabilities on two case studies in
sections 4.3.1 and 4.3.2. LIME and SHAP adhere to ML local explainability requirements
for patient instances; expressed as a necessity from clinicians [156], whilst also producing

67

4. Explainable AI

global explanations. To invoke trust, we provide explanations from both LIME and SHAP
as both models see a lack of ubiquity in feature priority, but may still provide valuable
insight into the data as these methods still often see the same trend in feature attribution
[169]. Also, feature attribution algorithms allow for a better understanding of data, as we
are able to visualise bias, error, and gain insight into patient instances.

4.3.1 Case Study I: COVID-19 Control Measures

In this case study, we demonstrate how ExMed can be used in investigating relative
effectiveness of COVID control measures used in the UK.

From the Public Health England website2, we collect daily infection numbers reported
across 9 regions in England East Midlands, East of England, London, Northeast, Northwest,
Southeast, Southwest, West Midlands, and Yorkshire and the Humber, as well as and the
other three nations in the UK: Wales, Scotland, and Northern Ireland. Non-pharmaceutical
control measure data were collected based on UK’s COVID policies as summarised in
Table 4.1. Data are collected from various sources including the Wikipedia and major
news agencies such as BBC. Control Measures are coded based on the level of severity
(“High”, “Moderate” or “Low”) for all control measures excluding non-essential shops and
School closures, which are coded as binary choices (“Open” and “Closed”). Temperature
and humidity data obtained from the weather website Raspisaniye Pogodi Ltd3 were
also included. This represents a total of 4,257 data points that were collected between
February 2020 and February 2021.

We study the effectiveness of control measures by observing their impacts to the virus
transmission rate Rt. Specifically, from daily infection numbers, we estimate Rt using the
method reported in [170, 171]. Rt is one of the most important quantities used to measure
the epidemic spread. If Rt > 1 then the epidemic is expanding at time t, whereas if Rt < 1,
then it is shrinking at time t. A serial interval distribution, which is a Gamma distribution
g(τ) with mean 7 and standard deviation 4.5, is used to model the time between a person
getting infected and he/she subsequently infecting another person on day τ . The number
of new infections ct on a day t is computed as:

ct = Rt

t−1∑
τ=0

cτgt−τ , (4.3)

2https://www.gov.uk/government/organisations/public-health-england
3https://rp5.ru/Weather_in_the_world

68

https://www.gov.uk/government/organisations/public-health-england
https://rp5.ru/Weather_in_the_world

4.3. ExMed Workflow

Table 4.1: Non-pharmaceutical COVID Control Measures.

Control Measures Type
Meeting Friends / Family (Indoor) Categorical

Meeting Friends / Family (Outdoor) Categorical
Domestic Travel Control Categorical

International Travel Control Categorical
Cafes and Restaurants Control Categorical

Pubs and Bars Control Categorical
Sports and Leisure Closure Categorical

Hospitals / Care and Nursing Home Visits Categorical
Non-Essential Shops Closure Binary

School Closure Binary

where cτ is the number of new infections on day τ ,

g1 =

∫ 1.5

τ=0
g(τ)dτ,

and for s = 2, 3, . . .,

gs =

∫ s+0.5

τ=s−0.5
g(τ)dτ.

From Equation 4.3, we have:

Rt =
ct∑t−1

τ=0 cτgt−τ

(4.4)

For x = t and τ , cx is the difference between the confirmed case on day x and the confirmed
case on day x − 1, which is available from the dataset directly.

Using this data, we pose a simple classification question:

Given the infection number and control measures implemented on a day t, can we
predict Rt ≥ 1?

As control measures take time to affect the infection rate, we expand the dataset to include
the duration of control measure implementation for all control measures. For example,
“Meeting Indoors (High) = 2” means that “it is the second week that meeting indoors has been
banned completely”. Similarly, “International Travel (Low) = 0” means that “there is no restriction
implemented on international travel”. We also drop instances before March 15, 2020 across all

69

4. Explainable AI

Figure 4.6: Example of an Explanation computed with SHAP and LIME. For this instance, both
explainers consider top measures contributing to this prediction being Domestic Travel, Cafes and
Restaurants Closure and Pubs and Bars Closure.
12 regions and nations in our dataset due to the low number of infections.4 In this way, we
form a data file with 18 features and 3,937 instances with 1,550 positive ones.

Table 4.2: Prediction performance on the COVID dataset with four different classifiers with K-Fold
Cross Validation (k = 10).

Classifier MLP Random Forest SVM XGBoost
Precision 0.82± 0.03 0.85± 0.03 0.84± 0.03 0.82± 0.03

Recall 0.81± 0.07 0.84± 0.03 0.74± 0.05 0.76± 0.03
F1-score 0.81± 0.02 0.87± 0.02 0.79± 0.04 0.79± 0.02

The classification results are summarised in Table 4.5. We can see that all four classifiers
are able to achieve good performance on this dataset with a 70/30 training/testing split.
As an illustration, for a prediction query instance such that:

4As can be seen from Equation 4.4, when cx is small, Rt can flatten in an unrealistically large range and
generate noises in the dataset.

70

4.3. ExMed Workflow

Figure 4.7: Global explanations generated using SHAP on our COVID dataset for the prediction
whether Rt ≥ 1. We see that closing down cafes and restaurants as well as pubs and bars are
the most effective control measures. When their feature values are high (red), they have string
negative impact to the prediction; whereas when their feature values are low (blue), they have
strong positive impact to the prediction.

• All control measures shown in Table 4.1 except International Travel (IT) and Hospital /
Care and Nursing Home Visits (HCNHV) are implemented for more than 35 days at
the level High;

• IT has been implemented for more than 35 days at the level Moderate; and

• HCNHV implemented for 20-25 days at the level High.

Using Random Forest as our prediction model, it correctly predicts that Rt<1; and SHAP
and LIME explanations are shown in Figure 4.6. We see that SHAP and LIME produce
similar explanations for the instance. In addition to local explanations, ExMed can also

71

4. Explainable AI

use SHAP to compute global explanations for the entire dataset - describing the “trend”
of all instances - as illustrated in figure 4.7. We observe that control measures Cafes and
Restaurants Control and Pubs and Bars Control have the most influence predictions made
with this dataset, this can be interpreted as:

From February 2020 to February 2021, the most effective non-pharmaceutical COVID
control measures implemented in the UK are closing cafes and restaurants as well as
pubs and bars.

4.3.2 Case Study II: Lung Cancer Life Expectancy

Our second case study investigates the application of ExAI to electronic patient records for
cancer research instead of using public health epidemiology data in order to emphasise the
transferability provided by ExMed. Especially, we use artificial data from the Simulacrum5,
a synthetic dataset developed by Health Data Insight CiC and derived from anonymous
cancer data provided by the National Cancer Registration and Analysis Service6, which is
part of Public Health England. This dataset contains 1,322,100 cancer patient instances.

We first isolate a cohort of interest, opting for lung cancer patients as they represent
a large portion of cancer-based deaths [172]. With lung cancer patients, we define
the medical question as a prediction of patient survival time, and pose the following
multi-class classification question:

Given a set of features for a patient, what will be the predicted survival time for the
patient? Under six months, six to twelve months, or more than twelve months?

To study this, we first identify the subset of lung cancer patients in the Simulacrum with an
ICD-10 code Malignant neoplasm of bronchus and lung and a deceased status, and includes
108,282 patients in total. We removed records from the original dataset with obvious
errors and included only patients with a vital status date posterior to the diagnosis date.

A major challenge in medical data analytic, as exemplified in the Simulacrum, is missing
or incomplete patient records. This results in a large number of “null” entries in the dataset.
To address this, we identify a smaller cohort of patients such that each patient contains 20
features, with each patient instance only able to contain a maximum of one “null” value.

5https://simulacrum.healthdatainsight.org.uk/
6http://www.ncin.org.uk/

72

https://simulacrum.healthdatainsight.org.uk/
http://www.ncin.org.uk/

4.3. ExMed Workflow

Table 4.3: Each patient is described with 20 features.

Feature Value Feature Value
ACE 2.0 T Best 0.0
Sex M M Best 3.0
CNS 9.0 N Best 4.0
Age 68 Cycle Number 0.0
Grade 0.0 Ethnicity 1.0
Height 1.6 Cancer Plan 1.0
Weight 75.6 CReg Code 4.0
Morph 8041.0 Chemo Radiation N
Laterality 901.0 Regimen Time Delay N
Performance 1.0 Regimen Stopped Early N

This explicit filtering isolates a cohort of 2,260 patients. This also provides a well-balanced
dataset with each group containing a similar amount of patients as shown in Table 4.4.

Table 4.4: Survival Time Feature Value Count

Survival Time Value Count
Greater than 1 Year 842

Between 6 Months and 1 Year 748
Less than 6 Months 670

Table 4.5: Prediction performance on the Lung Cancer dataset with four different classifiers with
K-Fold Cross Validation (k = 10).

Classifier MLP Random Forest SVM XGBoost
Precision 0.86± 0.15 0.92± 0.05 0.84± 0.08 0.69± 0.08

Recall 0.76± 0.47 0.84± 0.08 0.55± 0.10 0.66± 0.08
F1-score 0.81± 0.23 0.87± 0.04 0.66± 0.08 0.67± 0.06

We first provide a local explanation example using both SHAP and LIME for a
patient instance as shown in Table 4.3. We observe that both explainers give similar
explanations as shown in Fig 4.8.

Using the entire dataset, we produce a global explanation determining feature import-
ance towards each output class in Fig 4.3.2 (a). We then provide granularity to feature
value importance towards each class with Fig 4.3.2 (b) - (d). We interpret these results as:

Cancer grades, BMI, age, patient performance and the absence of distant metastatic
spread are key indicators for estimating patient survival time.

73

4. Explainable AI

Figure 4.8: Local explanation on the Lung Cancer life expectancy data set for a patient instance.
We see that the most impactful features amongst SHAP and LIME are the same: “Grade" How the
cancer cells act; the higher the grade the less normality the cell resembles, and it may act more aggressive
and “M Best" Presence or Absence of Distant Metastatic Spread, followed by a disagreement on age
attribution.

4.4 The Neighbour Migrating Generator Model

The Neighbour Migrating Generator (NMG) is a straightforward and effective method
for finding the nearest Neighbouring instance(s) with a different label for a given data
point without adjusting any kernel settings. This approach enables the identification and
explanation of the most significant characteristics that impact a machine learning model.

Using the NMG technique, one can transfer a particular sample to the decision
boundary of the original model for its corresponding class within a small vicinity of the

74

4.4. The Neighbour Migrating Generator Model

Figure 4.9: We see that the largest impact towards the survival boundaries greater than 1 year
and less than 6 months is the cancer grading - having direct impact on the longest and least time
survived. This, followed by an associative relationship between height, weight, and the patient age
determinants of body mass index (BMI), having high attribution towards each class. This, then
followed by cancer specific traits such as “M Best" and laterality of the tumour.

sample, or detect global characteristics that assist in classifying Neighbouring groups.
The method employs a loss function that is divided into two parts, each of which is
weighted independently by four parameters: α, β, and ω, with α being self-adjusting.
Experiments have shown that this approach performs better than previous techniques
in detecting even minor changes in the feature space and can also uncover issues in
models such as over-fitting.

In this section, we will introduce our new model and its two variations and explain
how to train them. The two variations are based on whether we want to generate local
or global explanations.

75

4. Explainable AI

Figure 4.10: Global explanation for feature attribution measured against the class Survival time of
less than 6 months, where we see the cancer grade of higher value - indicative of cell abnormality
and more aggressive, followed by “M Best" Presence or Absence of Distant Metastatic Spread, with the
associative BMI attributes “height", “age" and “weight" following this.

For local explanations, the model is trained to identify the closest decision boundary
to a particular data point. On the other hand, for global explanations, the model identifies
the most significant features for each class. Both variations use the same architecture
but are trained differently. The local variant is trained using a single data point, while
the global variant is trained using all the data points.

4.4.1 Local and Global Variants

In the local explanation variant, the NM generator employs ANN to identify a Neighbour.
A single input is fed into the fully connected network G, and we minimise the loss function
described later to converge to a point near the original sample but with a different target label
specified by the user. Therefore, the NMG aims to identify and modify only the primary
features that lead to that class, indicating the most significant factors for a given sample.

76

4.4. The Neighbour Migrating Generator Model

Figure 4.11: Global explanation for feature attribution measured against the class Survival time of
greater than 12 months, we see an inverse plot of cancer grade to that shown in Fig.4.3.2 (a), such
that a lower grade and what seems to be a better controlled BMI and a lower “M Best" contributing
to a longer survival time.

Another potential application of our model is to observe feature migration in the
global space, indicating the most influential factors for a given class. In this approach,
instead of specifying a target class label to migrate towards, we use the predictions of a
trained model F to generate labels. We choose the second most probable (or predicted)
class label and use it as the target label. We train our Neighbour Migrating Generator
G on the entire training set.

It is important to note that in the global variant, the NMG uses the same model for all
samples, which aims to minimise the impact of outliers and produce more generalised
results. In contrast, in the local variant, we train the model separately for each input,
generating different weights each time. However, with the global variant, we may not be
able to establish a minimum loss cost for outliers, but this will not affect the final results.

77

4. Explainable AI

Figure 4.12: Global explanation for feature attribution measured against the class Survival time
between 6 and 12 months, we see that a controlled BMI and lower cancer grade are attributive to
this survival boundary, whilst the distributive “M Best", performance and cancer grade containing
high values in both positive and negative impacts on the model are likely the reason for the central
survival boundary.

The global approach can be formulated as follows: Let d be the number of classes, n be
the number of samples, and F be the original network that maps an input sample xi to
a vector of inferred probabilities for each class F (xi), with each component represented
as Fj(xi). We define the best prediction of our original network H1

F (xi) as:

H1
F (xi) = argmax

j ∈ d
F (xi) = {j |Fj(xi) ≤ Fk(xi)∀k ∈ d} (4.5)

and the second-best class prediction H2
F (xi) as:

H2
F (xi) = argmax

j ∈ d
F (xi,j) =

{j |Fj(xi) ≤ Fk(xi) ∀k ∈ d, k ̸= H1
F (xi)}

(4.6)

78

4.4. The Neighbour Migrating Generator Model

We can now define our new NMG modelG that is trained from a set of samplesD as follows:

G : D → D

x′i = G(xi) | H2
F (xi) = H1

F (x
′
i)∧

∀x′′ ∈ D, H2
F (xi) = H1

F (x
′′)∧

|| xi −G(xi) ||l≤|| xi − x′′ ||l

(4.7)

with l indicating the norm used.

Figure 4.13: The calculation of the Feature Importance weights I provides an explanation of the
global impact of features for the different classes of the original model.

After the training process, we calculate the sum of differences between each input
sample xi and the nearest corresponding sample with a different label, which is defined
as x′i = G(xi). This imaginary sample x′i is intended to be located on the class decision
boundary in the feature space and as close as possible to the initial sample xi. For a given
feature f , this sum is represented as If =

∑n
i=1|xi(f) − x′i(f)|, as shown in Figure 4.13.

Larger values of I indicate that a feature has a greater impact and is a major contributor
in explaining how the model distinguishes between classes.

4.4.2 Loss function

Algorithm 3 outlines the calculation of the loss function for G during each iteration.
The same loss function, as given in equation 4.8 and illustrated in figure 4.14, is used
for both variants.

L(x, x′, y, y′) = CrossEntropy(y, y′) + λ . L1(x− x′) + βy,y′ (4.8)

79

4. Explainable AI

Algorithm 3 Algorithm for calculating the loss function at each iteration.
λ← 0 /*Importance of the inner loss*/
ϵ← 0.05 /*A constant for the thickness of the decision boundary*/
for each iteration do

if (y == y′) then
λ← clip(λ+ 1.0, 100.0)

else
λ← clip(λ− 1.0, 0.0)

in_loss← (λ/100.0) ∗ (
∑

(x′i − xi))
βy,y′ ← |CrossEntropy(1, y == y′)
−CrossEntropy(0.5 + ϵ, 0.5− ϵ)|

out_loss← CrossEntropy(y, y′)
loss = in_loss+ out_loss+ βy,y′

The equation in Algorithm 3 is divided into three parts. The first part, represented by
CrossEntropy, calculates the difference in information between the current and the new
labels, where y is the class label for x and y′ is the predicted label for x′. The second
part, represented by L1, controls how close x′ should be to the original input x. Instead
of using the Euclidean distance, the Manhattan distance is used to encourage changes
in only a few features. This is because the L1 norm produces an output with only a
small number of features presenting a significant change, whereas using L2 results in
changes that are distributed across more features, making it harder to identify the most
prominent features. Finally, the third part (Reg) is a regularisation term that helps to
avoid overfitting during the training process. The weight λ is recalculated after each
training step, and the cross-entropy function βy,y′ is defined in the next paragraph. Figure
4.14 illustrates the loss function.

The last component of the loss function is the βy,y′ parameter. This component
is calculated as

βy,y′ = |CrossEntropy(1, y == y′)−

CrossEntropy(0.5 + ϵ, 0.5− ϵ)|,

With ϵ = 0.05.

The purpose of the λ parameter in the loss function is to balance the importance of changing
the label and staying close to the original input value. By starting with a low value of λ
and gradually increasing it, the model is allowed to make larger changes to the input to
find a new label. As the model gets closer to the correct label, λ is increased to encourage

80

4.4. The Neighbour Migrating Generator Model

the model to focus more on staying close to the original input value. On the other hand,
if the model predicts the wrong label, λ is decreased to allow the model to make larger
changes to the input in order to find the correct label. This approach allows the model to
converge to the appropriate value of x′ without manual adjustment of parameters.

Figure 4.14: Loss function of Neighbour Migrating Generator

The vector weights

Adding weight to the loss function can limit changes in the input dimensions, which is
beneficial because some input features are not easily changeable in real life. For example,
if the NMG offers a modification in input dimensions to change a model decision, and the
outcome shows reducing the customer age, it may not be attainable. We have demonstrated
the usefulness of adding weight in section 4.4.4. By changing equation 4.8 and adding a
simple weight vector (ω), we obtain equation 4.9. The weight vector ω should have the
same size as the input features (with one weight per feature, calculated by element-wise
product). Larger weights in ω result in a higher cost in the loss function, which means
that in minimising the loss function progress, the correlated input feature changes less.
Therefore, for input dimensions that we would like to change freely, the weight should be 1
or even less (less than 1 means changing that feature has a lower cost in the loss function).

L(x, x′, y, y′) = CrossEntropy(y, y′) + λ . (L1(x− x′))ω + βy,y′ (4.9)

4.4.3 Experimental results

We conducted experiments using our new approach on three different datasets: a synthetic
2D heart function dataset, the Pima Indians Diabetes Database, and the IRIS dataset. The

81

4. Explainable AI

Item Descriptions

Dataset Implicit Heart Function Dataset
Model F Input(2),FC(256),RelU,FC(256),RelU,FC(2),Soft-Max
Model G Input(2),FC(256),RelU,FC(256),RelU,FC(256),RelU,FC(2)
Dataset PIMA
Model F Input(8),FC(256),RelU,FC(256),RelU,FC(2),Soft-Max
Model G Input(8),FC(256),RelU,FC(256),RelU,FC(256),RelU,FC(8)
Dataset IRIS
Model F Input(4),FC(128),RelU,FC(128),RelU,FC(3),Soft-Max
Model G Input(4),FC(1024),RelU,FC(1024),RelU,FC(1024),RelU,FC(4)

Table 4.6: A description of the architecture of the models used for the three datasets. The F model
is the original model that we want to study, while G is the NMG model used to migrate to decision
boundaries.

tests were performed on a system with an Intel 4770K processor running at 3.9 GHz, 32
GB of RAM, and an Nvidia GeForce GTX 3070TI Graphics card. TensorFlow 2.0 was used
as the AI framework, running on a Linux distribution.

To ensure that each dimension has an equal probability to change, each feature in all
datasets was standardised to the range [−1, 1] with a mean value of 0. We did this to
account for the sensitivity of both the L1 and L2 norms to the units used for features.

For training, we employed an Adam optimiser with a learning rate set to 10−4. Every
layer in the models had a RelU activation function, except for the last layer which was
linear. The models were trained for 200 epochs, and the best model was saved. Table
4.6 provides a description of the architecture of the three original models and their
associated NMG models.

Implicit Heart Function Dataset

To demonstrate the impact of the loss function on the decision of our local variant model,
we created an artificial dataset from a two-dimensional slice of a heart-shaped function
described in [4] (eq. 4.10). Any point inside the heart is labelled as one, and zero otherwise.
We consider the original model as a black box once it is trained, and we will use it only to
evaluate how far our new predictions are from the decision boundary.

82

4.4. The Neighbour Migrating Generator Model

Figure 4.15: We demonstrate the effectiveness of our NMG model G by applying it to some
random samples from an implicit 2D heart function dataset [4]. The dataset consists of blue dots
representing class 0 samples and red dots representing class 1 samples. We also select some green
dots at random from the dataset to transform using our NM Generator. The results, shown in
Figure X, demonstrate that our NMG model is able to satisfactorily migrate samples to the decision
boundary.

f(x1, x2) = (x21 + x22 − 1)− x21x
3
2

y =

{
1 if f(x1, x2) < 0

0 otherwise

(4.10)

To identify the distribution of decision boundaries with our NMG, we use again a
fully connected network with three layers, each with 256 neurons, and a final layer with
two neurons only, as the output should have the same number of features as the input.
We have assigned two random point inside and outside the heart and we have drawn
the output position given by our NMG. The findings reveal that the model was able to
locate the decision boundary well with both L1 and L2 Norms.

Pima Indians Diabetes Database

The Pima Indians Diabetes Database [173] includes seven continuous but sometimes
incomplete features and a categorical binary feature that indicates whether or not a patient

83

4. Explainable AI

Feature Name Description Range

Pregnancies Number of pregnancies [0..17]
Glucose Oral glucose tolerance test, [0..199]

measured after 2 hours.
Blood Pressure Diastolic blood pressure [0..122]
Skin Thickness Triceps skin fold thickness [0..99]

Insulin Insulin level after 2 hours [0..846]
BMI Body Mass Index [0..67.1]

Diabetes Pedigree Function Diabetes history in relatives [0.08..2.42]
Age Age in Years [21..81]

Table 4.7: Description of features in the Pima diabetes datasets.

Original Migrated Sepal L Sepal W Petal L Petal W

Virginica Versicolor 0.0662 0.0207 0.5398 0.0965
Versicolor Virginica 0.0340 0.0081 0.3372 0.0033

Setosa Versicolor 0.3106 0.4010 0.9289 0.7361

Table 4.8: Variation among features when changing instances. For each original class, our global
NMG model returns the closest class available (left two columns). The results match what can be
witnessed on Fig. 4.16. For the first two migrations, results show that the petal length is the only
important feature to migrate class. For the Setosa class, all parameters have some influence, but
the petals’ length and width are still the most contributing factors.

has type 2 diabetes. It contains 768 individuals who are at least 21 years old, female, and
of Pima Indian heritage. Table 4.7 lists the features present in the dataset.

In this example, we apply our local NMG variant to a set of 13 random samples to
determine what minimal changes can be made to a sample to switch its class. Here again,
our NMG migrated the samples to the decision boundary by minimising the loss function
of an input sample. The very first sample we tested actually demonstrated that something
was not right with the original model. We observed that the NMG prioritised a change
in the blood pressure, while diabetes patients often have high blood pressure, diabetes
is mainly detected from glucose or insulin levels in the blood, which can be tested two
hours after ingesting 75mg of glucose (Oral Glucose Tolerance Test - OGTT). While the
NMG migrated the sample to a nearby point very similar to the original one, but still
clearly in the diabetic range, the original model classified it as non-diabetic. A study of 12
more samples (Tables 4.11 and B.8) indicated that this was not an exception (e.g., samples
1,3, 6), while other samples looked more logical (e.g., sample 2 migration to a diabetic

84

4.4. The Neighbour Migrating Generator Model

status logically increases parameters like glycemia and insulin but also BMI and blood
pressure parameters, which are frequently raised for diabetic patients.).

The only explanation for small non-logical changes being able to change sample
classes was that the original model was overfitting. This was confirmed afterward by
noticing that a) the model had far more parameters than samples (Table 4.6), and b)
the training accuracy was 100

IRIS

The IRIS dataset [174] is well-known for its incorporation of many measures into taxonomic
difficulties. The original dataset includes 50 samples from each of the three Iris species
(Iris, Setosa, Iris, V irginica, and Iris, V ersicolor), for a total of 150 items. Each sample
has four attributes measured in centimetres, including length and width measurements for
both the sepals and petals. In particular, Fig. 4.16 shows that two out of the four features
are enough to provide a good separation of the three classes. This figure also provides
insight into the Neighbouring relationships between classes. The global variant of our
Neighbour Migrating Generator is then applied to this dataset to see if this Neighbouring
relationship can be captured by our technique. Therefore, with this global approach, the
model learns how to go to the nearest border rather than specifying which class border it
should learn. Figure 4.17 demonstrates all combinations of features, and as we can see,
the NMG found the best two features that can separate the classes.

Our global NMG model is defined by three fully connected layers of 1024 neurons
with ReLU activation. The new labels in the training set are defined by the second-best
predicted label of the original model. The results in Table 4.8 show that the migration of
the three different classes corresponds pretty much to what can be observed in Figure 4.16,
with, for instance, the Setosa and V irginica classes migrating to the V ersicolor class, and
the latter one being migrated to the closest of the two, i.e., V irginica.

We can examine the most influential characteristics in financial decision-making, or
in other respects, which features can distinguish classes the most from a list of features
that need to be altered most of the time. These results are shown in Table 4.8.

4.4.4 Thyroid disease

The original Thyroid-disease datasets in the UCI machine learning repository contains
2800 instances for training data and 972 instances for testing, each with three classes.

85

4. Explainable AI

Figure 4.16: 2D plotting the IRIS dataset. The graph indicates that using only two features (Petal
Length and Petal Width) out of four is enough to separate most samples of this dataset. Note that
Iris Versi color appears to be in between the two other classes.

Each instance has 21 attributes, consisting of 15 categorical and six continuous numbers.
This dataset includes various characteristics of patients who underwent an oral glucose
tolerance test, such as insulin and glucose levels after two hours, as well as their type 2
diabetes status (0 indicating non-diabetic). For ease of displaying the experimental results,
we narrowed the classes down to two and selected records based on the following criteria:

On thyroxine = Query on thyroxine&

Onantithyroidmedication : False&

Thyroid surgery : False&

I131 treatment : False&

Tumor : False&

Hypopituitary : False

After filtering, there were 3065 records left, which comprised of 2298 training samples
and 767 test instances. Except for three columns, namely ’FTI’, ’TBG’, and ’Referral source’,
most of the categories were removed from the dataset and not utilised to train the original
model F or the NM generator G. We employed the same setup as the last experiment

86

4.4. The Neighbour Migrating Generator Model

Figure 4.17: shows the relationship between each type of species, and features are displayed.

(except using L2 norm) and normalised the dataset as before. However, the weight vector
ω was altered to make some input dimensions less variable. The selected dimensions
and their corresponding weights are shown in table 4.9.

The results demonstrate that the ω vector is effective in preventing certain features
from being modified, thus reducing the cost of changing them. Further analysis shows
that two specific features have a significant impact on the migration of samples between
classes. However, it is important to note that this observation may not be applicable
to all datasets, especially when all features are changeable. The experimental results
are summarised in Table 4.10.

Upon examining the differences between the original samples and their migrated
counterparts, we observed that in most cases, the TSH and TT4 fields were the ones

87

4. Explainable AI

Feature Name Description Weight

Age Continuous 99
Sex Categorical 99
TSH Continuous 1
T3 Continuous 1

TT4 Continuous 1
T4U Continuous 1
FTI Continuous 99
TBG Continuous 99

Referral source Categorical 99

Table 4.9: Description of features in the Thyroid-disease datasets.

Figure 4.18: 2D plotting the Thyroid dataset. The graph indicates that using only two features
(TT4 and TSH) out of nine is enough to separate most samples of this dataset.

undergoing changes. Interestingly, these two features alone are sufficient to distinguish
between the two classes, as illustrated in Figure 4.18.

In addition to what we have already discussed, we have conducted additional tests on
this dataset (where the three classes are not changed) to examine the effect of the weight
vector on model G. This time, we ran model G three times, either with no input dimensions
frozen at all, just freezing "Sex", or two features together, namely "Sex" and "Age". The
experiment layout demonstrates that the weight factor has a significant influence on how
the NMG discovers the closest Neighbour with a different label while considering less
change in frozen inputs. The results are shown in table B.9.

88

4.5. Conclusion

Classes Age Sex TSH T3 TT4 T4U FTI TBG Ref
source

Class 1 58 0 1.3 2.3 77 0 0 0 1
to 0 58 0 10.69 2.30 77.01 -0.01 0.01 0 1

Changes -5E-04 2E-04 9.39 1E-03 0.01 -7E-03 0.01 0 9E-05
Class 0 63 1 8.20 2.10 80 1.02 78 0 1

to 1 63 1 2.37 2.10 80.22 1.02 78.01 0 1
Changes 6E-05 3E-05 -5.83 -1E-03 0.2 -5E-03 0.011 0 8E-05
Class 0 60 1 8.10 1.80 59 0.96 61 0 1

to 1 60 1 1.24 1.79 59.57 0.96 61.01 0 1
Changes -1E-05 5E-05 -6.86 -7E-03 0.06 -3E-03 0.01 0 1E-05
Class 1 29 1 0 0 0 0 0 0 1

to 0 29 1 10.30 0.03 -1.31 0.01 0 0 1
Changes -2E-03 9E-05 10.3 0.02 -1.31 0.01 -4E-03 0 3E-05
Class 1 59 1 0 0 0 0 0 0 1

to 0 59.01 1 10.30 0.02 -1.05 0.01 -0.01 0 1
Changes 9E-03 9E-05 10.3 0.02 -1.0 9E-03 -0.01 0 2E-07
Class 1 71 1 0 0 0 0 0 0 1

to 0 70.98 1 10.20 0.02 -1.04 0.01 0.04 0 1
Changes -1E-02 1E-04 10.20 0.02 -1.04 9E-03 0.04 0 2E-05

Table 4.10: Description of features in the Thyroid diabetes datasets.

4.5 Conclusion

In this chapter, we introduced ExMed, a user-friendly software package that enables
medical domain experts to perform Explainable AI data analysis without requiring any
programming skills. With ExMed, we aimed to combine the flexibility of medical sub-
domain transferability with the trustworthiness of explainability, using state-of-the-art
ExAI methods. ExMed can handle various data input types and offers standard pre-
processing operations, supports different prediction models and visualisation techniques,
and incorporates two popular feature attribution ExAI algorithms.

To validate ExMed’s effectiveness, we conducted two real-world case studies in the
domains of public health epidemiology and cancer research using electronic patient
records. In the COVID case study, we analysed the effectiveness of COVID control
measures in the UK from March 2020 to January 2021 and found that closing cafes,
restaurants, pubs, and bars had the greatest impact in reducing the virus transmission

89

4. Explainable AI

rate. In the cancer case study, we investigated the life expectancy of lung cancer patients
using the Simulacrum dataset and observe that factors such as cancer grade, BMI, age,
and M Best have a significant influence on survival.

In addition, we introduced the Neighbour Migrating Generator (NMG), a novel
method for finding the closest neighbour with a different class label. The NMG searches
for decision boundaries that enable changing a given input with minimal effort and
identifies the most influential dimensions in the decision space that distinguish the classes.
We conduct three experiments to demonstrate the effectiveness of our generator: 1) finding
decision boundaries in the original model (e.g., heart function), 2) detecting overfitting
in results (e.g., Pima Indians Diabetes Database), and 3) providing close Neighbouring
clues between classes (Iris dataset). Notably, our method can learn decision boundaries
without modifying any kernel parameters, leading to more reliable outcomes compared
to previous approaches (e.g., [82]).

90

4.5. Conclusion

Sa
m

pl
es

N
um

be
ro

f
G

lu
co

se
D

ia
st

ol
ic

Bl
oo

d
Sk

in
In

su
lin

BM
I

D
ia

be
te

s
A

ge
/

C
la

ss
Pr

eg
na

nc
ie

s
m
g
/d

l
Pr

es
s.,

m
m

H
g

Th
ic

kn
es

s
µ
U
/m

l
k
g
/m

2
Pe

di
gr

ee
ye

ar
m

ig
ra

tio
n

≤
14

0
≤

80
m

m
16
−
16

6
≤

25
Fu

nc
tio

n

1
:
1
→

0
2

10
0

66
20

90
32
.9

0
.8
67

28
+
3
.5

−
0
.1

(+
1
75

%
)

(−
12

%
)

2
:
0
→

1
4

12
9

86
20

27
0

35
.1

0
.2
31

23
+
18
.8

(1
5%

)
3
:
1
→

0
3

16
9

74
19

12
5

29
.9

0
.2
68

31
−
0.
1

−
21
.9

(−
1%

)
(−

18
%

)
4
:
0
→

1
2

10
1

58
35

90
21
.8

0
.1
55

22
+
0.
9

+
0.
2

−
88
.4

+
2
.2

+
1.
1

(+
1%

)
(+

1%
)

(−
98

%
)

(+
10

%
)

(+
5%

)
5
:
0
→

1
3

96
56

34
11

5
24
.7

0
.9
44

39
+
1
.3

+
0.
6

+
1
.3

+
1
.3

(+
2%

)
(+

5%
)

6
:
0
→

1
1

11
8

58
36

94
33
.3

0
.2
61

23
−
23
.2

(−
25

%
)

Table 4.11: Variation among features when changing instances (local variant of the algorithm) for
the Pima Indian Diabetes Dataset for 6 randomly selected samples. Units and standard ranges for
glucose, blood pressure, insulin and Body Mass Index are given at the top, and samples outside
the range are highlighted in red. The second value in cells, when present, indicates the variation
generated by the migration model on some of the features. Unchanged values are not shown.

91

Chapter 5

Conclusions

The field of artificial neural networks has seen much growth with new exciting devel-
opments in recent years, leading to various breakthroughs in artificial intelligence, as
well as in other areas of science. As artificial neural networks become more complex, it
becomes crucial to reduce their complexity to improve efficiency and accuracy especially
for portable devices with lower computational resources. One aspect in this thesis focused
on improving fully connected layers of a neural network by proposing a different way to
multiply matrices. This novel approach to matrix multiplication called the Mediterranean
Matrix Multiplication (M3) offers several advantages over traditional methods.

The M3 is a technique that can deal with dealing with large matrices, offering a
configurable and pre-calculable error rate that surpasses other algorithms in terms of
performance. The algorithm works by estimating the angles between rows and columns
of two matrices using randomly located planes to estimate these angles in a Monte
Carlo approximation fashion. It also required mainly very simple instructions such as
bitwise operations to achieve this. These operations include XOR (one), POPCOUNT
(one), and a single ADD process that can operate on 64 planes in parallel instead of a
single fused multiply-add (FMA) for each plane. By doing so, M3 achieves a higher
degree of energy efficiency than other matrix multiplication techniques, although it
only provides an approximation.

Additionally, this study shows that the M3 is approximately 10 times faster than the
regular method for approximating large matrix multiplication. This was a significant
improvement, considering that the speed of matrix multiplication has for long been a
bottleneck in the learning of deep neural networks. The amount of steps required to

93

5. Conclusions

approximate the result using M3 is O(k(mn+ np+mp), where the multiplying matrices’
dimensions are (m,n, p) and k represents the number of trials required to achieve the
desired accuracy. This feature allows for greater flexibility, making the M3 a highly
adaptable and customisable tool for matrix multiplication.

To empirically validate the effectiveness of the M3, we conducted experiments using
CUDA, a well-known parallel computing platform and programming model. The M3

shows it is compatible with modern architectures such as GPU, making it more useful
in artificial neural networks.

Furthermore, artificial neural networks design frequently makes use of substantial fully
connected layers. By joining a large number of neurons together, these layers are utilised
to build complicated representations; the weight between the neurons is represented by
matrices. Matrix multiplication, a crucial process required for training and inference,
can be a bottleneck when working with big matrices, though, due to its computational
complexity. In order to deal with this problem, we have developed a novel technique for
compressing fully connected layers in artificial neural networks. The technique used M3 to
reduces the storage complexity of these layers based on the number of hyper-planes used.
In contrast to the standard complexity for storing a matrix, which is O(n3), this technique
achieves significant compression rates that can be customised to meet the specific needs
of different applications. For example, we have achieved a compression rate of up to
100× for fully connected layers in VGG16, with negligible or no loss of accuracy. The
ability to speed up matrix multiplication for huge matrices and produce more effective
computation will results a quicker prediction times.

A rapidly developing field called Explainable AI (ExAI) aims to explain ANNs and
other black box modles by offering comments and insights into how they make decisions
[175]. This approach is based on the belief that ExAI’s usability is improved by offering
a framework that handles each phase of the machine learning pipeline, including data
manipulation, pre-processing approaches, and explainability.

In response to the greater need for explainability, we have created a novel ExAI
framework that we refer to as ExMed. With an emphasis on medical datasets, we intend
to provide a framework that makes it simple for users to apply ExAI to those models
and their predictions.

ExMed covers every stage of the machine learning process, from data manipulation to
training various models. With its various capabilities, including data dissemination, and

94

explainability to the design process (through a simple and straightforward user interface),
the framework may assist users in understanding every step of the design process. We
have incorporated a number of algorithms, including LIME, SHAPE, and plot decision
tree, to further improve the utilisation of ExAI in the framework.

The Neighbour Migrating Generator (NMG) technique was another contribution to the
ExAI research area. It is a new technique that explains how a model might behaves (take
decision) both locally and globally for new samples. The NMG is an effective method that
doesn’t need any hyperparameter adjustments. It enables the determination of the nearest
possible neighbour(s) with a different label for a specific instance, which might assist in
identifying the most crucial features that affect the model’s prediction. This approach
can help to check fairness and finding possible bias in a model decision.

By using NMG on models trained on various datasets, we can achieve global variance
and locate the nearest neighbour with a different label. This allows explaining the
features that contribute most to the model’s decision-making process, providing valuable
information for understanding the fairness of a model.

Moreover, NMG can be used to migrate a specific sample to the class decision boundary
of the original model within a close neighbourhood of that sample or to identify global
features that help localise neighbour classes. The approach minimises a loss function that
is divided into two components, which are independently weighted. Results show that
this approach detects the smallest changes in the feature space and can also highlight
issues in models like over-fitting.

In summary, This research seeks to advance the field of artificial neural networks
by making these more accessible, efficient, and trustworthy for a wider audience. One
primary objective was to develop a computing pipeline for artificial neural networks that
can be used on devices with limited resources, and also enhance model explainability.
To accomplish this, we proposed a novel matrix multiplication algorithm that relies on
Monte-Carlo principles to estimate angles between vectors, resulting in faster and more
straightforward calculations. Additionally, we suggest compressing Fully Connected
Layers with this algorithm. We also investigate the use of explainable models in medical
domains where explainability and trust are crucial. We also introduce a novel technique
for explaining a model and its input space, which can help users estimate how the
model arrived at its conclusions.

95

Chapter 6

Future Work

The field of Artificial neural network compression offers many possibilities for advancing
the usage of Machine Learning (ML) in various applications, especially in devices with
lower resources such as embedded systems. Despite the significant progress in this field,
many challenges remain. One such challenge is finding efficient methods to compress
and accelerate ANNs while maintaining their accuracy. The recent breakthroughs in the
explainability of artificial neural networks offer a new direction for developing compression
techniques that are not only efficient but also preserve the accuracy of the original network.
Therefore, we believe that further research and development in this area are crucial to the
successful deployment of advanced deep neural networks in real-world applications.

In Chapter 3, we introduced a new matrix multiplication called Mediterranean Matrix
Multiplication (M3) and its performance in terms of inference time and storage complexity.
However, as we discuss in the chapter, the effectiveness of the M3 is limited by the nature
of the columns in the first matrix, making it unsuitable for Convolutional Layers. To
overcome this limitation, we might be able to propose another approach that combines
M3 with other techniques, such as XNOR-Net, which compresses the convolutional layers
and utilizes M3 for the Fully Connected Layers.

Since the M3 was made to handle big matrix multiplications with pre-calculable
error rate, it may also be interesting to improve the M3 algorithm to handle even bigger
out-of-core matrices that GPUs with less memory couldn’t handle. For applications
where error-free accuracy is not necessarily required, it might be a useful technique.
Although the M3 was successfully used in the fully-connected layers of a neural network,
its usefulness in other fields could be investigated.

97

6. Future Work

The development of ExMed can be further enhanced to add to its capabilities and
simplify its usage. Incorporating a variety of technical features such as automatic
data assessment and model selection, and running additional models can improve the
framework’s overall effectiveness. It would be even more advantageous if the framework
could be modified to allow for the integration of plug-ins to add external capabilities. By
tuning hyperplanes automatically and assisting end-users in model training, the usability
of the framework can be further enhanced.

To assess the potency of various ExAI strategies, we consider carrying out user tests,
more specifically testing ExMed in collaboration with medical experts. These investigations
will offer insightful information regarding the suitability of ExMed in practical contexts.
We also plan to examine capabilities like parameter adjustment, which can speed up the
model selection process, as part of the framework’s functionality expansion.

To further improve the accuracy and completeness of the data, we intend to implement
new missing value imputation methods including Multiple Imputation by Chained
Equations (MICE) and Singular Imputation by Chained Equations (SICE).

Finally, we plan to introduce additional ExAI techniques such as Anchors in ExMed,
which can be particularly useful in healthcare applications. These enhancements can help
advance the use of ExMed. Visualisation is a powerful tool that can greatly enhance the
explainability and usefulness of machine learning models. In fact, visualisation has been
shown to help end-users understand complex information and reach conclusions more
easily. Therefore, in order to make ANNs more accessible and user-friendly, it is important
to incorporate visualisation techniques into the design of ExAI models.

In chapter 4, we also proposed an extension to the Neighbour Migrating Generator
(NMG) method, which we refer to as NMG-global. This extension enables us to identify
and visualise decision boundaries and understand the influence of features on the original
model’s decisions. By incorporating a visualisation tool, we can provide users with a
more comprehensive understanding of the model’s behaviour and help them make more
informed decisions based on the model’s predictions. This approach has the potential
to significantly enhance the performance and explainability of ANN models and could
be especially useful in fields such as healthcare, finance, and marketing where accurate
decision-making is critical.

98

Bibliography

[1] K. L. Clarkson and D. P. Woodruff, “Numerical linear algebra in the streaming
model,” in Proceedings of the Forty-first Annual ACM Symposium on Theory of
Computing, ser. STOC ’09. New York, NY, USA: ACM, 2009, pp. 205–214. [Online].
Available: http://doi.acm.org/10.1145/1536414.1536445

[2] M. Courbariaux, Y. Bengio, and J. David, “Binaryconnect: Training deep neural
networks with binary weights during propagations,” CoRR, vol. abs/1511.00363,
2015. [Online]. Available: http://arxiv.org/abs/1511.00363

[3] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks,” CoRR, vol.
abs/1603.05279, 2016. [Online]. Available: http://arxiv.org/abs/1603.05279

[4] E. W. Weisstein, “Heart curve – from wolfram MathWorld.” [Online]. Available:
https://mathworld.wolfram.com/HeartCurve.html

[5] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E. L.
Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A. N. Ngomo, S. M.
Rashid, A. Rula, L. Schmelzeisen, J. F. Sequeda, S. Staab, and A. Zimmermann,
“Knowledge graphs,” CoRR, vol. abs/2003.02320, 2020. [Online]. Available:
https://arxiv.org/abs/2003.02320

[6] E. N. Benderskaya and S. V. Zhukova, Multidisciplinary Trends in Modern Artificial
Intelligence: Turing’s Way. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp.
319–343. [Online]. Available: https://doi.org/10.1007/978-3-642-29694-9_13

[7] E. Ilkou and M. Koutraki, “Symbolic vs sub-symbolic ai methods: Friends or
enemies?” 11 2020.

99

http://doi.acm.org/10.1145/1536414.1536445
http://arxiv.org/abs/1511.00363
http://arxiv.org/abs/1603.05279
https://mathworld.wolfram.com/HeartCurve.html
https://arxiv.org/abs/2003.02320
https://doi.org/10.1007/978-3-642-29694-9_13

Bibliography

[8] A. Buetti-Dinh, V. Galli, S. Bellenberg, O. Ilie, M. Herold, S. Christel, M. Boretska,
I. V. Pivkin, P. Wilmes, W. Sand, M. Vera, and M. Dopson, “Deep neural networks
outperform human expert’s capacity in characterizing bioleaching bacterial biofilm
composition,” Biotechnology Reports, vol. 22, p. e00321, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2215017X18301954

[9] R. M. Haralick and L. G. Shapiro, “Image segmentation techniques,” Computer vision,
graphics, and image processing, vol. 29, no. 1, pp. 100–132, 1985.

[10] R. V. Peel, “Social research; a study in methods of gathering data. by george a.
lundberg. new york: Longmans, green, and company. 1942),” American Political
Science Review, vol. 36, no. 5, p. 982–984, 1942.

[11] T. Hwang, “Computational power and the social impact of artificial intelligence,”
Available at SSRN 3147971, 2018.

[12] T. Liang, J. Glossner, L. Wang, S. Shi, and X. Zhang, “Pruning and quantization for
deep neural network acceleration: A survey,” Neurocomputing, vol. 461, pp. 370–403,
2021.

[13] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and hardware
acceleration for neural networks: A comprehensive survey,” Proceedings of the IEEE,
vol. 108, no. 4, pp. 485–532, 2020.

[14] I. Tiddi and S. Schlobach, “Knowledge graphs as tools for explainable machine
learning: A survey,” Artificial Intelligence, vol. 302, p. 103627, 2022.

[15] P. Biecek, “DALEX: Explainers for complex predictive models in R,” Journal of
Machine Learning Research, vol. 19, no. 84, pp. 1–5, 2018.

[16] C. Molnar, Interpretable Machine Learning: A Guide for Making Black
Box Models Explainable. The author, 2019. [Online]. Available: https:
//christophm.github.io/interpretable-ml-book/

[17] F. Wu and X. Bai, “Insertgnn: Can graph neural networks outperform humans in
TOEFL sentence insertion problem?” CoRR, vol. abs/2103.15066, 2021. [Online].
Available: https://arxiv.org/abs/2103.15066

100

https://www.sciencedirect.com/science/article/pii/S2215017X18301954
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
https://arxiv.org/abs/2103.15066

Bibliography

[18] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks
for image classification,” in 2012 IEEE Conference on Computer Vision and Pattern
Recognition, 2012, pp. 3642–3649.

[19] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” Commun. ACM, vol. 60, no. 6, p. 84–90, May 2017.
[Online]. Available: https://doi.org/10.1145/3065386

[20] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv 1409.1556, 09 2014.

[21] A. Rai, “Explainable ai: From black box to glass box,” Journal of the Academy of
Marketing Science, vol. 48, no. 1, pp. 137–141, 2020.

[22] K. Gade, S. C. Geyik, K. Kenthapadi, V. Mithal, and A. Taly, “Explainable ai in
industry,” in Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, 2019, pp. 3203–3204.

[23] J. M. Benítez, J. L. Castro, and I. Requena, “Are artificial neural networks black
boxes?” IEEE Transactions on Neural Networks, vol. 8, no. 5, pp. 1156–1164, 1997.

[24] D. Gunning, E. Vorm, J. Y. Wang, and M. Turek, “Darpa’s explainable ai (xai)
program: A retrospective,” Applied AI Letters, vol. 2, no. 4, p. e61, 2021.

[25] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and J. Kepner, “Survey
and benchmarking of machine learning accelerators,” CoRR, vol. abs/1908.11348,
2019. [Online]. Available: http://arxiv.org/abs/1908.11348

[26] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale
hierarchical image database,” in 2009 IEEE conference on computer vision and pattern
recognition. Ieee, 2009, pp. 248–255.

[27] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in European conference on
computer vision. Springer, 2014, pp. 740–755.

[28] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” CoRR, vol. abs/1512.03385, 2015. [Online]. Available:
http://arxiv.org/abs/1512.03385

101

https://doi.org/10.1145/3065386
http://arxiv.org/abs/1908.11348
http://arxiv.org/abs/1512.03385

Bibliography

[29] J. Orbach, “Principles of Neurodynamics. Perceptrons and the Theory of Brain
Mechanisms.” Archives of General Psychiatry, vol. 7, no. 3, pp. 218–219, 09 1962.
[Online]. Available: https://doi.org/10.1001/archpsyc.1962.01720030064010

[30] J. Mira and F. Sandoval, From Natural to Artificial Neural Computation: International
Workshop on Artificial Neural Networks, Malaga-Torremolinos, Spain, June 7 – 9, 1995
Proceedings (Lecture Notes in Computer Science, 930), 1995th ed. Springer.

[31] Y. Blumenfeld, D. Gilboa, and D. Soudry, “Beyond signal propagation: is feature
diversity necessary in deep neural network initialization?” in International Conference
on Machine Learning. PMLR, 2020, pp. 960–969.

[32] Y. Timoshenkova, N. Safiullin, and S. Porshnev, “About influence of weight initial-
ization algorithms on accuracy of the forecast with lstm-net for harmonic signals,”
in 2021 Ural Symposium on Biomedical Engineering, Radioelectronics and Information
Technology (USBEREIT), 2021, pp. 0330–0333.

[33] M. Karouia, T. Denoeux, and R. Langelle, “Influence of weight initialization on
multilayer perceptron performance,” in Proc. ICANN, vol. 1, 1995, pp. 33–38.

[34] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding
gradient problem,” CoRR, vol. abs/1211.5063, 2012. [Online]. Available:
http://arxiv.org/abs/1211.5063

[35] S. Kong and M. Takatsuka, “Hexpo: A vanishing-proof activation function,” in 2017
International Joint Conference on Neural Networks (ĲCNN), 2017, pp. 2562–2567.

[36] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller, “Efficient BackProp“. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2012, pp. 9–48. [Online]. Available:
https://doi.org/10.1007/978-3-642-35289-8_3

[37] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification,” CoRR, vol. abs/1502.01852,
2015. [Online]. Available: http://arxiv.org/abs/1502.01852

[38] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural
network acoustic models,” in in ICML Workshop on Deep Learning for Audio, Speech
and Language Processing, 2013.

102

https://doi.org/10.1001/archpsyc.1962.01720030064010
http://arxiv.org/abs/1211.5063
https://doi.org/10.1007/978-3-642-35289-8_3
http://arxiv.org/abs/1502.01852

Bibliography

[39] L. Parisi, D. Neagu, R. Ma, and F. Campean, “Qrelu and m-qrelu: Two
novel quantum activation functions to aid medical diagnostics,” CoRR, vol.
abs/2010.08031, 2020. [Online]. Available: https://arxiv.org/abs/2010.08031

[40] J. Bridle, Probabilistic Interpretation of Feedforward Classification Network Outputs, with
Relationships to Statistical Pattern Recognition, 01 1990, pp. 227–236.

[41] R. HECHT-NIELSEN, “Theory of the backpropagation neural network, based
on ”nonindent” by robert hecht-nielsen, which appeared in proceedings
of the international joint conference on neural networks 1, 593–611,
june 1989. © 1989 ieee.” in Neural Networks for Perception, H. Wechsler,
Ed. Academic Press, 1992, pp. 65–93. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780127412528500108

[42] Y. Bengio, “Practical recommendations for gradient-based training of
deep architectures,” CoRR, vol. abs/1206.5533, 2012. [Online]. Available:
http://arxiv.org/abs/1206.5533

[43] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol.
abs/1412.6980, 2015.

[44] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online learning
and stochastic optimization,” Journal of Machine Learning Research, vol. 12, pp.
2121–2159, 07 2011.

[45] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International conference on machine learning.
PMLR, 2015, pp. 448–456.

[46] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model compression and
acceleration for deep neural networks,” CoRR, vol. abs/1710.09282, 2017. [Online].
Available: http://arxiv.org/abs/1710.09282

[47] D. D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee, S. Avancha, D. T.
Vooturi, N. Jammalamadaka, J. Huang, H. Yuen, J. Yang, J. Park, A. Heinecke,
E. Georganas, S. Srinivasan, A. Kundu, M. Smelyanskiy, B. Kaul, and P. Dubey, “A
study of BFLOAT16 for deep learning training,” CoRR, vol. abs/1905.12322, 2019.
[Online]. Available: http://arxiv.org/abs/1905.12322

103

https://arxiv.org/abs/2010.08031
https://www.sciencedirect.com/science/article/pii/B9780127412528500108
https://www.sciencedirect.com/science/article/pii/B9780127412528500108
http://arxiv.org/abs/1206.5533
http://arxiv.org/abs/1710.09282
http://arxiv.org/abs/1905.12322

Bibliography

[48] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural networks
on cpus,” in Proceedings of the Deep Learning and Unsupervised Feature Learning NIPS
2011 Workshop, 2011, p. 4.

[49] D. Williamson, “Dynamically scaled fixed point arithmetic,” in [1991] IEEE Pacific Rim
Conference on Communications, Computers and Signal Processing Conference Proceedings,
1991, pp. 315–318 vol.1.

[50] Y. H. Oh, Q. Quan, D. Kim, S. Kim, J. Heo, S. Jung, J. Jang, and J. W. Lee, “A
portable, automatic data qantizer for deep neural networks,” in Proceedings of
the 27th International Conference on Parallel Architectures and Compilation Techniques,
ser. PACT ’18. Association for Computing Machinery, 2018. [Online]. Available:
https://doi.org/10.1145/3243176.3243180

[51] D. Touretzky, Advances in Neural Information Processing Systems, 2, mit press ed.
Morgan Kaufmann Pub, 1990, vol. 14.

[52] W. Chen, J. T. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen, “Compressing
neural networks with the hashing trick,” CoRR, vol. abs/1504.04788, 2015. [Online].
Available: http://arxiv.org/abs/1504.04788

[53] A. Alqahtani, X. Xie, E. Essa, and M. W. Jones, “Neuron-based network pruning
based on majority voting,” in 2020 25th International Conference on Pattern Recognition
(ICPR), 2021, pp. 3090–3097.

[54] D. Song, P. Zhang, and F. Li, “Speeding up deep convolutional neural networks
based on tucker-cp decomposition,” Proceedings of the 2020 5th International Conference
on Machine Learning Technologies, 2020.

[55] C. Tai, T. Xiao, Y. Zhang, X. Wang, and W. E, “Convolutional neural networks with
low-rank regularization,” arXiv preprint arXiv:1511.06067, 2016.

[56] D. B. Paul and J. M. Baker, “The design for the wall street journal-based CSR corpus,”
in Speech and Natural Language: Proceedings of a Workshop Held at Harriman, New York,
February 23-26, 1992. Association for Computational Linguistics, 1992, pp. 357–362.

[57] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran, “Low-
rank matrix factorization for deep neural network training with high-dimensional

104

https://doi.org/10.1145/3243176.3243180
http://arxiv.org/abs/1504.04788

Bibliography

output targets,” in 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, 2013, pp. 6655–6659.

[58] Y. Cheng, F. X. Yu, R. S. Feris, S. Kumar, A. N. Choudhary, and S. Chang, “Fast
neural networks with circulant projections,” CoRR, vol. abs/1502.03436, 2015.
[Online]. Available: http://arxiv.org/abs/1502.03436

[59] Z. Yang, M. Moczulski, M. Denil, N. de Freitas, A. J. Smola, L. Song, and Z. Wang,
“Deep fried convnets,” CoRR, vol. abs/1412.7149, 2014.

[60] S. R. Islam, W. Eberle, S. K. Ghafoor, and M. Ahmed, “Explainable artificial
intelligence approaches: A survey,” CoRR, vol. abs/2101.09429, 2021. [Online].
Available: https://arxiv.org/abs/2101.09429

[61] Z. Hellwig, Linear Regression and its Application to Economics. Elsevier, 1963.

[62] M. Fritz, “Improved output gap estimates and forecasts using a local linear regres-
sion,” Engineering Proceedings, vol. 5, no. 1, 2021.

[63] X. Su, X. Yan, and C.-L. Tsai, “Linear regression,” Wiley Interdisciplinary Reviews:
Computational Statistics, vol. 4, no. 3, pp. 259–277, 2012.

[64] J. W. Pratt, “Dividing the indivisible: Using simple symmetry to partition variance
explained,” in Proceedings of the 2nd International Conference in Statistics, T. Pukkila
and S. Puntanen, Eds., Tampere, Finland, 1987, pp. 245–260.

[65] J. Bring, “A geometric approach to compare variables in a regression model,” The
American Statistician, vol. 50, no. 1, pp. 57–62, 1996.

[66] ——, “A geometric approach to compare variables in a regression model,”
The American Statistician, vol. 50, no. 1, pp. 57–62, 1996. [Online]. Available:
http://www.jstor.org/stable/2685045

[67] N. Seedorff and G. Brown, “totalvis: A principal components approach to visualizing
total effects in black box models,” SN Computer Science, vol. 2, 05 2021.

[68] A. Brenning, “Transforming feature space to interpret machine learning
models,” CoRR, vol. abs/2104.04295, 2021. [Online]. Available: https:
//arxiv.org/abs/2104.04295

105

http://arxiv.org/abs/1502.03436
https://arxiv.org/abs/2101.09429
http://www.jstor.org/stable/2685045
https://arxiv.org/abs/2104.04295
https://arxiv.org/abs/2104.04295

Bibliography

[69] L. Li, X. Zhang, and M. Xue, “Explaining information gain and information gain
ratio in information theory,” vol. 7, pp. 2385–2391, 01 2013.

[70] R. J. Urbanowicz, M. Meeker, W. La Cava, R. S. Olson, and J. H. Moore, “Relief-based
feature selection: Introduction and review,” Journal of Biomedical Informatics, vol. 85,
pp. 189–203, 2018.

[71] E. Scornet, “Trees, forests, and impurity-based variable importance,” 2021.

[72] S. Nembrini, I. R. König, and M. N. Wright, “The revival of the Gini importance?”
Bioinformatics, vol. 34, no. 21, pp. 3711–3718, 05 2018.

[73] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, “Classification and
regression trees. brooks,” Wadsworth and Brooks, Monterey, CA, 1984.

[74] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1, pp. 81–106,
2004.

[75] K. Mittal, D. Khanduja, and P. C. Tewari, “”an insight into ‘decision tree analysis”,”
World Wide Journal of Multidisciplinary Research and Development, vol. 3, no. 12, pp.
111–115, 2017.

[76] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should I trust you?": Explaining the
predictions of any classifier,” CoRR, vol. abs/1602.04938, 2016. [Online]. Available:
http://arxiv.org/abs/1602.04938

[77] S. M. Lundberg and S. Lee, “A unified approach to interpreting model predictions,”
in Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, I. Guyon,
U. von Luxburg, S. Bengio, H. M. Wallach, R. Fergus, S. V. N. Vishwanathan, and
R. Garnett, Eds., 2017, pp. 4765–4774.

[78] L. S. Shapley, “A value for n-person games,” Contributions to the Theory of Games,
vol. 2, no. 28, pp. 307–317, 1953.

[79] E. Štrumbelj and I. Kononenko, “Explaining prediction models and individual
predictions with feature contributions,” Knowledge and Information Systems, vol. 41,
pp. 647–665, 12 2013.

106

http://arxiv.org/abs/1602.04938

Bibliography

[80] S. M. Lundberg, G. G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz,
J. Himmelfarb, N. Bansal, and S. Lee, “Explainable AI for trees: From local explana-
tions to global understanding,” CoRR, vol. abs/1905.04610, 2019.

[81] S. Lundberg and S.-I. Lee, “A unified approach to interpreting model predictions,”
2017.

[82] S. Wachter, B. D. Mittelstadt, and C. Russell, “Counterfactual explanations
without opening the black box: Automated decisions and the GDPR,” CoRR, vol.
abs/1711.00399, 2017. [Online]. Available: http://arxiv.org/abs/1711.00399

[83] S. Dandl, C. Molnar, M. Binder, and B. Bischl, “Multi-objective counterfactual
explanations,” Lecture Notes in Computer Science, p. 448–469, 2020. [Online]. Available:
http://dx.doi.org/10.1007/978-3-030-58112-1_31

[84] D. Coppersmith, “Rectangular matrix multiplication revisited,” Journal of Complexity,
vol. 13, no. 1, pp. 42–49, 1997.

[85] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” Journal of Symbolic Computation, vol. 9, no. 3, pp. 251–
280, 1990, computational algebraic complexity editorial. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0747717108800132

[86] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain,
A. Novikov, F. J. R. Ruiz, J. Schrittwieser, G. Swirszcz, D. Silver, D. Hassabis, and
P. Kohli, “Discovering faster matrix multiplication algorithms with reinforcement
learning,” Nature, vol. 610, pp. 47–53, 2022.

[87] N. P. Jouppi, C. Young, N. Patil, D. Patterson et al., “In-datacenter performance
analysis of a tensor processing unit,” in Proceedings of the 44th Annual International
Symposium on Computer Architecture. ACM, 2017, pp. 1–12.

[88] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern, P. D. Kirchner, and
J. T. Klosowski, “Chromium: A stream-processing framework for interactive
rendering on clusters,” in Proceedings of the 29th Annual Conference on Computer
Graphics and Interactive Techniques, ser. SIGGRAPH ’02. New York, NY, USA:
Association for Computing Machinery, 2002, p. 693–702. [Online]. Available:
https://doi.org/10.1145/566570.566639

107

http://arxiv.org/abs/1711.00399
http://dx.doi.org/10.1007/978-3-030-58112-1_31
https://www.sciencedirect.com/science/article/pii/S0747717108800132
https://doi.org/10.1145/566570.566639

Bibliography

[89] V. Strassen, “Gaussian elimination is not optimal,” Numer. Math., vol. 13, no. 4, pp.
354–356, Aug. 1969. [Online]. Available: http://dx.doi.org/10.1007/BF02165411

[90] D. Coppersmith and S. Winograd, “On the asymptotic complexity of matrix multi-
plication,” SIAM Journal on Computing, vol. 11, no. 3, pp. 472–492, 1982.

[91] W. M. Gentleman, “Matrix multiplication and fast fourier transforms,” The Bell
System Technical Journal, vol. 47, no. 6, pp. 1099–1103, 1968.

[92] R. C. Agarwal and F. G. Gustavson, “A parallel implementation of matrix multiplica-
tion and lu factorization on the ibm 3090,” in Proceedings of the IFIP WG, vol. 2, 1988,
pp. 217–221.

[93] D. Ren and R. Suda, “Power efficient large matrices multiplication by load scheduling
on multi-core and gpu platform with cuda,” in 2009 International Conference on
Computational Science and Engineering, vol. 1, 2009, pp. 424–429.

[94] X. Cui, Y. Chen, and H. Mei, “Improving performance of matrix multiplication and
fft on gpu,” in 2009 15th International Conference on Parallel and Distributed Systems,
2009, pp. 42–48.

[95] Z. Huang, N. Ma, S. Wang, and Y. Peng, “Gpu computing performance analysis on
matrix multiplication,” The Journal of Engineering, vol. 2019, no. 23, pp. 9043–9048,
2019. [Online]. Available: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.
1049/joe.2018.9178

[96] F. Dominguez, J. Unger, M. Traube, B. Mant, C. Ertler, and W. Lechner, “Encoding-
independent optimization problem formulation for quantum computing,” 2023.

[97] V. Y. Pan, “Strassen’s algorithm is not optimal trilinear technique of aggregating,
uniting and canceling for constructing fast algorithms for matrix operations,” in
Proceedings of the 19th Annual Symposium on Foundations of Computer Science, ser.
SFCS ’78. Washington, DC, USA: IEEE Computer Society, 1978, pp. 166–176.
[Online]. Available: http://dx.doi.org/10.1109/SFCS.1978.34

[98] D. Bini, M. Capovani, F. Romani, and G. Lotti, “O(n2.7799) Complexity for n*n
Approximate Matrix Multiplication,” Information Processing Letters, vol. 8, pp. 234–
235, 1979.

108

http://dx.doi.org/10.1007/BF02165411
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/joe.2018.9178
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/joe.2018.9178
http://dx.doi.org/10.1109/SFCS.1978.34

Bibliography

[99] A. Schönhage, “Partial and total matrix multiplication,” SIAM Journal on Computing,
vol. 10, no. 3, pp. 434–455, 1981.

[100] F. Romani, “Some properties of disjoint sums of tensors related to matrix multiplica-
tion,” SIAM J. Comput., vol. 11, pp. 263–267, 1982.

[101] V. Strassen, “Relative bilinear complexity and matrix multiplication.” Journal für die
reine und angewandte Mathematik, vol. 375, pp. 406–443, 1987.

[102] D. Coppersmith and S. Winograd, “Matrix multiplication via arithmetic
progressions,” J. Symb. Comput., vol. 9, no. 3, pp. 251–280, Mar. 1990. [Online].
Available: http://dx.doi.org/10.1016/S0747-7171(08)80013-2

[103] A. J. Stothers, “On the complexity of matrix multiplication,” Contributions to the
Theory of Computing, vol. 3, no. 1, pp. 47–67, 2010.

[104] V. V. Williams, “Multiplying matrices in o(nΘ2.373) time,” in Proceedings of the forty-
fourth annual ACM symposium on Theory of computing, 2012, pp. 887–898.

[105] F. Le Gall, “Powers of tensors and fast matrix multiplication,” in Proceedings
of the 39th International Symposium on Symbolic and Algebraic Computation, ser.
ISSAC ’14. New York, NY, USA: ACM, 2014, pp. 296–303. [Online]. Available:
http://doi.acm.org/10.1145/2608628.2608664

[106] R. W. Brockett and D. Dobkin, “On the number of multiplications required for matrix
multiplication,” SIAM Journal on Computing, vol. 5, no. 4, pp. 624–628, 1976.

[107] D. Coppersmith, “Rapid multiplication of rectangular matrices,” SIAM Journal on
Computing, vol. 11, no. 3, pp. 467–471, 1982.

[108] F. Le Gall, “Faster algorithms for rectangular matrix multiplication,” in Foundations
of Computer Science (FOCS), 2012 IEEE 53rd Annual Symposium on. IEEE, 2012, pp.
514–523.

[109] R. Freivalds, “Probabilistic machines can use less running time.” in IFIP congress,
vol. 839, 1977, p. 842.

[110] A. Frieze, R. Kannan, and S. Vempala, “Fast monte-carlo algorithms for finding
low-rank approximations,” in Proceedings 39th Annual Symposium on Foundations of
Computer Science (Cat. No.98CB36280), 1998, pp. 370–378.

109

http://dx.doi.org/10.1016/S0747-7171(08)80013-2
http://doi.acm.org/10.1145/2608628.2608664

Bibliography

[111] D. Achlioptas and F. McSherry, “Fast computation of low-rank matrix approxima-
tions,” J. ACM, vol. 54, p. 9, 2007.

[112] P. Drineas, R. Kannan, and M. Mahoney, “Fast monte carlo algorithms for matrices
ii: Computing a low-rank approximation to a matrix,” SIAM Journal on Computing,
vol. 36, 05 2004.

[113] H. Y. Cheung, T. C. Kwok, and L. C. Lau, “Fast matrix rank algorithms and
applications,” ArXiv, vol. abs/1203.6705, 2013.

[114] G. Valiant, “Finding correlations in subquadratic time, with applications to learning
parities and juntas,” in 2012 IEEE 53rd Annual Symposium on Foundations of Computer
Science, 2012, pp. 11–20.

[115] J. Bentley, B. Weide, and A. Yao, “Optimal expected-time algorithms for closest point
problems,” ACM Trans. Math. Softw., vol. 6, pp. 563–580, 12 1980.

[116] E. Cohen and D. D. Lewis, “Approximating matrix multiplication for pattern
recognition tasks,” in SODA ’97, 1997.

[117] Z. Bar-Yossef, “Sampling lower bounds via information theory,” in Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing. ACM, 2003, pp. 335–344.

[118] T. Sarlos, “Improved approximation algorithms for large matrices via random
projections,” in Foundations of Computer Science, 2006. FOCS’06. 47th Annual IEEE
Symposium on. IEEE, 2006, pp. 143–152.

[119] P. Drineas and R. Kannan, “Fast monte carlo algorithms for approximate matrix
multiplication,” in In Proceedings of the 42nd Annual IEEE Symposium on Foundations
of Computer Science, 2001, pp. 452–459.

[120] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast monte carlo algorithms for matrices
i: Approximating matrix multiplication,” SIAM Journal on Computing, vol. 36, no. 1,
pp. 132–157, 2006.

[121] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Faradžev, “On economical
construction of the transitive closure of a directed graph,” Soviet Mathematics—
Doklady, vol. 11, no. 5, pp. 1209–1210, 1970.

110

Bibliography

[122] N. Bansal and R. Williams, “Regularity lemmas and combinatorial algorithms,” in
Foundations of Computer Science, 2009. FOCS’09. 50th Annual IEEE Symposium on.
IEEE, 2009, pp. 745–754.

[123] T. M. Chan, “Speeding up the four-russians algorithm by about one more logarithmic
factor,” in Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms. Society for Industrial and Applied Mathematics, 2015, pp. 212–217.

[124] H. Yu, “An improved combinatorial algorithm for boolean matrix multiplication,” in
International Colloquium on Automata, Languages, and Programming. Springer, 2015,
pp. 1094–1105.

[125] J. Wiedermann, “Fast nondeterministic matrix multiplication via derandomization
of freivalds’ algorithm,” in Theoretical Computer Science. Springer, 2014, pp. 123–135.

[126] A. Lingas and D. Sledneu, “Vector convolution in o(n) steps and matrix multiplication
in o(n2) steps:-).” in Electronic Colloquium on Computational Complexity (ECCC), vol. 21,
2014, p. 39.

[127] I. Korec and J. Wiedermann, “Deterministic verification of integer matrix multiplica-
tion in quadratic time,” in SOFSEM 2014: Theory and Practice of Computer Science.
Springer, 2014, pp. 375–382.

[128] W. B. Johnson and J. Lindenstrauss, “Extensions of lipschitz mappings into a hilbert
space,” Contemporary Mathematics, vol. 26, 1984.

[129] P. Drineas and M. W. Mahoney, “Randnla: Randomized numerical linear
algebra,” Commun. ACM, vol. 59, no. 6, pp. 80–90, May 2016. [Online]. Available:
http://doi.acm.org/10.1145/2842602

[130] R. Yuster and U. Zwick, “Fast sparse matrix multiplication,” vol. 1, 07 2004.

[131] M. Iwen and C. Spencer, “A note on compressed sensing and the complexity of
matrix multiplication,” Information Processing Letters, vol. 109, no. 10, pp. 468–471,
2009. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0020019009000131

[132] A. Lingas, “A fast output-sensitive algorithm for boolean matrix multiplication,”
Algorithmica, vol. 61, pp. 36–50, 09 2009.

111

http://doi.acm.org/10.1145/2842602
https://www.sciencedirect.com/science/article/pii/S0020019009000131
https://www.sciencedirect.com/science/article/pii/S0020019009000131

Bibliography

[133] R. Pagh, “Compressed matrix multiplication,” ACM Transactions on Computation
Theory, vol. 5, 08 2011.

[134] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of
approximating the frequency moments,” Journal of Computer and System
Sciences, vol. 58, no. 1, pp. 137–147, 1999. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0022000097915452

[135] K. Kutzkov, “Deterministic algorithms for skewed matrix products,” Leibniz Interna-
tional Proceedings in Informatics, LIPIcs, vol. 20, 09 2012.

[136] A. Rahimi and B. Recht, “Weighted sums of random kitchen sinks: Replacing
minimization with randomization in learning,” in Advances in neural information
processing systems, 2009, pp. 1313–1320.

[137] Q. V. Le, T. Sarlós, and A. J. Smola, “Fastfood: Approximate kernel
expansions in loglinear time,” CoRR, vol. abs/1408.3060, 2014. [Online]. Available:
http://arxiv.org/abs/1408.3060

[138] M. X. Goemans and D. P. Williamson, “Improved approximation algorithms
for maximum cut and satisfiability problems using semidefinite programming,”
J. ACM, vol. 42, no. 6, pp. 1115–1145, Nov. 1995. [Online]. Available:
http://doi.acm.org/10.1145/227683.227684

[139] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in
Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing, ser.
STOC ’02. New York, NY, USA: ACM, 2002, pp. 380–388. [Online]. Available:
http://doi.acm.org/10.1145/509907.509965

[140] J. Chen, Y. Liu, H. Zhang, S. Hou, and J. Yang, “Propagating asymptotic-estimated
gradients for low bit width quantized neural networks,” IEEE Journal of Selected
Topics in Signal Processing, pp. 1–1, 2020.

[141] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, “Learning separable filters,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, 2013, pp.
2754–2761.

112

https://www.sciencedirect.com/science/article/pii/S0022000097915452
https://www.sciencedirect.com/science/article/pii/S0022000097915452
http://arxiv.org/abs/1408.3060
http://doi.acm.org/10.1145/227683.227684
http://doi.acm.org/10.1145/509907.509965

Bibliography

[142] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas, “Predicting
parameters in deep learning,” CoRR, vol. abs/1306.0543, 2013. [Online]. Available:
http://arxiv.org/abs/1306.0543

[143] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convolutional neural
networks with low rank expansions,” arXiv preprint arXiv:1405.3866, 2014.

[144] A. Novikov, D. Podoprikhin, A. Osokin, and D. Vetrov, “Tensorizing neural networks,”
in Proceedings of the 28th Conference on Neural Information Processing Systems (NIPS),
2015, pp. 442–450.

[145] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to
document recognition,” Proceedings of the IEEE, vol. 86, pp. 2278 – 2324, 12 1998.

[146] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “CINIC-10 is not
imagenet or CIFAR-10,” CoRR, vol. abs/1810.03505, 2018. [Online]. Available:
http://arxiv.org/abs/1810.03505

[147] A. Krizhevsky, “Learning multiple layers of features from tiny images,” University of
Toronto, 05 2012.

[148] T. Miller, “Explanation in artificial intelligence: Insights from the social sciences,”
Artif. Intell., vol. 267, pp. 1–38, 2019.

[149] A. Adadi and M. Berrada, “Peeking inside the black-box: A survey on explainable
artificial intelligence (XAI),” IEEE Access, vol. 6, pp. 52 138–52 160, 2018.

[150] D. Carvalho, E. Pereira, and J. Cardoso, “Machine learning interpretability: A survey
on methods and metrics,” Electronics, vol. 8, p. 832, 07 2019.

[151] M. Kapcia, H. Eshkiki, J. Duell, X. Fan, S. Zhou, and B. Mora, “Exmed: An ai tool
for experimenting explainable ai techniques on medical data analytics,” in 2021
IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI), 2021, pp.
841–845.

[152] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The
weka data mining software: an update,” ACM SIGKDD explorations newsletter, vol. 11,
no. 1, pp. 10–18, 2009.

113

http://arxiv.org/abs/1306.0543
http://arxiv.org/abs/1810.03505

Bibliography

[153] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[154] C. Molnar, Interpretable Machine Learning. Leanpub, 2019, https://christophm.
github.io/interpretable-ml-book/.

[155] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking inside the black box:
Visualizing statistical learning with plots of individual conditional expectation,”
2014.

[156] S. Tonekaboni, S. Joshi, M. D. McCradden, and A. Goldenberg, “What
clinicians want: Contextualizing explainable machine learning for clinical end
use,” in Proceedings of the 4th Machine Learning for Healthcare Conference, ser.
Proceedings of Machine Learning Research, F. Doshi-Velez, J. Fackler, K. Jung,
D. Kale, R. Ranganath, B. Wallace, and J. Wiens, Eds., vol. 106. Ann
Arbor, Michigan: PMLR, 09–10 Aug 2019, pp. 359–380. [Online]. Available:
http://proceedings.mlr.press/v106/tonekaboni19a.html

[157] M. T. Ribeiro, S. Singh, and C. Guestrin, “"why should I trust you?": Explaining the
predictions of any classifier,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, August
13-17, 2016. ACM, 2016, pp. 1135–1144.

[158] H. F. da Cruz, B. Pfahringer, T. Martensen, F. Schneider, A. Meyer, E. Böttinger,
and M.-P. Schapranow, “Using interpretability approaches to update “black-box”
clinical prediction models: an external validation study in nephrology,”
Artificial Intelligence in Medicine, vol. 111, p. 101982, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0933365720312471

[159] P. Mróz, A. Quemy, M. Ślażyński, K. Kluza, and P. Jemioło, “Gbex - towards graph-
based explanations,” in 2020 IEEE 32nd International Conference on Tools with Artificial
Intelligence (ICTAI), 2020, pp. 112–117.

[160] A. Hanif, X. Zhang, and S. Wood, “A survey on explainable artificial intelligence
techniques and challenges,” in 2021 IEEE 25th International Enterprise Distributed
Object Computing Workshop (EDOCW), 2021, pp. 81–89.

114

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/
http://proceedings.mlr.press/v106/tonekaboni19a.html
https://www.sciencedirect.com/science/article/pii/S0933365720312471

Bibliography

[161] T. Laugel, X. Renard, M. Lesot, C. Marsala, and M. Detyniecki, “Defining locality for
surrogates in post-hoc interpretablity,” CoRR, vol. abs/1806.07498, 2018. [Online].
Available: http://arxiv.org/abs/1806.07498

[162] T. Laugel, X. Renard, M.-J. Lesot, C. Marsala, and M. Detyniecki, “Defining locality
for surrogates in post-hoc interpretablity,” 2018.

[163] M. Pennisi, I. Kavasidis, C. Spampinato, V. Schinina, S. Palazzo, F. P. Salanitri,
G. Bellitto, F. Rundo, M. Aldinucci, M. Cristofaro, P. Campioni, E. Pianura, F. Di
Stefano, A. Petrone, F. Albarello, G. Ippolito, S. Cuzzocrea, and S. Conoci, “An
explainable ai system for automated covid-19 assessment and lesion categorization
from ct-scans,” Artificial Intelligence in Medicine, p. 102114, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S093336572100107X

[164] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch,
S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein,
K. Eliceiri, P. Tomancak, and A. Cardona, “Fĳi: an open-source platform for biological-
image analysis,” Nature Methods, vol. 9, no. 7, pp. 676–682, 2012.

[165] M. S. Hammoodi, H. A. A. Essa, and W. A. Hanon, “The Waikato Open Source
Frameworks (WEKA and MOA) for Machine Learning Techniques,” Journal of Physics:
Conference Series, vol. 1804, no. 1, p. 012133, 2021.

[166] T. Meinl, “What’s new in KNIME?” Journal of Cheminformatics, vol. 4, no. S1, 2012.

[167] S. S. Dhruva, J. S. Ross, J. G. Akar, B. Caldwell, K. Childers, W. Chow, L. Ciaccio,
P. Coplan, J. Dong, H. J. Dykhoff, S. Johnston, T. Kellogg, C. Long, P. A. Noseworthy,
K. Roberts, A. Saha, A. Yoo, and N. D. Shah, “Aggregating multiple real-world
data sources using a patient-centered health-data-sharing platform,” NPJ Digit Med,
vol. 3, p. 60, 2020.

[168] M. Kapcia, “ExMed on Github,” https://github.com/983046/ExMed, 2021, [Online;
accessed 19-July-2021].

[169] J. A. Duell, X. Fan, B. Burnett, G. Aarts, and S. Zhou, “A comparison of explanations
given by explainable artificial intelligence methods on analysing electronic health
records,” in 2021 IEEE EMBS International Conference on Biomedical and Health
Informatics (BHI) (IEEE BHI 2021), Athens, Greece, Jul. 2021.

115

http://arxiv.org/abs/1806.07498
https://www.sciencedirect.com/science/article/pii/S093336572100107X
https://github.com/983046/ExMed

Bibliography

[170] S. Flaxman, S. Mishra, A. Gandy, H. Unwin, H. Coupland, T. Mellan, H. Zhu, T. Berah,
J. Eaton, P. Perez Guzman et al., “Report 13: Estimating the number of infections
and the impact of non-pharmaceutical interventions on covid-19 in 11 european
countries,” Imperial College London, Tech. Rep., 2020.

[171] J. T. Wu, K. Leung, M. Bushman, N. Kishore, R. Niehus, P. M. de Salazar, B. J.
Cowling, M. Lipsitch, and G. M. Leung, “Estimating clinical severity of covid-19
from the transmission dynamics in wuhan, china,” Nature Medicine, pp. 1–5, 2020.

[172] H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, and
F. Bray, “Global cancer statistics 2020: Globocan estimates of incidence and mortality
worldwide for 36 cancers in 185 countries,” CA: A Cancer Journal for Clinicians, pp.
209–249, 2021.

[173] J. Smith, J. Everhart, W. Dickson, W. Knowler, and R. Johannes, “Using the adap
learning algorithm to forcast the onset of diabetes mellitus,” Proceedings - Annual
Symposium on Computer Applications in Medical Care, vol. 10, 11 1988.

[174] R. A. Fisher, “The use of multiple measurements in taxonomic problems,”
Annals of Eugenics, vol. 7, no. 2, pp. 179–188, 1936. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x

[175] T. Chen, E. Keravnou-Papailiou, and G. Antoniou, “Medical analytics for healthcare
intelligence – recent advances and future directions,” Artificial Intelligence in Medicine,
vol. 112, pp. 1–5, Feb. 2021.

116

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-1809.1936.tb02137.x

Appendix A

Implementation of a Relevant
Algorithm

117

Appendix B

Supplementary Data

Compression Results for MNIST, CIFAR10, CIFAR100 and
CINIC-10

Compression rates of Fully Connected layers and overall network according to the number
k of hyper-planes chosen and whether rotation of random numbers has been used (rot).
The modified/compressed layers are in bold. FC: Fully Connected layer; BN: Batch
Normalization layer; ReLU: Rectified Linear Unit layer; SFMX: SoftMax layer.

Table B.1: (a) MNIST without Data Augmentation

28×28:DropOut:FC1024:BN:ReLU:DropOut:
FC1024:BN:ReLU:DropOut:FC10:SFMX

#Hyperplanes Accuracy Size of Total Network
Original Net. 99.02% 7.11 MB (100%) 7.11 MB (100%)
k = 256 95.51% 0.11 MB (1.48%) 0.11 MB (1.48%)
k = 512 98.01% 0.18 MB (2.47%) 0.18 MB (2.47%)
k = 1024 98.61% 0.30 MB (4.23%) 0.30 MB (4.23%)
k = 2048 98.90% 0.55 MB (7.75%) 0.55 MB (7.75%)
k = 256 (rot) 94.06% 0.11 MB (1.59%) 0.11 MB (1.59%)
k = 512 (rot) 97.55% 0.18 MB (2.58%) 0.18 MB (2.58%)
k = 1024 (rot) 98.78% 0.31 MB (4.34%) 0.31 MB (4.34%)
k = 2048 (rot) 98.82% 0.57 MB (7.97%) 0.57 MB (7.97%)

119

B. Supplementary Data

Table B.2: (b) MNIST without Data Augmentation

28×28:DropOut:FC1024:BN:ReLU:DropOut:FC1024:BN
:ReLU:DropOut:FC1024:BN:ReLU:DropOut:FC10:SFMX

Hyperplanes Accuracy Size of Total Network
FC layers(%) Size (%)

Original Net. 99.12% 11.1 MB (100%) 11.1 MB (100%)
k = 256 93.76% 0.14 MB (1.23%) 0.14 MB (1.23%)
k = 512 97.92% 0.24 MB (2.18%) 0.24 MB (2.18%)
k = 1024 98.61% 0.43 MB (3.87%) 0.43 MB (3.87%)
k = 2048 99.37% 0.80 MB (7.25%) 0.80 MB (7.25%)
k = 256 (rot) 94.06% 0.15 MB (1.34%) 0.15 MB (1.34%)
k = 512 (rot) 97.54% 0.25 MB (2.29%) 0.25 MB (2.29%)
k = 1024 (rot) 98.78% 0.44 MB (3.97%) 0.44 MB (3.97%)
k = 2048 (rot) 98.72% 0.83 MB (7.46%) 0.83 MB (7.46%)

Table B.3: (c) MNIST with Data Augmentation

28×28:DropOut:FC1024:BN:ReLU:DropOut:
FC1024:BN:ReLU:DropOut:FC10:SFMX

#Hyperplanes Accuracy Size of Total Network
FC layers(%) Size (%) (%)

Original Net. 99.29% 7.11 MB (100%) 7.11 MB (100%)
k = 256 91.08% 0.11 MB (1.48%) 0.11 MB (1.48%)
k = 512 97.08% 0.18 MB (2.47%) 0.18 MB (2.47%)
k = 1024 98.92% 0.30 MB (4.23%) 0.30 MB (4.23%)
k = 2048 99.38% 0.55 MB (7.75%) 0.55 MB (7.75%)
k = 256 (rot) 85.10% 0.11 MB (1.59%) 0.11 MB (1.59%)
k = 512 (rot) 93.43% 0.18 MB (2.58%) 0.18 MB (2.58%)
k = 1024 (rot) 97.98% 0.31 MB (4.34%) 0.31 MB (4.34%)
k = 2048 (rot) 99.14% 0.57 MB (7.97%) 0.57 MB (7.97%)

120

Table B.4: (d) MNIST with Data Augmentation

28×28:DropOut:FC1024:BN:ReLU:DropOut:FC1024:BN
:ReLU:DropOut:FC1024:BN:ReLU:DropOut:FC10:SFMX

#Hyperplanes Accuracy Size of Total Network
FC layers(%) Size (%)

Original Net. 99.52% 11.1 MB (100%) 11.1 MB (100%)
k = 256 88.43% 0.14 MB (1.23%) 0.14 MB (1.23%)
k = 512 95.25% 0.24 MB (2.18%) 0.24 MB (2.18%)
k = 1024 98.51% 0.43 MB (3.87%) 0.43 MB (3.87%)
k = 2048 99.37% 0.80 MB (7.25%) 0.80 MB (7.25%)
k = 256 (rot) 87.38% 0.15 MB (1.34%) 0.15 MB (1.34%)
k = 512 (rot) 95.66% 0.25 MB (2.29%) 0.25 MB (2.29%)
k = 1024 (rot) 98.78% 0.44 MB (3.97%) 0.44 MB (3.97%)
k = 2048 (rot) 99.43% 0.83 MB (7.46%) 0.83 MB (7.46%)

Table B.5: (e) CIFAR10

32×32×3:(VGG16 [20] Convolutional Part):
FC1024:BN:ReLU:DropOut:FC1024:BN:ReLU:DropOut:FC10:SFMX

#Hyperplanes Accuracy Size of Total Network
FC layers(%) Size (%)

Original Net. 93.03% 72.2 MB (100%) 128.42 MB (100%)
k = 256 92.88% 0.25 MB (0.35%) 56.39 MB (43.95%)
k = 512 93.01% 0.51 MB (0.70%) 56.64 MB (44.15%)
k = 1024 93.03% 1.01 MB (1.40%) 57.15 MB (44.54%)
k = 2048 93.03% 2.03 MB (2.81%) 58.30 MB (45.39%)
k = 256 (rot) 92.96% 0.29 MB (0.40%) 56.42 MB (43.98%)
k = 512 (rot) 92.96% 0.54 MB (0.75%) 56.67 MB (44.18%)
k = 1024 (rot) 93.03% 1.05 MB (1.45%) 57.18 MB (44.57%)
k = 2048 (rot) 93.03% 2.06 MB (2.86%) 58.20 MB (45.36%)

121

B. Supplementary Data

Table B.6: (f) CIFAR100

32×32×3:(VGG16 [20] Convolutional Part):
FC1024:BN:ReLU:DropOut:FC1024:BN:ReLU:DropOut:FC100:SFMX

#Hyperplanes Accuracy Size of Total Network
FC layers(%) Size (%)

Original Net. 71.84% 73.6 MB (100%) 129.7 MB (100%)
k = 256 71.15% 0.26 MB (0.35%) 56.39 MB (43.48%)
k = 512 71.79% 0.51 MB (0.70%) 56.64 MB (43.67%)
k = 1024 71.83% 1.02 MB (1.39%) 57.16 MB (44.07%)
k = 2048 71.84% 2.05 MB (2.78%) 58.18 MB (44.86%)
k = 256 (rot) 69.42% 0.29 MB (0.39%) 56.42 MB (43.50%)
k = 512 (rot) 71.02% 0.54 MB (0.73%) 56.67 MB (43.70%)
k = 1024 (rot) 71.50% 1.05 MB (1.42%) 57.18 MB (44.09%)
k = 2048 (rot) 71.80% 2.06 MB (2.81%) 58.20 MB (44.87%)

Table B.7: (g) CINIC10

32×32×3:(VGG16 [20] Convolutional Part):
FC1024:BN:ReLU:DropOut:FC1024:BN:ReLU:DropOut:FC10:SFMX

#Hyperplanes Accuracy Size of Total Network
FC layers(%) Size (%)

Original Net. 79.25% 72.2 MB (100%) 128.42 MB(100%)
k = 256 78.81% 0.25 MB (0.35%) 56.39 MB(43.95%)
k = 512 79.02% 0.51 MB (0.70%) 56.64 MB (44.15%)
k = 1024 79.25% 1.01 MB (1.40%) 57.15 MB(44.54%)
k = 2048 79.25% 2.03 MB (2.81%) 58.30 MB (45.39%)
k = 256 (rot) 78.92% 0.29 MB (0.40%) 56.42 MB (43.98%)
k = 512 (rot) 79.24% 0.54 MB (0.75%) 56.67 MB (44.18%)
k = 1024 (rot) 79.25% 1.05 MB (1.45%) 57.18 MB (44.57%)
k = 2048 (rot) 79.25% 2.06 MB (2.86%) 58.20 MB (45.36%)

122

Figure B.1: Effect of replacing the standard matrix multiplication with the M3 version for training
the MNIST datasets in all but the last fully connected layer. The horizontal represents the number
of epochs while the vertical axis represents the accuracy obtained on the testing dataset. We study
backward-only, forward-only and backward-forward replacement cases. The number of planes k
used is the same for each layer and each pass in a single experiment. The batch size used is 1024.
The M3 seems to be beneficial to back-propagation that shows a convergence similar to the use of a
standard matrix multiplication with a sufficiently low number of planes.

123

B. Supplementary Data

Figure B.2: Convergence of accuracy according to the number of hyperplanes used. The horizontal
axis displays the compression obtained for just the internal fully-connected layers (a) and for the
neural network as a whole (b). The vertical axis displays the obtained accuracy of the network
relative to that of the original, unmodified network – with 100% meaning that the compressed
network has the same accuracy as the original one. All network models have been tested with 256,
512, 1024 and 2048 hyperplanes as represented with continuous or dashed lines.

124

Figure B.3: Error comparison between our method and [1]. Results are given by either varying the
sizes of matrix A and B with the number of samples p equal to n (n = p) or by fixing n and varying
the number of samples used for the approximation.

125

B. Supplementary Data

(a) Data Editor

(b) Data Visualiser - Line Plot

(c) Data Visualiser - Violin Plot

Figure B.4: Data exploration tools in ExMed. (a) is the Data Editor that supports standard data
editing functions. (b) and (c) are the Data Visualiser that supports different plot types such as
Line, Scatter, Bar, Histogram, Violin Plots and Pie chart. For each plot type, various customisation
options are implemented, including changing the axes, layout, and adding texts.
126

(b) Data Pre-Processing

(c) Model Selection and Construction

Figure B.5: ExMed interface for some of the main activities as describe in Fig. 4.1. (b) Data is
optionally pre-processed with some of the plugins available. (c) A model is created, with the
option of reducing the number of features with a PCA algorithm and explanation generation with
SHAP and LIME.

127

B. Supplementary Data

Figure B.6: ExMed Operation Overview. This figure shows the flow of ExMed operations, along
with the key features available in the interface. Once the "Application" is running, the first window
"Data Dashboard" is shown. Black arrows denote event-driven actions that take the user to the next
window in chronological order. Colours highlight the Key features for each window, along with a
short description provided for each feature. The indentation of boxes represents a dependency
between windows. For instance, the ‘Feature Dashboard’ window can lead to the ‘Edit Table’
window, which subsequently can open the ‘Plot Viewer’ window. The dotted line represents a
database extension that is to be added in the future.

128

Table B.8: Some additional results to table 4.11 in chapter 4

Sa
m

pl
es

N
um

be
ro

f
G

lu
co

se
D

ia
st

ol
ic

Bl
oo

d
Sk

in
In

su
lin

BM
I

D
ia

be
te

s
A

ge
/

C
la

ss
Pr

eg
na

nc
ie

s
m
g
/d

l
Pr

es
s.,

m
m

H
g

Th
ic

kn
es

s
µ
U
/m

l
k
g
/m

2
Pe

di
gr

ee
ye

ar
m

ig
ra

tio
n

≤
14

0
≤

80
m

m
16
−
16

6
≤

25
Fu

nc
tio

n

1
1
4

80
34

28
5

44
.2

0.
16

7
27

7
:
0
→

1
0

+
4
6.
3

(+
41

%
)
−
30
.1

(−
38

%
)
−
19
.9

(−
59

%
)
−
18

6
(−

65
%

)
−
22
.4

(−
51

%
)

+
0.
1

(+
60

%
)

+
37
.9

(+
14

0%
)

24
8
:
0
→

1
1

8
7

68
34

77
37
.6

0.
40

1
+
4.
4

(+
18

%
)

5
9
6

74
18

67
33
.6

0.
99

7
43

9
:
0
→

1
−
4

(−
8
0%

)
+
11

(+
1
1%

)
−
6
.1

(−
8%

)
+
1

(+
6%

)
−
54

(+
81

%
)

−
6
.5

(−
19

%
)
−
0.
8

(−
80

%
)

−
18
.9

(−
44

%
)

10
:
1
→

0
3

1
0
7

62
13

48
22
.9

0.
67

8
23

−
5

(−
5%

)
11

:
1
→

0
9

1
5
6

86
28

15
5

34
.3

1.
18

9
42

−
4.
7

(−
52

%
)
−
4
5
.4

(−
29

%
)

+
0
.9

(+
3%

)
−
0.
5

(−
42

%
)

1
1
2
8

48
45

19
4

40
.5

0.
61

3
24

12
:
1
→

0
−
0.
1

(−
10

%
)
−
9
.7

(−
8%

)
+3

7.
9

(+
79

%
)

−
5.
7

(−
13

%
)

+
25
.9

(+
13

%
)

+
5

(+
12

%
)

+
0.
2

(+
33
%

)
+1

.8
(+

8%
)

129

B. Supplementary Data

Frozen Age Sex TSH T3 TT4 T4U Class
Input

Original 74.00 0.00 1.40 0.00 123.00 1.57 1
None 60.09 0.10 -1.26 2.12 113.07 1.13 0
Age 74.02 1.02 -7.33 3.26 59.13 1.21 0

Age & Sex 74.01 0.00 0.57 0.29 142.14 0.82 0
Original 60.00 1.00 8.90 0.00 75.00 0.97 1

None 45.17 0.80 10.01 1.60 79.02 0.82 0
Age 60.00 0.82 0.77 1.85 82.53 0.93 0

Age & Sex 59.97 1.00 1.20 2.24 121.21 1.09 0
Original 46.00 0.00 0.05 2.20 97.00 0.77 2

None 57.64 0.79 1.51 1.57 85.94 0.74 0
Age 46.00 0.35 3.41 2.19 99.05 0.83 0

Age & Sex 46.00 0.00 1.60 1.83 96.84 0.74 0
Original 22.00 0.00 1.00 2.30 87.00 0.89 2

None 64.79 0.92 7.93 1.81 66.84 0.93 0
Age 22.03 0.78 0.76 2.47 77.87 1.08 0

Age & Sex 22.00 0.00 8.56 2.23 110.21 0.64 0

Table B.9: The table illustrates the weight vector impact on model G in the NMG. We run model G
with three different values in the weight factor, non-frozen input (ω = 1), freezing Age feature (cell
correlated to age in ω equals 99), and Age and Sex are frozen. Each row shows either the input
sample (top rows) or the output of model G.

130

	List of Tables
	List of Figures
	1 Introduction
	1.1 Motivations
	1.2 Overview
	1.3 Publications and significant contributions arising from the work detailed in this thesis
	1.4 Outline

	2 Background
	2.1 Introduction
	2.2 Neural Network Models and their Compression and Acceleration
	2.2.1 Artificial Neural Networks (ANNs)
	2.2.2 Compressing Neural Networks

	2.3 Explainable AI and Local Model-Independent Methods
	2.3.1 Interpretable Machine learning Models
	2.3.2 Local Model-Agnostic Methods

	3 Efficient Fully Connected Layers in ANN
	3.1 Preliminaries
	3.2 Related Work
	3.2.1 Advances in Matrix Multiplication
	3.2.2 Computational Aspects

	3.3 Mediterranean Matrix Multiplication
	3.3.1 Monte Carlo Sampling of angles between vectors
	3.3.2 Sampling principles
	3.3.3 Basic algorithm
	3.3.4 Reformulated algorithm and Complexity Bounds
	3.3.5 Practical considerations
	3.3.6 GPU Implementation

	3.4 Compressing Fully Connected Layers
	3.4.1 Using the Mediterranean Matrix Multiplication in ANNs
	3.4.2 Training the Neural Network

	3.5 Results
	3.5.1 Testing Environment
	3.5.2 Error analysis
	3.5.3 M3 CUDA Implementation
	3.5.4 Training Artificial neural network with M3
	3.5.5 Compression of Fully Connected layers

	3.6 Conclusion

	4 Explainable AI
	4.1 Introduction
	4.2 Literature review
	4.3 ExMed Workflow
	4.3.1 Case Study I: COVID-19 Control Measures
	4.3.2 Case Study II: Lung Cancer Life Expectancy

	4.4 The Neighbour Migrating Generator Model
	4.4.1 Local and Global Variants
	4.4.2 Loss function
	4.4.3 Experimental results
	4.4.4 Thyroid disease

	4.5 Conclusion

	5 Conclusions
	6 Future Work
	Bibliography
	Appendices
	A Implementation of a Relevant Algorithm
	B Supplementary Data

