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Abstract

We propose a new external force field for deformable models which can be conve-
niently generalized to high dimensions. The external force field is based on hypothesized
interactions between the relative geometries of the deformable model and image gradi-
ents. The evolution of the deformable model is solved using the level set method. The
dynamic interaction forces between the geometries can greatly improve the deformable
model performance in acquiring complex geometries and highly concave boundaries,
and in dealing with weak image edges. The new deformable model can handle arbi-
trary cross-boundary initializations. Here, we show that the proposed method achieve
significant improvements when compared against existing state-of-the-art techniques.

1 Introduction
Deformable models are curves and surfaces that deform under the influence of internal and
external forces to delineate an object boundary in an image. These deformable model based
approaches have been widely used for shape extraction due to their natural handling of shape
variation [1, 10, 16, 20]. Explicit deformable models [6, 11] represent contours and surfaces
in their parametric form during deformation. This allows explicit models to track the points
on the curves and surfaces across time, and is well suited for real-time applications due to the
fast computation time. However, explicit models generally have difficulties in dealing with
topological changes. Implicit deformable models based on the level set method [1, 10, 14]
are introduced to address some of the limitations. In this approach, the evolution of curves
and surfaces are represented implicitly as a level set of a higher-dimensional scalar function
and the deformation of the model is based on geometric measures such as the unit normal
and curvature. Thus the evolution is independent of the parameterization, and topological
changes such as splitting and merging can be handled automatically.

The design of deformable models often varies in the representation of the object bound-
ary and external force field used. There have been numerous work involved in the design and
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improvement of the underlying techniques. These usually take the form of image gradient
based approaches e.g. [9, 10, 12, 18, 19], region based approaches e.g. [2, 3] and hybrid
approaches e.g. [7, 17]. It is also a great challenge for deformable models to achieve ini-
tialization invariancy and robust convergence. This is especially true when the deformable
model has to deal with complex geometries and concave shapes.

In this paper, a novel external force field that is based on the relative position and orienta-
tion of the deformable model and object boundaries is proposed. This force field is called the
geometric potential force (GPF) field as it is based on the hypothesized interactions between
the relative geometries of the deforming surface and the object boundaries (characterized
by image gradients). The evolution of the deformable model is solved using the level set
method. The proposed external force field can attract the deformable model to object bound-
aries with arbitrary initialization, and allows the deformable model to reach highly concave
regions which are generally difficult for other methods. The proposed method can be consid-
ered as a generalization of the 2D MAC model [18], whose analogy based on magnetostatics
can not be directly applied to 3D or higher dimensional space.

The rest of the paper is organized as follows. In Section 2, we review several image
gradient based methods, particularly some physics-inspired approaches, which are closely
related to our method. The proposed method is then described in Section 3. The results and
comparative studies appear in Section 4. Section 5 concludes the paper.

2 Background
In image gradient based deformable models, it is assumed that object boundaries collocate
with image intensity discontinuities, which is widely used in computer vision applications.
Region based techniques, on the other hand, assume that each object has its own distinctive
and continuous regional features, which is not always true for real world data due to intensity
inhomogeneity and multi-modal nature. Conventional image gradient based methods, e.g.
geodesic active contour model [1] and its subsequent incremental improvements such as [15],
have difficulties in dealing with boundary concavities, weak edges, image noise and difficult
initializations as they are generally prone to local minima that often appear in real images.
Numerous research works have been performed to improve the gradient based approaches.

The Gradient Vector Flow (GVF) and its generalized version GGVF [19, 20] have been
shown significant improvements over those conventional external force field such as [1] and
have been widely used in deformable models, e.g. [13]. It uses a vector diffusion equation
that diffuses the gradient of an edge map in regions distant from the object boundary. The
GGVF has been shown to improve the capture range and boundary concavities tracking
ability of deformable models. Although the vector field is bidirectional in nature, it can
only prevent the deformable contour or surface from leaking through small boundary gaps
or weak edges to some extent. It also has convergence issues caused by saddle or stationary
points in its force field i.e. when the contour is tangent to the force vector [4, 12, 18]. More
recent attempts, such as [4, 9, 12] showed promising but limited success.

Recently, there have been several research works on physics-based deformable models
such as [5, 8, 18]. In [5], a charged-particle model (CPM) based on electrostatics was applied
to attract particles toward object boundaries. The authors in [5] hypothesized a set Ω of
freely moving particles with the same positive charge q in an external electrostatic field,
generated by fixed negative charges ex proportional to the image gradient |∇u(x)| at point x.
The positively charged particles are attracted towards the fixed negative charges under the
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influence of the external particle-mesh Coulomb force Fa and repelled by each other by the
particle-particle Coulomb force Fr. These forces acting on a moving particle at position x
can be computed as the sums

Fa(x) =
q

4πε
∑

x′ 6=x
ex′

r̂xx′

r2
xx′

, Fr(x) =
q2

4πε
∑

x′ ∈Ω

x′ 6= x

r̂xx′

r2
xx′

(1)

where ε is the permittivity, and r̂xx′ is the unit vector pointed from x to x′, rxx′ = |x−x′|
is the distance between these two points. The total force acting on a particle is given by
F = waFa + wrFr + βFd where wa, wr and β are weighting parameters for the attraction
force Fa, repulsion force Fr and damping force Fd respectively. When the particles attain
a stable equilibrium state due to the viscous effect of Fd , contour reconstruction is required
to obtain the object boundary representation. Although this approach can resolve the above-
mentioned convergence issues, the fact that particles on weak edges may be attracted to
nearby strong edges often causes broken contours to be formed. In addition, the method
requires frequent particle insertion and deletion, which is computationally expensive. This
makes it impractical in 3D. In [21], the authors incorporated the particle model [5] into
a contour model and showed subsequent improvements on the CPM. In their approach, a
positively charged active contour moving in an hypothesized electrostatic field with field
strength proportional to image gradient magnitudes, is attracted to image edges based on
a boundary attraction force based on the particle-mesh force described in (1). A boundary
competition force is then used to repel nearby free contours from moving towards the already
occupied image boundary. The repulsion force was designed in a way such that contours that
have reached object boundaries will exert repulsion forces upon other contours while being
minimally affected by other contours. However, the dominant external force field is static
and its dynamic behavior due to repulsion force can be difficult to predict.

Li and Acton in [8] used a vector field convolution of the image edge map as an external
force to attract the active contour towards image boundaries. The vector field kernel k(x)
consists of radial symmetric vectors pointing towards the center of the kernel, and is given
as k(x) = m(x) x̂, where m(x) is the magnitude, x̂ = −x/r is the unit vector pointing to the
kernel origin, r = |x| is the distance from the kernel origin. The magnitude m(x) of the vector
field kernel should be a decreasing positive function of distance from the origin, and can be
given as m(x) = (r+ε)−γ which is inspired by the gravitational law, or m(x) = e−r2/ζ 2

which
is a Gaussian shape function, where γ and ζ are positive parameters to control the decrease,
and ε is a small positive constant to prevent division by zero at the origin. The vector field
convolution can then be written as

F(x) = f (x)∗k(x) := ∑
h∈QR

f (x−h)k(h) (2)

where f (x) = ∇u(x) is the image edge map and QR is the cube of the edge length 2R centered
at the kernel origin. The authors showed better initialization and noise insensitivity in their
method. However the generated field is static and cannot handle the convergence issues
discussed above.

In [18], Xie and Mirmehdi introduced an external force field is based on the hypothesized
magnetic force between the active contour and object boundaries. Given two elements dl1
and dl2 of contours with currents I1 and I2, and unit tangent vectors t̂1 and t̂2, respectively,
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the magnetic flux density dB created by the element dl2 and the corresponding force dF
acting on dl1 due to dl2 are

dB =
µ0

4π

I2dl2
r2

21
(t̂2× r̂21), dF = I1dl1(t̂1×dB) (3)

where r21 is the distance between elements dl2 and dl1, r̂21 is the unit vector pointing from
dl2 to dl1. Note the image is considered as a 2D plane in a 3D space whose origin coinsides
with the origin of the image coordinates, and the third dimension of this 3D space is con-
sidered perpendicular to the image plane. This formulation has been applied directly in the
magnetostatic active contour (MAC) [18] to compute the magnetic field and force required
to draw the active contour towards object boundaries in 2D images. This image gradient
based method showed significant improvements on convergence issues, e.g. reaching deep
concavities, and in handling weak edges and broken boundaries. While applying the analogy
directly to deformable modeling it requires estimation of tangent vectors for the deformable
contours, which is convenient in 2D case, however, not possible in 3D.

Kimmel in [7] proposed a hybrid method that use an alignment measure together with
the geodesic active contour and minimal variance criterion suggested by [2]. Given a contour
C of length L, and in a parametric form C(s) = {x(s)} where s is an arclength parameter, the
alignment measure used in [7] is given as

E(C) =
∫ L

0

∣∣∇u[x(s)] · n̂(s)
∣∣ds (4)

where n̂(s) is the unit normal to contour C at s, ∇u(x) is the image gradient at x. The
alignment measure is used to optimize the orientation of the curve with respect to the image
gradients. This measure, together with the gradient-based geodesic measure and the region-
based minimal variance criterion is then used to push or pull the contour towards the image
boundary. This hybrid approach, however, requires careful tuning of the different parameters
associated with the various measures in order to efficiently bridge the image gradient and
regional information. In addition, only local edge information are used in the alignment
measure, while edge information of pixels located away from the contour are not considered
in this technique.

3 Proposed Method

Our approach is to define a novel external force field that is based on hypothesized geometri-
cally induced interactions between the relative geometries of the deformable model and the
object boundaries (characterized by image gradients). In other words, the magnitude and
direction of the interaction forces are based on the relative position and orientation between
the geometries of the deformable model and image object boundaries, and hence, it is called
the geometric potential force (GPF) field. The bidirectionality of the new external force field
can facilitate arbitrary cross-boundary initialization, which is a very useful feature to have,
especially in the segmentation of complex geometries. It also improves the performance of
the deformable model in handling weak edges. In addition, the proposed external force field
is dynamic in nature as it changes according to the relative position and orientation between
the evolving deformable model and object boundary.
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Figure 1: Relative position and orientation between geometries of 2D contours (left) and 3D
surfaces (right).

3.1 Geometric potential force
Consider two elements dl1 and dl2 on two contours, with unit normals n̂1 and n̂2 respectively
(refer to Fig. 1). The hypothesized interaction force dF acting on dl1 due to dl2 is given as

dF = dl1 n̂1 dG, dG =
dl2
rk

12
(r̂12 · n̂2) (5)

where dG is considered as the geometrically induced potential created by element dl1. Here,
n̂2 is the unit normal to the contour at element dl2, r12 is the distance between dl1 and dl2,
and r̂12 is the unit vector pointing from dl1 to dl2; k is a positive constant that affects the
magnitude of the interaction force based on the distance between dl1 and dl2, and is set to
the same as the dimension of the image data. The geometric potential dG can be seen as
a induced scalar field, in which the strength of dG depends on the relative position of the
two elements dl1 and dl2. The magnitude and direction of the geometrically induced vector
force dF is therefore handled intrinsically by the relative position and orientation between
the geometries of the deformable model and object boundary.

Here we also show that (5) can be re-written in a different form using tangent vectors t̂1
and t̂2 at dl1 and dl2 respectively. Let vector ẑ = (0,0,1) be the normal to the plane where the
active contour and object boundary are lying on. The unit normals on the length elements
can now be represented as n̂1 = ẑ× t̂1 and n̂2 = ẑ× t̂2, and the induced force dF and the
vector potential dG = (0,0,dG) can now be written as

dF = dl1(t̂1×dG), dG =
|ẑ× t̂2|dl2

rk
12

(t̂2× r̂21) (6)

We note that the formulation in (6) is analogous to the force field adapted from the
theory of magnetostatics used on 2D images in [18] (see (3) ), however, the new external
force field has a different physical meaning compared to the traditional magnetic force field.
Note that the magnetic force field used in [18] requires the estimation of the hypothesized
current directions represented by the tangent vectors t̂1 and t̂2. To deal with this requirement,
the authors in [18] compute the direction of the imposed currents for the active contour
and object boundary by rotating the respective gradient vectors in a clockwise or counter-
clockwise manner such that a current loop is formed on both the active contour and object
boundary. It is however difficult to extend MAC to handle 3D images directly as it is not
apparent how the hypothesized current direction is to be estimated and set on a 3D object.

As shown in (5), the computation of the new force field only requires unit normal vectors
and relative position of the two elements, which is easy to acquire. Thus, this new force field
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can be easily extended to higher dimensions, and a generalized 3D version of the GPF acting
between two area elements dA1 and dA2 (see Fig. 1) can be readily given as

dF = dA1n̂1 dG, dG =
dA2

rk
12

(r̂12 · n̂2) (7)

where dG the corresponding 3D potential field, and n̂1 and n̂2 are unit surface normals.
Note the alignment term in [7] as shown in (4) also uses the conformity between image

gradient vectors and deformable contour/surface normals. However, this alignment test in
[7] is carried out locally and relies on the geodesic and minimal variance terms to further
propagate the deformable model. The proposed GPF model utilizes edge-pixel interactions
across the entire image domain, which provides a more global view of object boundary
representation. Thus, we do not need any additional terms to regulate the deformable model
which minimizes parameter tuning and uncertainty in contour/surface evolution.

The physics-based deformable models described in [5, 8, 21] all use a kernel based func-
tion to compute the external force field. These kernels all consist of a decreasing function
of distance r from the origin, in the form of r/rn, where r is the vector pointing to or from
the kernel origin, and n is a positive constant. In [8], the external force is calculated by con-
volving a vector field with the edge map. One of the vector field kernel described, resembles
the gravitational law in physics, such that edge pixels in the edge map were considered as
objects with mass proportional to the edge strength, which is fundamentally very similar to
the electrostatic force used in [5, 21]. Another vector field kernel used comes in the form
of a Gaussian shape function where the influence of the image edge strength increases as
the standard deviation increases. These kernels however only takes into consideration of re-
gional pixels, and the resulting force field is static. The authors in [21] incorporated the CPM
[5] into their deformable models. Similar to [8], they used a kernel function that decides the
influence of the edge pixels on the magnitude of the force based on their distance from the
kernel origin, but in a more global sense. It however requires an image dependent boundary
competition force to repel nearby free contours from being attracted to the already occupied
image edge. Also, the balance between the attraction force and the boundary competition
force used in this technique largely affects the convergence of contours and sometimes re-
quires careful tuning. The proposed GPF model not only considers the global information
of the image, but also the relative orientation of the deformable model and object boundary,
which greatly improve the deformable model performance in handling complex shapes.

3.2 GPF deformable model
Let the 3D image be described by function u(x) where x is a pixel or voxel location in the
image domain, and ∇u be its gradient. Let dA1 belongs to the deformable surface whereas
dA2 belongs to the object boundary. To compute the force acting on dA1 from dA2, we
substitute n̂2 = ∇u/|∇u| into (7) and treat n2 as a normal to the object boundary. Then
we compute the total geometric potential field strength G(x) at every voxel. Note that only
voxels on the object boundary will contribute to the geometric interaction field. Let S denote
the set containing all the edge voxels, and y denote a boundary voxel, the total geometric
interaction at x can then be computed as:

G(x) = ∑
y ∈ S,y 6= x

r̂12

rk
12
· n̂2(y)|∇u(y)|dA2 (8)
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Figure 2: Shape recovery from synthetic images: (a) isosurfaces of various shapes to be
recovered from synthetic images (128×128×128), (b) initial deformable models (yellow)
with input shapes (blue, semi-transparent), (c) recovered shape using geodesic, (d) GGVF,
(e) proposed GPF

where r̂12 is the unit vector from x to y, and r12 is the distance between them. Computation
of (8) is based on the 3D FFT. The force acting due to the geometrically induced potential
field on the deformable surface C at the position x ∈ C can then be given as:

F(x) = dA1 n̂(x) G(x) (9)

Given the force field F(x) derived from the hypothesized interactions based on the rel-
ative geometries of the deformable model and object boundary, the evolution of the de-
formable model C(x, t) under this force field can be given as: Ct =

(
F · n̂

)
n̂. Since contour

or surface smoothing is usually desirable, the mean curvature flow is added and the complete
geometric potential deformable model evolution can be formulated as:

Ct = α g(x)κ n̂+(1−α)(F · n̂) n̂ (10)
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Figure 3: Shape recovery from noisy image.

Figure 4: Shape recovery from weak edges.

where g = 1
1+|∇u| is the stopping function. Its level set representation can then be given as:

Φt = α gκ |∇Φ|− (1−α)(F ·∇Φ) (11)

4 Results and Discussion
In this section, we present experimental results on both synthetic and real image data. Fig. 2
provides a comparative analysis on various shape geometries and topologies. These shapes
are generated in the form of synthetic binary images, and they include the six-ellipsoids
problem, objects with deep concavities, and objects with complex geometry and topology.
Applying CPM [5] to 3D data is computationally impractical. Moreover, it requires recon-
structing surfaces from unstructured 3D points. The vector kernel convolution force field [8]
is static which is the same as GGVF. Note the MAC model [18] can not be directly applied to
3D data. Thus, we provide the comparative results of the proposed method against geodesic
and GGVF deformable models.

The first column in Fig. 2 shows the shape extraction results for the six-ellipsoids prob-
lem. Given an arbitrary initialization across all the ellipsoids, only GPF could accurately
recover the shapes. The geodesic model cannot handle the cross-boundary initialization as
the constant pressure term can only monotonically shrink or expand the contour. The saddle
and stationary points in this example prevented GGVF from extracting the ellipsoids.

Next, we compare the ability of the deformable models to deal with highly concave
boundaries. As shown in the second and third columns in Fig. 2, the shape object to be
recovered consists of two flattened ellipsoids connected by a narrowing tube with a con-
striction in the middle. With the deformable models initialized inside one of the ellipsoid,
only GPF could propagate through the narrowing tube to accurately extract the shape. Also,
with a more arbitrary cross-boundary initialization, GPF was the only successful model to
extract the exact shape. The other two methods could neither handle the arbitrary initializa-
tion nor propagate through deep concavities. Note the bottleneck between the two ellipsoids
is extremely narrow, which makes it particularly difficult for geodesic model to propagate
through without stepping through the object boundary due to large expansion force.
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The fourth and fifth columns in Fig. 2 compares the shape extraction results on a com-
plex geometry with different initialization configurations. It is shown that GPF is the only
model to successfully extract the geometry. The above examples demonstrate the superior
performance of the GPF deformable model in resolving deep concavities and handling com-
plex geometries and topologies. This is mainly due to the dynamic nature of the vector force
field. In addition, we show that the bidirectionality of the force field gives GPF the flexibility
to deal with arbitrary cross-initializations.

Fig. 3 shows the performance of the proposed method on noisy images. It accurately
extracted the shape from an image with significant amount of noise. Note the noise made the
marching cube based algorithm impossible to render the target object (cf. Fig. 2). In Fig. 4,
we provide an example of recovering a star-like 3D shape from a substantially blurred image
data. Note no dedicated initialization was required for the proposed method.

Figure 5: Segmentation process of human nasal cavity using the GPF deformable model.

Figs. 5 and 6 shows the GPF deformable model in the segmentation of the human nasal
cavity with very complex geometries and human aorta from medical images acquired from
computed tomography (CT) imaging. The initial surfaces are placed across different struc-
tures in both the image dataset to demonstrate the capability of the new deformable model
to deal with arbitrary cross-initializations. It is shown that the GPF deformable model can
efficiently segment thin and complex structures, and can handle inhomogeneity in image
intensities and weak edges, which are common in medical images.

5 Conclusion
We proposed a novel external force field for the deformable model that is based on hy-
pothesized geometrically induced interactions between the deformable contour or surface
and the object boundary. The proposed GPF deformable model can handle arbitrary cross-
boundary initializations, and resolve saddle and stationary points issues due to its unique
bidirectionality. In addition, the new vector force field is dynamic in nature, and as such,
can attract the deformable model into highly concave regions, and propagate through long
thin structures. The comparative study on various geometries and topologies showed sig-
nificant improvements in convergence capability and initialization invariancy on existing
state-of-the-art methods. The proposed image gradient based deformable model provides an
effective alternative approach to region based methods for segmenting complex structures in
3D image data.
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Figure 6: Segmentation of human aorta using the GPF deformable model.
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