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Abstract

We present a review on the current state of publicly available datasets within the hu-
man action recognition community; highlighting the revival of pose based methods and
recent progress of understanding person-person interaction modeling. We categorize
datasets regarding several key properties for usage as a benchmark dataset; including
the number of class labels, ground truths provided, and application domain they oc-
cupy. We also consider the level of abstraction of each dataset; grouping those that
present actions, interactions and higher level semantic activities. The survey identifies
key appearance and pose based datasets, noting a tendency for simplistic, emphasized,
or scripted action classes that are often readily definable by a stable collection of sub-
action gestures. There is a clear lack of datasets that provide closely related actions,
those that are not implicitly identified via a series of poses and gestures, but rather
a dynamic set of interactions. We therefore propose a novel dataset that represents
complex conversational interactions between two individuals via 3D pose. 8 pairwise
interactions describing 7 separate conversation based scenarios were collected using
two Kinect depth sensors. The intention is to provide events that are constructed from
numerous primitive actions, interactions and motions, over a period of time; providing
a set of subtle action classes that are more representative of the real world, and a chal-
lenge to currently developed recognition methodologies. We believe this is among one
of the first datasets devoted to conversational interaction classification using 3D pose
features and the attributed papers show this task is indeed possible. The full dataset is
made publicly available to the research community at [1].

1. Introduction

Recent advances in human motion capture and action recognition have a range
of applications including surveillance, synthesis of computer generated imagery, and
human-computer interfaces. Despite this progress there are still several problems that
require solving, including the understanding of complex classes and maintaining accu-
racy rates on significantly large datasets. The field has moved fluidly between the use
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of both appearance and pose based features since its conception, with datasets being
produced for both modalities that can be used for cross comparison between developed
methods. The release of a commercial depth sensor has revived the use of pose based
features in recent years, however the datasets have yet to represent the complexity of
classes that are provided by appearance based sets. We therefore intend to highlight
datasets within the field and then introduce the proposed dataset to build on the current
state.

The beginning of human action recognition

In 1973 and 1975, the authors in [2, 3] presented a model for the representation of
the human form that closely followed the biological interpretation of human movement,
the human skeleton representational model, based in Gestalt principles that provide key
interest points in the movement. Model representations were then expanded by the au-
thors in [4–9] to develop systems that are able to identify human walking actions. A
review of the field was reported in [10], focusing on the recognition of the articulated
movement by the human body and acknowledging the benefit of a priori shape models
in Human Action Recognition (HAR). Campbell and Bobick [11] used 3D coordinates
of 14 joints to perform event recognition from a continuous sequence of ballet moves.
In following years the use of pose estimation was reduced in favor of video sequence
analysis, due in part to their ease of acquisition and relatively lower cost compared to
the use of marker capture systems at the time. Aggarwal and Cai [12] formed another
review of the field, discussing the use of both body part representation and the global
motion of the body, recognizing the need for accurate tracking of body parts when un-
dertaking 3D estimation from 2D projections, noting the difficulty in estimating the
position of joints in the scene when using appearance based pose extraction methods.
The review then draws light on the use of tracking motion without needing to directly
identify body parts; making use of image processing methods for appearance based
tracking such as bounding box locality [13] and mesh features [14–18]. This use of
motion lead to the use of appearance features in the recognition of activities, with use
of image features including motion fields [19, 20], motion histories [20] and space-time
interest points [21–23]. Around 2004/2005 the KTH and Weizmann action recognition
datasets were publicly released to the field, providing a collection of sequences with
which to evaluate developed methodologies [22, 24]. Despite their huge success as
a comparison dataset, both sets were representative of the time of their release, con-
taining single camera recordings of individual subjects performing discrete actions.
Since the release of the KTH and Weizmann action sets, recent appearance based HAR
has moved towards understanding complex interactions between multiple individuals.
Contextual understanding of the scene as a whole has been explored in recent years,
with Choi et al. [25] utilizing the behaviors of multiple subjects in the scene to help ob-
tain accurate classification of a given individual’s action. Further appearance datasets
are reviewed in [26] with identification of sets that provide classes for specific domains
and describing complex scenarios; including meta-source sets, multiview recordings,
and repositories of long observations.
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The use of pose

The uses of low-level and high-level featuresin HAR have been established. Low-
level features typically limit recognition of actions and interactions to those of distinct
or exaggerated classes which can be distinguished via strong spatio-temporal gestures
or poses; such as the jumping jack, handshake and high-five. The use of higher level
temporal tracking can often out-perform low-level features in HAR, and Yao et al.
[27] suggested the consideration of 3D pose features as a benefit over lower level ap-
pearance features, acknowledging previous difficulties in obtaining accurate 3D pose
features. The recent advances within pose capture and estimation methodologies has
helped to reduce the difficulty in collecting 3D human pose from an observed scene,
thus increasing the prominence of 3D pose in HAR. Various features have been devel-
oped from the body pose domain; including joint-joint/joint-plane distances, motion
velocities, and histograms of joint orientations [27–29]. Recent work has moved into
the application of fusing multiple modalities for recognition, with particular highlight
on the benefit of audio-visual fusion [30–32]. With this resurgence of 3D pose it is
worthwhile reviewing the datasets that are available to the HAR community in order
to facilitate comparable evaluation of research methods. Discussing these datasets in
terms of their reflectance of real world scenarios and ability to provide challenges to a
rapidly moving field highlights the difference between the appearance and pose based
areas of the community, with challenges that have been explored in the image modality
being relatively untouched in the pose domain.

Human action recognition methods

Methods in classifying individual actions have been well studied in both the image
processing and depth based methods. Relatively simplistic pose rich actions such as
waving, walking and clapping have been the focus of research for decades, with numer-
ous datasets providing standard benchmarks with which evaluate the performance of
new methodologies. HAR has often focused on the analysis of spatio-temporal features
that are extracted from data collected in the raw domain. Schuldt et al. [22] makes use
of local space-time features to identify key interest points of motion; these points are
then used to develop a vocabulary of action primitives that train a Support Vector Ma-
chine (SVM) classifier. Blank et al. [24] presented the action event as an XYT volume,
extracting local saliency and orientation combined with global space-time features to
perform spectral clustering based classification. Methods designed for action represen-
tation, segmentation and recognition via appearance information has been reported in
[33]; identifying the spatial features, temporal model, temporal segmentation, and view
invariance provided by each method for appearance based recognition. For pose based
recognition the depth sensor has become an efficient method of tracking and extract-
ing human skeletal model representations of subjects during experimental recordings
[34–36]. This has lead to a renaissance in pose estimation techniques [27, 37–39], and
to the production of numerous public datasets for pose estimation method validation
[37, 40, 41]. In addition, many recognition methods have been developed which are
more generic in their ability to use both appearance and skeletal model derived fea-
tures; focusing on the learning of similar representative sub-action primitives, which
are then verified using both appearance and skeletal features [42–45].
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Human action recognition problem

Over the development of the field some main problems have revealed themselves,
namely, variation in execution style and appearance. Appearance effects are reduced
by considering the individual as a human skeleton model, removing all external stimuli
except for pose articulation. Despite the benefit of removing anecdotal image domain
information by considering pose, it is argued that this lack of appearance data may
remove higher level contextual information [27]. Temporal execution variation has a
large impact on the ability to recognize events, not only in execution speed but also the
order in which action primitives are executed. Some actions can be subject to more
variation than others; some even have a definitive order in which primitives must be
executed in order to fulfill the higher level contextual semantics of the action, often
described as a sequence of key poses [36, 46–48]. Execution length variance became
a large part of the HAR problem, with actions being executed at differing speeds. As
such, Dynamic Time Warping (DTW) has been used to align two sequences of actions,
adapted from [49] in [50, 51]. This method of sequence alignment has since been
used to compare sequences of differing execution length, [44, 52–54]; however the
use of DTW has also been criticized, especially when aligning highly periodic actions
[41] or actions where the time taken to execute of a key feature, such as walking and
running [48]. Exemplar based methods make use of key poses almost as a series of
checkpoints frames which make up an action, and therefore are believed to not require
a time warping alignment phase [55, 56]. These developed methodologies seem to
provide reliable accuracy for the publicly available datasets on which they are often
validated, despite their variance in execution rates and styles.

Another issue in the community is the lack of methods which are able to extend
beyond the recognition of simplistic action classes. Weinland et al. [33] reports upon
the predictive accuracy of methods that are evaluated on the KTH, Weizmann and IX-
MAS datasets; showing that in recent years the level of accuracy can often reach over
90%. State of the art performance accuracy is also reported within [57], with older
datasets often reporting the highest number of correct classifications. Hassner [57]
also shows that those datasets which are more representative of real world observations
tend to challenge the current methods within the community; such as Hollywood1/2,
HMDB51 and Olympic Sports. This suggests that current HAR methods are able to
easily classify the relatively simplistic classes presented in established datasets, but that
the community requires challenging with complex scenarios.

Contributions

This study aims to first consider a large selection of the current datasets that are
available for human action recognition, evaluating properties that facilitate compara-
ble testing of developed HAR methods. The survey identifies the growth of the field
from consideration of generic emphasized actions towards the understanding of inter-
actions between numerous individuals. Datasets are analyzed based on a variety of key
properties that influences their use for various HAR techniques, including number of
action classes, complexity of events and their application domain. Differing levels of
abstraction within the understanding of human behavior are described, detailing the
nature between pose, gesture, action, interaction, and activity. Despite the progression
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of the field towards higher levels of behavior abstraction there is still need for a dataset
that provides interaction classes that contain complex person to person activities, rep-
resenting actions and interactions that are not readily identifiable by the presence of a
given gesture or pose. The second part of this study then aims to help occupy this gap
in the community with a dataset describing subtle conversational interaction classes.
CONVERSE provides a collection of interactions in which the activity develops over
a long period of time, with realistic representations of behaviors that have contextual
differences that are difficult to define by motion.

The rest of this paper will outline the current state of data available to the commu-
nity and outline the requirement for a novel conversational set. In section 2 we present
the evaluation of a plethora of available datasets, evaluating each one based on the
provided set of criteria and highlighting the need for a dataset which introduces subtle
interactions between individuals. Section 3 then describes the surveyed sets, providing
key information regarding their composition and usage. Section 4 then draws on these
findings to present our novel dataset, describing the composition of the data and its
usage in HAR, and providing a baseline set of classification results for comparison.

2. Discussion of current state

Numerous HAR datasets have been produced and publicly released in the last
decade for the purpose of detecting and identifying action events in an observed scene.
Many of these sets have the added benefit of allowing cross-verification of methodolo-
gies developed in the field of computer vision; specifically those of action detection
and classification. Available datasets contain a variety of traits which require consid-
eration when deciding upon their appropriate usage. Sets differ in the data collection
modality; including RGB videos, depth maps, accelerometers and marker based motion
capture. They also differ in the actions carried out; including simple gestures, discrete
actions, and continuous sequences of actions, multi-user interactions and person-object
interactions. Some datasets make use of original data collection, allowing a degree of
control over certain parameters within the data collection methodologies. Others use
meta-data collected from video clips that are publicly available from media such as
films and online video clips; these tend to have large amounts of variation between in-
dividual sequences, however they are also among the largest of the datasets, with some
meta-sets containing thousands of sequences [87, 131]. Numerous sets have ground
truth labels for an entire sequence; however many are either manually segmented out
of a continuous sequence of multiple actions, or are left for users to perform labeling
before their use. Ground truth labeling on a frame-by-frame basis is rare, due to the
complexity in determining the exact frame at which an action begins.

Datasets, such as KTH, Weizmann and MSR Action3D [22, 24, 40], provide the
common examples of well annotated and discrete action executions; including kicking,
walking, and shaking. Others, such as the CMU Motion Capture set [74], expand the
complexity further by containing sequences of multiple actions executed in a continu-
ous manner. Recently, sets have moved towards recognizing interaction between two
people, including SBU Kinect, BIT-Interaction and K3HI [37, 64, 101]; however, these
sets still provide interactions using the classic simplistic actions of pushing, punching
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Table 1: Comparisons of key action recognition datasets, detailing the download location, associated de-
scriptive publications, and number of simultaneous viewpoints.

Name Modality URL Description Views
50 Salads RGB-D, IMU [58] [59] 1
BEHAVE RGB [60] [61] 2
Berkeley MHAD RGB-D, IMU, Audio, MoCap [62] [30] 14
BIT Interaction RGB [63] [64] 1
CAD120 RGB-D [65] [66] 2
CAD60 RGB-D [65] [67] 2
CASIA RGB [68] [69] 3
CAVIAR RGB [70] [71] 1, 2
CMU MMAC RGB, MoCap, IMU [72] [73] 6
CMU MoCap MoCap [74] - 1
CONVERSE RGB-D [1] [75–77] 1
Drinking/Smoking RGB [78] [79] 1
ETISEO RGB [80] [81] 1, 3, 4
G3D RGB-D [82] [83] 1
G3Di RGB-D [84] [85] 1
HMDB51 RGB [86] [87] 1
Hollywood RGB [88] [89] 1
Hollywood-2 RGB [90] [91] 1
Hollywood3D RGB-D [92] [93] 1
HumanEVA-I RGB, MoCap [94] [95] 7
HumanEVA-II RGB, MoCap [94] [95] 4
IXMAS RGB, Silhouette [96] [97] 5
JPL RGB [98] [99] 1
K3HI RGB-D [100] [101] 1
KTH RGB [102] [22] 1
LIRIS RGB-D [103] [104] 1
MPI08 RGB, IMU, Laser Scan [105] [106, 107] 8
MPII Cooking RGB [108] [109] 1
MPII Composite RGB [110] [111] 1
MSR Action-I RGB [112] [113] 1
MSR Action-II RGB [112] [114] 1
MSR Action3D RGB-D [112] [40] 1
MSR DA3D RGB-D [112] [41] 1
MSR Gesture3D RGB-D [112] [115] 1
MuHAVi RGB, Silhouette [116] [117] 8
Olympic Sports RGB [118] [119] 1
POETICON RGB, MoCap [120] [121] 7
Rochester AoDL RGB [122] [123] 1
SBU Kinect Interaction RGB-D [124] [125] 1
Stanford 40 Actions Image [126] [127] 1
TUM Kitchen RGB, Markerless MoCap, RFID [128] [129] 4
UCF101 RGB [130] [131] 1
UCF11 RGB [132] [133] 1
UCF50 RGB [134] [135] 1
UCF Sport RGB [136] [137] 1
UMPM RGB, MoCap [138] [139] 1
UT Interaction RGB [140] [141] 1
ViHASi RGB, Silhouette [142] [143] 40
VIRAT RGB [144] [145] -
Weizmann RGB, Silhouette [146] [24, 147] 1
WVU MultiView RGB [148] [149, 150] 8

and kicking. A few studies, including MSR DailyActivity3D and the TUM Kitchen
[41, 129], have made steps towards the recognition of so-called ’daily activities’, natu-
ral actions which may be more representative of the real world executions.

Despite this abundance of datasets, there is still a lack of sets that make use of
subtle interaction classes, representing loosely defined actions such as those in natural
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Table 2: Comparison of provided data and presence of dedicated validation sets.

Datasets

Data

RGB/Greyscale All sets except CMU MoCap, K3HI,

MoCap Berkeley MHAD, CMU MMAC, CMU MoCap, HumanEVA-I, HumanEVA-II,
POETICON, TUM Kitchen, UMPM

Depth 50 Salads, Berkeley MHAD, CAD120, CAD60, G3D, G3Di, Hollywood3D, LIRIS, MSR
Action3D, MSR DA3D, MSR Gesture3D, SBU Kinect Interaction, CONVERSE

Skeleton Berkeley MHAD, CAD120, CAD60, G3D, G3Di, K3HI, MSR Action3D, MSR DA3D,
SBU Kinect Interaction, CONVERSE

IMU 50 Salads, Berkeley MHAD, CMU MMAC, MPI08, TUM Kitchen

Audio Berkeley MHAD, POETICON

Laser Scan MP108

Appearance sets Pose sets

Train/Test split

Yes Drinking/Smoking, ETISEO, Hollywood,
Hollywood 2, IXMAS1, KTH, Olympic
Sports, Rochester AoDL1, Stanford 40
Actions, UCF101, UCF111, UCF501, UCF
Sport1, UT Interaction, ViHASi1, VIRAT1,
Weizmann1, WVU MultiView-I, WVU
MultiView-II

Hollywood3D, HumanEVA-I, HumanEVA-II,
LIRIS, MSR Action3D, SBU Kinect Interac-
tion, TUM Kitchen1, CONVERSE1

No BEHAVE, BIT-Interaction, CASIA,
CAVIAR, HMDB51, JPL, MPII Cook-
ing, MPII Composite, MSR Action-I, MSR
Action-I, MuHAVi

50 Salads, Berkeley MHAD, CAD120,
CAD60, CMU MMAC, CMU MoCap, G3D,
G3Di, K3HI, MPI08, MSR DA3D, MSR Ges-
ture3D, POETICON, UMPM

1 provided in description paper via Leave Out cross validation methodology

conversational styles, or in context dependent situations. With [76, 77], we have pre-
sented methodology, using a dataset of subtle conversational interactions, which is able
to classify such subtle action events, based upon 3D pose features.

The following section will evaluate the public datasets detailed within section 3 and
summarized in Table 1, identifying key features for their usage in the HAR community.
Several parameters that require consideration when developing and evaluating action
recognition methodologies using publicly available data are identified; including the
modality of data acquisition, data provided by the set, and consistent training and test-
ing subsets. The complexity of each dataset is also evaluated, based upon the number
of individual classes they present, the number of samples provided, and the presence
of complex and realistic class scenarios. Summaries are provided in Tables 1, 2, 4, 5,
6, 7, 8, 9. The proposed CONVERSE dataset [1] is included within the evaluations to
highlight the necessity for such a set and identify where it resides amongst the currently
available data. A detailed explanation of the proposed dataset is given in section 4.

2.1. Modality

In Table 2 we cluster the datasets based on their method of data capture; from
video, depth maps, skeletal tracking, Motion Capture (MoCap) marker tracking, IMU,
and audio. The majority of sets in HAR make use of vision; however recent progress
has been made towards the use of 3D pose estimation via depth sensors; therefore
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understanding the modality provided by a dataset will often impact on the choice of
features used to describe each sequence.

Video
Appearance based HAR makes use of datasets that are often collected via still im-

ages or video, as cameras can provide a relatively cost effective method of obtaining
both real-world and staged execution samples from both a laboratory or real-world
environment. In Table 1 it can be seen that all of the datasets presented contain some
form of video or appearance based data (except CMU MoCap, K3HI and UCF iPhone);
therefore in Table 2 we omit the video data. The quality of the recordings varies greatly
between sets, with some specializing in evaluating action detection and recognition in
low quality or small scale recordings. High intra-set and inter-sequence variation in im-
age quality, camera motion, scale and viewpoint are common in meta-data sets that col-
lect observations from multiple sources, such as UCF101, UCF50, UCF11, Hollywood,
Hollywood-2 and HMDB51, and these pose a more realistic problem to the commu-
nity. Visual based HAR can provide an intuitive representation of the scene, however
there can often be superfluous information contained within an observation that nega-
tively impacts on the reliable global recognition of a given action; therefore, appearance
based modalities can often make use of subject localization and background removal,
coupled with the extraction of descriptors such as Space-Time Interest Point (STIP)s,
Histogram of Oriented Gradients (HOG), Histograms of Optical Flow (HOF) or lo-
cal regions of motion features to enable the global recognition of actions regardless
of background information or subject-specific appearance. Many depth based datasets
also provide simultaneously captured video representations of their data; this appear-
ance data can either be omitted from the learning, or combined to form a multi-modal
system. Of the appearance based datasets, the KTH and Weizmann datasets have been
cited the most for single action recognition method evaluation. For appearance based
interaction recognition the CAVIAR, Hollywood and UT Interaction datasets have been
used frequently by the community.

MoCap
Motion capture concerns the recording of numerous markers placed upon the body

by multi-camera systems, providing accurate tracking of the markers within a volume
over time. MoCap often provides a method of capturing a spatial ground truth for the
marker locations within the scene, being used as a stand-alone modality or augmenting
datasets captured through other methods. MoCap systems are often calibrated using
built in software and a calibration tool, allowing all cameras to be spatially and tem-
porally synchronized, increasing confidence in the marker tracking. Placement of the
markers varies between datasets and as such datasets which make use of MoCap pro-
vide details of the marker placement on the body, allowing semantic affordance to be
applied to each marker. MoCap can be seen as a cost-expensive method of data col-
lection, often requiring dedicated systems; however the generation of a spacial ground
truth and reliable pose tracking method is of great benefit when developing pose from
appearance or pose based action recognition methodologies. Despite this, an imple-
mentation of marker based MoCap systems in a real world environment is impractical,
requiring individuals to wear a motion capture suit to be detected by the system would
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provide little benefit to the user; as such there has been some effort that has also been
made to produce human skeletal tracking without the use of markers from simple RGB
image recording [129] and from depth maps [40].

Of the HAR datasets that utilize MoCap, the HumanEVA, Berkeley Multimodal
Human Action Database (MHAD) and Carnegie Mellon University (CMU) MoCap
datasets are most commonly used. The HumanEVA dataset provides a set of evalu-
ation metrics for the purpose of action recognition, Berkeley MHAD provides a de-
tailed dataset containing multiple modalities for fusion based action recognition, and
the CMU MoCap dataset contains a vast number of continuous sequences which can
be used for action detection and sequence segmentation.

Depth
The production of a consumer level depth sensor, most notably the Microsoft Kinect,

coupled with efficient and accurate joint tracking software has provided the HAR com-
munity with an inexpensive method of collecting 3D poses of a subject performing
actions within a scene [34–36]. This has allowed for the development of methods that
represent the action as a series of key poses or bag of words model [46, 47, 77], extract-
ing the key frames that describe the overall action event. Datasets such as 50 Salads,
Berkeley MHAD, CAD120, CAD60, G3D, G3Di, K3HI, LIRIS, MSR Action3D, MSR
DA3D, MSR Gesture3D, and SBU Kinect Interaction all make use of the Kinect depth
sensor to collect data providing the depth map of the scene. The Hollywood3D set
utilizes commercial films that have been recorded using a 3D stereo camera system to
provide depth maps. By obtaining a 3D pose estimation of the subjects within the scene
users are able to, given accurate tracking, generate pose, scale, and appearance invari-
ant features for the purpose of HAR that include joint trajectories, joint-joint distances,
joint-plane distances, and joint motion histories. Many of the depth datasets captured
using the Kinect provide the associated estimated skeleton representation of the indi-
vidual, tracking a number of joints across the scene. The number of joints tracked and
the position of the provided markers often depends on the method used to extract the
skeleton; those using the Microsoft Kinect SDK often provide 20 points, whilst those
using the OpenNI standard track 15 joints on the body. The selection of joints often
aligns with the major joints of the human body, and so provides an estimation of limb
motion. Currently the use of depth sensors are limited to a viewpoint that is in a roughly
front-on position due to the method of estimating depth, using distortions of infra-red
projections into the scene which is then captured by a receiving sensor. This method
has little ability to handle scene occlusions which can cause shadowed regions in the
depth map, resulting in lost or noisy tracking in the extracted skeletons.

The most prominent depth datasets for single person actions include those pre-
sented by the Microsoft Research group, namely the Action3D and DA3D datasets.
Despite the small number of samples and action classes provided by the MSR Ac-
tion3D dataset there has been a vast number of citations for its use as an evaluation
dataset. For person-person interactions there are few datasets available which make
use of depth based data; the K3HI and SBU Kinect Interaction datasets provide se-
quences of single executions of a given interaction, analogous to those provided by the
BIT Interaction and UT Interaction appearance datasets, however their recent release
may reflect their low citation and usage for evaluation of pose based methods.
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Other
Various other methods of data capture have been used for HAR purposes, including

the use of audio recordings [30, 151] and IMUs [30, 152, 153]. These methods can
provide reasonable classification results on their own, however they are often used in
a multi-modality system to improve the accuracy rates of single modality methods.
These datasets are beyond the scope of this survey and omitted for brevity.

2.2. Action class types

Human behaviors are often a set of events with differing levels of abstraction and
complexity, therefore to aid comparison between HAR class types we shall first define
assumptions made about terminology we wish to use. Many class labels provided
within HAR datasets can often be re-labeled to fit within a different level of abstraction,
however we attempt to use common terminology found across the community, with an
overview provided in Figure 1 and a summary of the datasets in Table 4. Example
images from datasets that describe differing levels of abstraction are given in Table
3.

Pose An atomic observation of the spatial arrangement of a human body at a single
temporal instance, e.g. ‘Arm above head’.

Gesture A temporal series of poses on a sub-action scale, sometimes described as
action primitives e.g. ‘Arm moves left’.

Action A series of gestures which form a contextual event, e.g. Repeated gestures of
arm moving left and then right can be contextual described as an ’overhead wave
action’. These are the most commonly used class labels found within current
datasets, describing single actions executed by a subject including ‘run’,‘jump’,
and ‘wave’.

Interaction A pairwise or reciprocal action is committed by two entities on each other.
Each entity therefore has a single action that reflects it’s state compared to the
other entity, i.e. consider the action of person A shaking the hand of person B;
A executes the action of shaking the hand of B, B executes the action of having
their hand shaken by A, together this pairwise action execution can be described
as that of a ’handshake’ interaction. For the purpose of action recognition inter-
actions are often further divided into differing interaction types based on if the
entities include people, objects or groups. For this study we have omitted group
interaction datasets due to space limitations.

Person-Person An action is committed directly by one individual upon another.
This definition does not include crowded scenes in which an individual
performs a single person action with other subjects in the environment.
The class labels in a P-P interaction treats the interaction as a single entity,
rather than two separate single person actions, e.g. we consider the class
‘punching’ as an interaction between person A, the puncher, and person B,
the individual being punched.

10



Action Type Dataset Example frames

Action Berkeley
MHAD

Action HumanEva

P-P
Interaction

SBU
Kinect
Interaction

P-O
Interaction

50
Salads

Activity MSR
DA3D

Activity TUM
Kitchen

Table 3: Example frames of currently available depth based human action recognition datasets. Images are
provided here to give insight into the types of classes provided by pose based data.
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Person-Object An action is committed directly by one individual upon an ob-
ject. This includes the manipulation of objects. We consider class labels
such as ‘lift chair’ and ‘open box’ as person-object interactions as the ac-
tions ‘lift’ and ‘open’ are performed on the objects ‘chair’ and ‘box’ re-
spectively.

Groups Characterized as interactions carried out between a collected entity of
more than two individuals. Group interactions can include inter- and intra-
group behaviors and the interaction of the group on other objects, individ-
uals, or even other groups. These often form their own subsets of group
behaviors.

Activity A collection of actions and/or interactions that compound to describe a high
level event. These are common within the sets that describe daily behaviors, e.g.
‘cook a meal’ and ‘tidy room’ can often include numerous actions and interac-
tions that are executed. Each action and interaction can therefore be thought of
a sub-activity event in such scenarios. Activity is also used to describe the daily
activities, a more realistic observation execution than the exaggerated instances
such as ‘punch’ and ‘kick’.

A common scenario presented within HAR instances is that of a single person
executing a singular action, in which an individual actor performs an action with no in-
teraction to other individuals or objects, such as within KTH, Weizmann, MSR Action,
and MSR Action3D. In recent years, interaction datasets have become more prominent,
often displaying actions where one actor performs an action upon which another actor
is the recipient. These interaction sets can still exhibit behaviors that are quite well
defined, with a single instigator and a single recipient, such as punching, pushing and
move towards. The most notable interaction sets include BIT Interaction, UT Interac-
tion, K3HI, and SBU Kinect Interact datasets. There also exists interaction classes that
are more complex in their composition, involving multiple entities, object manipula-
tion or requiring higher level semantics; these are prominent in the TUM, BEHAVE,
VIRAT, ETISEO, and POETICON datasets. The higher level activity datasets often
provide observations of an entire task being carried out and require the understand-
ing of the sub-activity actions and interactions being carried out over the course of the
recording. In the current sets there are often annotations of lower level actions which
are encompassed within a higher level activity context, with sets such as MPII Com-
posite, 50 Salads and TUM Kitchen providing annotations of both levels of abstraction
and the objects that are subject to interactions during the course of the activity.

The choice of classes that are performed by the actors is a key motivation in the
generation and usage of the proposed dataset. Often the actions executed are those
of a visually definable nature, comprising single executions of a discrete action which
contain key poses and gestures. The complexity of the problem can then be increased
by observing multiple executions of actions in a sequence, either with distinct bound-
aries between the classes or with a natural flow between different classes. These are all
complex issues that are the focus of the community, with segmentation methods often
utilized to separate out actions from a continuous sequence. Judging the difference
in complexity between two classes can be subjective, depending upon the subtlety of

12



Figure 1: Levels of abstraction within human action recognition.
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gestures, the context of any interactions, and the spatio-temporal rigidity of the exe-
cutions; subtle gestures, for example, may well present a more complex recognition
problem than the simplest of activity classes. We can however make some generalized
assumptions about the complexity within the different abstraction levels. Lower levels
of abstraction such as pose and gesture should provide less challenges to the field in its
current state, while higher levels of abstraction, especially those involving interactions
between two or more entities, still remain a challenging issue.

Obviously with the definitions of the action types presented there can be some
overlap in how to handle events in which an entity is not only interacted with, but
also pivotal to the context of the label. Consider the class label ‘smoking’, this event
can fit both into the definition of a singular action in which the object is explicit to
the action, a person-object interaction between the person and cigarette, and also into
its own activity class in which smoking is the task executed. Consider also the class
label of ‘pushing’, this may be a class label that can be readily classified as a single
action, person-person interaction, or person-object interaction depending upon the en-
tities present, and also as an activity if there is a contextual background to the event.
This highlights the complexity in describing class labels and requires the careful con-
sideration of overlaps that appear to be presented between datasets with similar action
classes. To further this point, we ask should the community consider an interaction
as its own complete class, or should the system understand the states occupied by all
entities within the interaction, i.e. the class label of ‘pushing’ may be deconstructed
into sub-classes that describe the action of the instigator and the reaction of the recip-
ient. Many interaction datasets handle the class labeling as a single complete unit of
interaction, often reliant on the action committed by the instigator, e.g. K3HI, SBU
Kinect Interaction, and UT Interaction. However the TUM Kitchen, 50 Salads and
MPII Composite sets explicitly annotate the states of both entities to define the person-
object interactions for the purpose of activity recognition. The use of a single interac-
tion class that encompasses all sub-divisions of that interaction may provide learning
that is broad and resistant to variation of intra-class behaviors; however by learning the
sub-divisions of an interaction class, considering the different actions and reactions as
their own states, there may be an ability to learn more effective boundaries for execu-
tion variations. For this study we have considered and evaluated upon the class labels
provided by the original datasets; however we invite the community towards potentially
defining multi-scale class labeling for the purpose of action and activity recognition.

%comparisons table

2.3. Size
The size of a dataset, not just in the number of sequences but also in the range of

different action classes and participants, can impact on it’s suitability for method eval-
uation. Testing on a small-scale dataset can provide misleading results during analysis
which may not be replicated when introducing more class labels or observations, due
in part to the highly variable nature of inter- and intra-instance executions. Contrar-
ily there are implications in the usage of large datasets; not only the collection and
storage of data, but also in the processing of features, class learning and validation.
Due to the inherent issues in obtaining a large number of participants, action classes,
and sequences, the largest sets tend to be meta-sets, which collect action sequences
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Table 4: Comparison of dataset interaction types. Note that datasets can contain instances of several types of
behaviors based on the labeling it provides.

Appearance sets Pose sets

Event type

Action CASIA, CAVIAR, Drinking/Smoking,
ETISEO, HMDB51, Hollywood,
Hollywood-2, IXMAS, KTH, MSR
Action-I, MSR Action-II, MuHAVi,
UCF11, UCF Sports, ViHASi, VIRAT,
Weizmann, WVU MultiView-I, WVU
MultiView-II

50 Salads, Berkeley MHAD, CAD120,
CAD60, CMU MoCap, G3D, Holly-
wood3D, HumanEVA-I, HumanEVA-II,
LIRIS, MPI08, MSR Action3D, MSR
Gesture3D, POETICON, TUM Kitchen,
UMPM

Interaction: Person - Person BEHAVE, BIT Interaction, CA-
SIA, CAVIAR, ETISEO, Hollywood,
Hollywood-2, JPL, UT Interaction

CMU MoCap, G3Di, Hollywood3D,
K3HI, LIRIS, POETICON, SBU Kinect
Interaction, UMPM, CONVERSE

Interaction: Person - Object ETISEO, MPII Cooking, MPII Compos-
ite, VIRAT

50 Salads, CAD120, CMU MMAC,
LIRIS, POETICON, TUM Kitchen,
UMPM

Activity CASIA, MPII Composite, MuHAVi,
Olympic Sports, Rochester AoDL, Stan-
ford 40 Actions, UCF101, UCF11,
UCF50, UCF Sports, ViHASi

50 Salads, MSR DA3D, CAD60, LIRIS,
TUM Kitchen, CONVERSE

from various sources, such as YouTube and films, containing large variation between
sequences; this often makes meta-sets highly variable and challenging problems to be
solved. A summary of dataset sizes is given in Table 5

Number of classes
Datasets with a small number of action classes, such as MSR Action-I, MSR Action-

II, and Drinking/Smoking, can often provide strong recognition results in part due to
the low number of partitions needed to divide the actions provided within the set. Those
sets that contain a large number of action classes, namely HMDB51, UCF101, and
UCF50, provide a difficult challenge to HAR methods due to the need to find par-
titioning information within each class that allows for inter-class partitioning, while
preserving intra-class similarity. Due to the inconceivable number of possible actions
and interactions that can exist in the real world it can be beneficial to evaluate method-
ologies on datasets with a large number of distinct action classes.

Number of subjects
Datasets that are able to provide more individual subjects performing an action are

able to portray the variability in inter- and intra-subject execution of a given class. Ob-
servations of the same action class can often differ greatly in both their temporal rate
and spatial occupancy, leading to complexity in learning the action for recognition pur-
poses. Methods that are able to provide subject invariant action recognition should pro-
vide consistent results on a dataset which contains a large number of subjects. Again,
the meta-sets tend to provide the highest number of subjects, almost capturing a new
subject per sequence, representing a large range of inter-subject variation.
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Number of samples per class
The number of observations per class can impact on the ability of a system to

suitable learn a given class. A low number of observed instances of a class can result in
weak recognition of unobserved instances of the same class. HMDB51 provides over
100 instances of each action class it contains, providing a range of observations across
differing viewpoints, quality and executions, as such it can provide a useful benchmark
for the recognition of actions from a subject and observation invariant methodology.
Current pose based datasets contain few repeated instances of an action class, often
with 3-5 repetitions per subject per class. To increase the number of instances per class
it is possible to segment those datasets which contain continuous recordings of multiple
executions into discrete single execution clips, this includes the KTH dataset.

Number of sequences
The total number of sequences within a dataset should be a factor of the number of

subjects, classes, and number of class executions, and as such can impact on the relia-
bility of the results produced. Larger datasets can provide larger testing sets for which
to evaluate a system, allowing for more confidence in the results of the validation. Size
alone however is only one parameter in the selection of evaluation benchmark, with
domain, class complexity and modality impacting on the application of methodologies
to real world implementations.

2.4. Application domain
The intended application domain of a dataset can provide certain intrinsic features

in the data collection methodology and action classes captured, from low resolution
images of CCTV surveillance footage to more complex action sequences of daily liv-
ing. Some actions are representative of the domain from which they are intended; for
example the UCF-Sports dataset, [137], makes use of numerous actions from various
sports, such as javelin throws and long jumps. We classify the datasets into 4 action
class domains; generic actions, daily living, surveillance, and sport. Generic action
datasets have no overall theme, instead providing classes that are pan-domain; these
include the classes ‘running’, ‘jumping’, ‘punching’, and also more complex interac-
tions such as ‘handshake’ or ‘play guitar’. Daily living datasets often include actions
and activities that are more natural in their execution and environment, this includes
classes based on assisted living and household tasks. Surveillance datasets often make
use of elevated view points and lower resolution images, mirroring the common camera
setups in the security industry [145, 154]. Sports based action recognition often makes
use of previously captured data from multiple sources, often containing varying image
quality and varying levels of camera motion. A summary of the domains for each of
the datasets is provided in Table 6.

Generic
Many action recognition datasets often contain generic action classes that are ob-

servable in numerous domains. The intention is to cover a wide variety of actions to
allow domain invariant action recognition, with generic datasets being the most widely
used for validation purposes, including the KTH [22], Weizmann [24] and MSR Ac-
tion3D [41] sets. Many generic datasets are collected in a laboratory environment; with
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Table 5: Comparison of dataset sizes.

Appearance sets Pose sets

# Actions

≤ 5 Drinking/Smoking, MSR Action-I, MSR Action-
II

6 - 10 BEHAVE, BIT Interaction, CAVIAR, Holly-
wood, Hollywood-2, JPL, KTH, Rochester
AoDL, UCF Sport, UT Interaction, Weizmann,
WVU MultiView-II

CMU MMAC, HumanEva-I, HumanEva-II,
K3HI, LIRIS, MPI08, POETICON, SBU Kinect
Interaction, UMPM, CONVERSE

11 - 15 CASIA, ETISEO, IXMAS, UCF11, VIRAT,
WVU MultiView-I

Berkeley MHAD, CAD60, G3Di, Hollywood3D,
MSR Gesture3D, TUM Kitchen

16 - 20 MuHAVi, Olympic Sports, ViHASi 50 Salads, CAD120, G3D, MSR Action3D, MSR
DA3D

≥ 21 HMDB51, MPII Cooking, MPII Composite,
Stanford 40 Actions, UCF101, UCF50

CMU MoCap

# Subjects

≤ 5 Rochester AoDL CAD120, CAD60, HumanEVA-I, HumanEVA-
II, MPI08, POETICON, TUM Kitchen

6 - 10 MSR Action-I, MSR Action-II, UT Interaction,
ViHASi, Weizmann

G3D, MSR Action3D, MSR DA3D, MSR Ges-
ture3D, SBU Kinect Interaction

11 - 20 IXMAS, MPII Cooking, MuHAVi Berkeley MHAD, G3Di, K3HI, CONVERSE

≥ 21 CASIA, KTH, MPII Composite 50 Salads, CMU MMAC, CMU MoCap, UMPM

Undefined BEHAVE, BIT Interaction, CAVIAR, Drink-
ing/Smoking, ETISEO, HMDB51, Hollywood,
Hollywood-2, JPL, Olympic Sports, Stanford 40
Actions, UCF101, UCF11, UCF50, UCF Sport,
VIRAT, WVU MultiView-I, WVU MultiView-II

Hollywood3D, LIRIS

# Sequences

≤ 20 BEHAVE, CAVIAR, MSR Action-I,UT Interac-
tion, WVU MultiView-II

HumanEVA-II, TUM Kitchen, CONVERSE

21 - 100 ETISEO, JPL, MPII Cooking, MSR Action-II,
Weizmann

50 Salads, CAD60, CMU MMAC, G3Di,
HumanEVA-I, MPI08, POETICON, UMPM

101 - 500 BIT Interaction, Drinking/Smoking, Hollywood,
MPII Composite, Rochester AoDL, UCF Sport,
ViHASi

CAD120, G3D, K3HI, MSR DA3D, MSR Ges-
ture3D, SBU Kinect Interaction

501 - 1000 KTH, Olympic Sports, WVU MultiView-I Berkeley MHAD, Hollywood3D, LIRIS, MSR
Action3D

≥ 1001 CASIA, Hollywood2, HMDB51, IXMAS,
MuHAVi, Stanford 40 Actions, UCF101,
UCF11, UCF50, VIRAT

CMU MoCap

static cameras, static backgrounds and calibrated data-capture setups, including Berke-
ley MHAD and CMU MoCap. Others may be collected outdoors with a controlled
clutter free setting, such as Weizmann and KTH. Others are collected within cluttered
environments, featuring non-participatory subjects that complicate the scene, such as
MSR Action-I and Action-II. Pose based datasets which make use of a depth sensor
and the pose estimation technique of extracting the 3D skeleton are often captured in a
relatively clutter free scene due to the limitations of the skeletal tracking methodology
used.
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Daily living
Daily living sets are designed to closely represent the natural world in both the en-

vironmental surroundings and the natural style of action classes executed. The Tum
Kitchen [129], MSR DA3D [40, 41], MPII Cooking [155], and Rochester AoDL [156]
sets are commonly used for the analysis of methodology in the recognition of day-to-
day activities. Activities include ‘having a conversation’, ‘phone calls’, ‘laying down’,
‘drinking’ and ‘eating’, but may also include sub-actions within a higher level task,
such as ‘setting a table’ or ‘cooking a meal’. The executions may be allowed to occur
naturally as in the 50 Salads, MPII Cooking, and MPII Composite datasets; or the ob-
servations may be more scripted, such as in the POETICON and the robotic class of the
TUM Kitchen set [59, 121, 129]. By understanding the actions and interactions within
a daily activity dataset the field is moving towards learning higher level semantics of
human behavior via natural representations.

Surveillance
Surveillance is a domain concerned with detecting and identifying activity within

a continuous observation of a scene, often making use of video-based action recog-
nition samples that are taken from a distance, prone to crowding, and contain poor
resolution recordings. A surveillance domain sequence may contain more frames of
empty or redundant information, sporadically interspersed with temporally short re-
gions of interest. Datasets such as UT-Interaction, CASIA, and BEHAVE make use of
surveillance style setups to capture emphasized person-person interaction classes such
as ‘come together’ and ‘fight’. The CAVIAR, ETISEO, and VIRAT datasets all make
use of detailed ground truth annotations to provide information regarding persons and
objects within the scene, enabling the evaluation of methods in detecting varies entities
and their interactions within a scene for higher semantic understanding of the events.

Sport
The UCF-Sports, [137], and Olympic Sports, [119], datasets are focused explic-

itly on sports related action examples. These sets contain samples that are collected
from various sources of TV and online recordings, providing samples that vary in their
recording quality and containing both static and dynamic camera movements. As such
these can often be challenging datasets. In both cases the intent of the dataset is to
be able to recognize the sport being performed, this can be more challenging than in
the case of learning sports related actions, such as in the case of ‘tennis serve’ and
‘boxing’ from some of the generic action datasets. A sport as a high level class can
contain numerous action and interaction actions that make up the overall activity and
learning a sporting class may require learning vastly different observations that belong
to the same class. 3D pose based HAR in the sports domain has few datasets due to
the complexity in capturing a large volume in which the activity can be played. The
G3Di dataset provides interactions between two people in the context of a sporting
game played through a console, however we treat the provided classes as being generic
actions rather than true sporting based actions.

18



Table 6: Comparison of dataset domain applications.

Appearance sets Pose sets

Domain

Generic BIT Interaction, HMDB51, Hollywood,
Hollywood-2, IXMAS, JPL, KTH, MSR
Action-I, MSR Action-II, MuHAVi,
Stanford 40 Actions, UCF101, UCF50,
UCF11, ViHASi, Weizmann, WVU
MultiView

Berkeley MHAD, CMU MoCap, G3D,
G3Di, Hollywood3D, HumanEVA,
K3HI, MPI08, MSR Action3D, MSR
Gesture3D, SBU Kinect Interaction,
UMPM

Daily Living Drinking/Smoking, MPII Cooking,
MPII Composite, Rochester AoDL

50 Salads, CAD120, CAD60, CMU
MMAC, LIRIS, MSR DA3D, POETI-
CON, TUM Kitchen, CONVERSE

Surveillance BEHAVE, CASIA, CAVIAR, ETISEO,
UT-Interaction, VIRAT

Sport Olympic Sports, UCF Sports

2.5. Ground truth

Table 7 outlines various ground truths provided with each dataset, both for spatial
ground truths and labeling of action classes. Providing consistent ground truth with
which to evaluate results is important for developing benchmarks against which to test
developed methodologies, aiding in the generation of a metric score that can be used to
compare implementations.

Class label ground truths and scene annotations of a dataset can provide a clear
benchmark for quantifying the performance of a developed methodology. Some datasets
provide frame-by-frame labeling of the scene, whilst others label an entire sequence as
containing a given class label. These annotations allow quantification of results ob-
tained from various methodologies, with predicted class labels and detections being
compared against the ground truth. The collection of the class ground truth can be ei-
ther manually annotated by the author or produced via some form of machine learning.
Manual annotation can provide detailed descriptions of the entire scene, with locations
and affordances being given to persons and objects within the scene, as can be seen with
the ETISEO and HMDB51 datasets. These can be extremely useful when tracking the
states of multiple entities within the scene, or for the understanding of a high level
abstracted class; however the manual labeling of individual frames can produce obser-
vation bias into the dataset, requiring strict objective criterion to gain consistent ground
truths. Machine based annotations can combined machine learning with data labeling
to rapidly provide ground truths to large datasets, e.g. the Hollywood and Hollywood-2
datasets are partially annotated by learning textual descriptions within the film’s scripts.
An automated ground truth annotation may require subsequent manual verification to
ensure the false labeling is minimized. The simplest form of ground truth labeling
provided by HAR datasets is by attributing the entire sequence to a specific label, ac-
knowledging that a given action occurs at some point within the observation, as is the
case with CASIA, CMU MMAC, MSR Action3D, and many more. Having simplistic
whole sequence labeling can make it hard to use such datasets for detection purposes,
as evaluating the beginning and end frames of an action can be problematic to deter-
mine manually. For action recognition purposes the learning of background frames
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from a sequence may also provide some level of noise to the partitioning of that class.
Spatial truth can be provided by explicitly locating the subjects and objects within

the environment or by highlighting regions of interest in which the the subject, object
or event resides by using bounding boxes or silhouette masks. Calibrated ground truth
methods can be used to determine the spatial locations of the subjects within a scene,
often using motion capture suits and markers to explicitly track the body through a cap-
ture volume, providing either a raw point cloud or the predicted skeletal frame of the
body. The accuracy of motion capture systems can vary from method to method, how-
ever the resolution accuracy is often within a range of a few millimeters, providing su-
perior body tracking than using machine learning based pose extraction. Marker based
motion capture systems, such as those used in CMU MoCap and Berkeley MHAD,
require the application of each marker to the individual at certain predetermined lo-
cations, and variation in placement of the markers on the body from sequence to se-
quence can introduce small errors in obtaining truly explicit spatial truths. The use of
depth maps to extract an estimated 3D pose of the subject in the scene has become
a prominent inclusion in depth based HAR datasets such as MSR Action3D, K3HI,
SBU Kinect Interaction, CAD120, and CAD60. The observation is fed into a skeleton
extractor, such as the OpenNI, Microsoft Kinect SDK softwares, or custom methods
[157–159], in which a subject is located and a human skeleton model is fitted, pre-
dicting the 3D coordinates for a number of joints. Although an approximation of true
3D spatial orientation of the joints, depth sensors and joint tracking has been shown
to be relatively accurate in the tracking of humans [34, 36]. The use of bounding
boxes to describe regions of interest in a scene are common within appearance based
datasets, such as BEHAVE, CAVIAR, ETISEO and MSR Action, especially those that
consider person-object interactions or belong to the surveillance domain. They simply
provide an area of focus that contains relevant annotated information, such as object
and subject location. The use of silhouette masks also provide a region of interest,
whilst simultaneously removing external and internal appearance information, repre-
senting the subject as a binary classification as either belonging to the background or
foreground. These regions of interest can also be utilized to validate action detection
and localization methodologies, removing the unwanted information from the overall
observation.

2.6. Viewpoint
Camera based methods can also make use of various viewpoints, from single cam-

era to multi-camera simultaneous viewpoint capture. Viewpoints can also differ greatly,
capturing events from roughly a parallel plane with the ground, elevated above head
height, or from an almost top-down viewpoint. Often events are captured from a view-
point that is roughly parallel to the ground, producing observations that are almost
representative of a human-eye view of the event, examples can be found in MSR Ac-
tion3D, K3HI, and CMU MoCap. A summary of dataset viewpoint representation is
given in Table 8. Sets such as BEHAVE, UT Interaction and CASIA contain events
recorded from an elevated angle; these viewpoints are common within the surveillance
domain due to the positioning of surveillance cameras for capturing a large scene at
once. Recently there has been work towards the recognition of actions from a first per-
son perspective, with data captured from the viewpoint of the observer [99, 160, 161].
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Table 7: Description of ground truths provided by datasets.

Name Spatial ground truth labels Class ground truth labels
50 Salads - Frame labeling
BEHAVE Bounding boxes Frame annotation
Berkley MHAD MoCap tracking File labeling
BIT Interaction - File labeling
CAD120 Extracted skeleton, bounding boxes Frame labeling
CAD60 Extracted skeleton File labeling
CASIA - File labeling
CAVIAR Bounding box Frame labeling
CMU MMAC MoCap tracking File labeling
CMU MoCap MoCap tracking File labeling
CONVERSE Extracted skeleton Frame labeling
Drinking/Smoking Bounding box Frame labeling
ETISEO Bounding box Frame labeling including calibration parameters, scene

descriptions, object affordance
G3D Extracted skeleton File labeling
G3Di Extracted skeleton File labeling
HMDB51 Bounding boxes File labeling including view, camera motion, visible

body parts, quality, and number of subjects
Hollywood - Frame labeling
Hollywood-2 - Frame labeling
Hollywood 3D - File labeling
HumanEVA-I MoCap tracking File labeling
HumanEVA-II MoCap tracking File labeling
IXMAS Silhouette masks Frame labeling
JPL - Frame labeling
K3HI Extracted skeleton File labeling
KTH - Frame labeling including scenario labeling
LIRIS Bounding boxes Frame labeling
MPI08 MoCap tracking and 3D scan File labeling
MPII Cooking - Frame labeling
MPII Composite - Frame labeling
MSR Action-I Bounding box Frame labeling
MSR Action-II Bounding box Frame labeling
MSR Action3D Extracted skeleton File labeling
MSR DA3D Extracted skeleton File labeling
MSR Gesture3D Extracted skeleton File labeling
MuHAVi Silhouette masks Frame labeling
Olympic Sports - File labeling
POETICON MoCap tracking File labeling
Rochester AoDL - File labeling
SBU Kinect Interaction Extracted skeleton File labeling
Stanford 40 Actions Bounding box File labeling
TUM Kitchen Markerless MoCap tracking Frame labeling including body trunk, left arm, right arm,

and object affordance
UCF101 - Frame labeling
UCF11 - Frame labeling
UCF50 - Frame labeling
UCF Sport - File labeling
UMPM MoCap tracking File labeling
UT Interaction Bounding box Frame labeling
ViHASi Silhouette masks File labeling
VIRAT Bounding box Frame labeling including object affordance
Weizmann Silhouette masks File labeling
WVU MultiView-I - File labeling
WVU MultiView-II - File labeling

This field is often working towards the understanding of interactions by robots for the
purpose of human-robot interaction. Such a viewpoint is believed to provide more
meaningful information when the observer has an active role in the interaction rather
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Table 8: Comparison of dataset viewpoints and scenario control.

Appearance sets Pose sets

Simultaneous Views

Monocular BIT Interaction, Drinking/Smoking,
HMDB51, Hollywood, Hollywood-2,
JPL, KTH, MPII Cooking, MPII Composite,
MSR Action-I, MSR Action-II, Olympic
Sports, Rochester AoDL, Stanford 40 Ac-
tions, UCF101, UCF11, UCF50, UCF Sport,
UT Interaction, Weizmann

50 Salads, CMU MoCap, G3D, G3Di, Hol-
lywood3D, K3HI, LIRIS, MSR Action3D,
MSR DA3D, MSR Gesture3D, SBU Kinect,
UMPM

Multi-view BEHAVE, CASIA, CAVIAR, ETISEO, IX-
MAS, MuHAVi, TUM Kitchen, ViHASi,
WVU MultiView-I, WVU MultiView-II

Berkeley MHAD, CAD120, CAD60, CMU
MMAC, HumanEVA-I, HumanEVA-II,
MPI08, POETICON, CONVERSE

Environment

Interior Natural CAVIAR, Drinking/Smoking, HMDB51,
Hollywood, Hollywood-2, JPL, MuHAVi,
Olympic Sports, Stanford 40 Actions,
UCF101, UCF11, UCF50

Hollywood3D

Interior Controlled IXMAS,MPII Cooking, MPII Composite,
Rochester AoDL, ViHASi, WVU MultiView-
I, WVU MultiView-II

50 Salads, Berkeley MHAD, CAD120,
CAD60, CMU MMAC, CMU MoCap, G3D,
G3Di, HumanEva-I, HumanEva-II, K3HI,
LIRIS, MPI08, MSR DA3D, MSR Ges-
ture3D, POETICON, SBU Kinect Interaction,
TUM Kitchen, UMPM, CONVERSE

Exterior Natural BEHAVE, BIT Interaction, Drink-
ing/Smoking, ETISEO, HMDB51, Hol-
lywood, Hollywood-2, MSR Action-I, MSR
Action-II, Olympic Sports, Stanford 40
Actions, UCF101, UCF11, UCF50, UT
Interaction, VIRAT

Hollywood3D

Exterior Controlled BIT Interaction, KTH, Weizmann

than simply observing a scene, as is the case in human-robotics interactions. There are
also datasets which attempt to capture simultaneous multi-camera views of an event for
the purpose of evaluating supposedly pose-invariant methodologies. Sets such as WVU
MultiView, Berkeley MHAD and TUM Kitchen all contain numerous cameras located
in differing positions capturing the same scene. Depth based data, such as tracked
skeletons and motion capture marker coordinates, can be orientated arbitrarily about
its three axes to develop multi-view methodology, with some pose alignment used to
reduce the effect of orientation discrepancies, [162]. However this is dependent upon
accurate pose estimation in order to provide data which has confident tracking. Due
to the nature of extracting pose estimation from depth based methods there are lim-
ited numbers of datasets that utilize multiple depth sensors; however Berkeley MHAD
provides multiple Kinect recordings alongside it’s vast number of appearance views,
with the sensors located in positions from which the infrared sensors are not causing
occlusions.

2.7. Use in community

Popularity of a dataset within the community can be difficult to evaluate, however
here we attempt to identify the number of citations that are made to the dataset’s de-
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Figure 2: Example images for Drinking/Smoking dataset

scription publication via Google Scholar. Using this count as a measure of how well
adopted a given dataset has become, we rank each set in Table 9. Note that older sets
can often show higher citation due in part to their steady accumulation of references
over time. Similarly, the number of citations made may not explicitly reflect the use
of dataset as a benchmark, as often the datasets are published in parallel with a novel
methodology which may accrue its own citations. It can be seen from Table 9 that the
pose based datasets show considerably fewer citations, most likely due to the relative
age of the rapidly growing field.

3. Current datasets

The following section will now detail the datasets evaluated above, describing the
composition of each dataset and a brief discussion of their usage in literature. We also
report on some of the accuracy rates achieved using each dataset; however due to the
multitude of evaluation criteria these are used as an indicative measure of the dataset
complexity as opposed to a definitive survey of state-of-the-art results obtained. It
would be unfair to directly compare results obtained between datasets, or even within
datasets for differing purposes. Such a survey would require extensive analysis to en-
sure that cross comparison between results are fair and reflective of their achievement.

The section is divided into the appearance and pose based datasets, with further
grouping into their respective abstraction levels as described by figure 1.

3.1. Appearance based datasets

Even though we wish to examine datasets that utilize pose estimation techniques for
action recognition, we will briefly discuss availability and impact of video based sets.
Video provides a relatively cheap method of obtaining sample sequences, with both
real-world and staged executions being obtained. Collection methods can make use of
single or multi-camera setups. Actions can be performed from a singular viewpoint,
most often face-on, or from differing angles.

3.1.1. Action
Drinking/Smoking. The Drinking/Smoking dataset [78], Figure 2, contains 308 se-
quences of either drinking or smoking actions taken from 3 sources (two movies and
one custom recorded set). The dataset can be used for detection, recognition and lo-
calization evaluation. There are 159 instances of drinking and 149 of smoking, from
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Table 9: Citation count for dataset description paper. Correct at time of submission. Note: CMU MoCap has
no attributed publication

Name Year of Publication Total Citations
Appearance
KTH 2004 2013
Hollywood 2008 1772
Weizmann 2005 1182
UCF11 2009 602
IXMAS 2006 590
UCF Sport 2008 584
Hollywood-2 2009 580
Drinking/Smoking 2007 327
UT Interaction 2009 303
Olympic Sports 2010 283
Rochester AoDL 2009 266
HMDB51 2011 265
MSR Action-I 2009 189
UCF101 2012 155
VIRAT 2011 144
Stanford 40 Actions 2011 137
UCF50 2013 131
ETISEO 2007 103
CAVIAR 2004 90
MSR Action-II 2011 82
MPII Cooking 2012 67
MuHAVi 2010 60
MPI08 2010 48
JPL 2013 38
ViHASi 2008 33
BEHAVE 2010 33
MPII Composite 2012 32
BIT Interaction 2012 19
CASIA 2009 12
WVU MultiView 2011 0
Pose
HumanEVA 2010 373
MSR Action3D 2010 333
MSR DA3D 2012 311
CAD120 2012 159
TUM Kitchen 2009 117
CAD60 2013 81
MSR Gesture3D 2012 75
Berkeley MHAD 2013 50
CMU MMAC 2008 48
SBU Kinect Interaction 2012 33
Hollywood3D 2013 32
G3D 2012 28
POETICON 2011 8
UMPM 2011 7
50 Salads 2013 6
LIRIS 2014 5
CONVERSE 2015 4
K3HI 2013 2
G3Di 2014 0
CMU MoCap - -

either a front or side viewpoint. Instances are taken from two movies and some custom
lab recordings. The dataset provides the training and testing samples that were utilized
for method evaluation in [79], allowing for direct comparison to the original method-
ology. The authors in [79] used singular key frames, coupled with a space-time action
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Figure 3: Example images for HMDB51 dataset - punch, swing baseball, and hand shake

Figure 4: Example images for Hollywood dataset - sit down, answer phone, handshake

classifier to detect the events in a given scene. The dataset has been utilized for vali-
dation several times, notably in the evaluation of modeling person-object interactions
via the object trajectory [163] and the recognition of an action class based on a single
observation training instance [164].

HMDB51. The HMDB51 [86], Figure 3, is a dataset of 6849 video sequences of 51
different actions with a minimum of 101 executions per label. Videos are taken from
a mixture of online clips, movies and television. The actions encompass 5 perceived
top level classes; facial expressions, facial object interaction, body movement, body
object interaction and person-to-person interaction. The dataset also provides detailed
labeling of video quality, number of people in scene, viewpoint, visible body parts and
camera motion. Instances of the same class can vary greatly in terms of the execution
style, the subject appearance, the quality of the images and the camera view. As such
the HMDB51 dataset is one of the more challenging appearance datasets for use as
an evaluation tool. The original publication attempts to use the HOG/HOF feature
combination to recognize action events within the scene [87], developing a collection
of visual words to train an SVM classifier. It has since been used for the recognition of
actions within natural settings and loosely controlled parameters [135, 165, 166].

Hollywood. The Hollywood dataset [88], Figure 4, intends to provide realistic human
behaviors from unconstrained videos, namely those produced for purposes other than
HAR, e.g. films and television. The set provides 5 action classes: answer phone, get
out of car, sit down, sit up, and stand up and 3 interaction classes: handshake, hug, and
kiss. The sequences are automatically annotated by forming alignments with the script,
subtitle and time stamps of the sequence. A subsample of these have been manually
corrected to provide ‘clean’ training and testing sets. In the associated publication [89]
the videos are represented by STIPs at multiple spatio-temporal scales. Each STIP is
then used to generate a set of HOG and HOF features which are then used to train a
non-linear Support Vector Machine (SVM) for event classification. The Hollywood
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Figure 5: Example images for Hollywood-2 dataset - hug, answer phone, stand up

dataset, and it’s sister dataset Hollywood2 (see below), are often used for the valida-
tion of methods under realistic conditions; due to the high variation in the quality and
examples of behaviors observed.

Hollywood-2. The Hollywood-2 dataset [90], Figure 5, is an extension on the Holly-
wood dataset, greatly increasing the number of observed sequences and action classes.
The set contains 3669 sequences of 8 single person actions and 4 interactions. There
is a large overlap with the Hollywood dataset in terms of the action classes provided,
including answer phone, get out of car, handshake, hug, kiss, sit down, sit up, and
stand up. The set also introduces 4 new classes; drive car, eat, fight person, and run.
To explore the relationship between an action and the scene it occurs within the dataset
provides 10 scenario locations, with a large focus on interior environments. The set
takes scenes from 69 movies and automatically annotates them using the same script
synchronization as with the Hollywood dataset. The set is divided into a training and
testing set, selecting given films for each set. There is some intersection between the
Hollywood and Hollywood-2 sets, with some films being included in the training set
for Hollywood and the testing set for Hollywood-2, thus the two sets should be used in-
dependently of each other to avoid issues in training on samples that may be duplicated
in the training sets. Marszalek [91] utilizes the set for the learning of both actions and
scenes; locating space-time salient motion with a 3D-Harris detector, and static salient
areas using 2D-Harris regions. They compute HOG/HOF descriptors from the 3D-
Harris, and Scale Invariant Feature Transform (SIFT) descriptors from the 2D-Harris
points. These features provide a vocabulary for a bag of words representation of the
scene and action. Hollywood-2 has been used as an evaluation set for a number of
studies, including multi-modal fusion of audio-visual cues for action recognition [31]
and the use of action primitives for classification [167].

IXMAS. The INRIA Xmas Motion Acquisition Sequences (IXMAS) dataset [96],
Figure 6, is a multi-view dataset designed for view invariant HAR. 5 cameras cap-
ture simultaneous views of 12 actors performing 13 actions with 3 repetitions; check
watch, cross arms, scratch head, sit down, get up, turn around, walk, wave, punch,
kick, point, pick up, and throw. There is an additional labeling for the action class
‘nothing’, and the throwing action is divided into an over-head and underarm subclass.
The ground truth is provided in the form of frame-by-frame annotation of the action
class label present within the scene, subject silhouettes, and reconstructed volumes.
The dataset is initially used for the recognition of actions regardless of viewpoint [168]
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Figure 6: Example images for IXMAS dataset - throw, sit down, check watch

Figure 7: Example images for KTH dataset - punch, run, hand waving

and history volumes [97]. It has since been used widely to evaluate methodology on
view-invariant recognition [169–171].

KTH Action. Presented in 2004 by Schuldt et al. [22], the KTH dataset [102], Figure
7, consists 25 subjects performing 6 actions in 4 scenario types, recorded via a static
camera. Actions are performed with single subjects visible in a frame, with multiple
executions of an action in a sequence. Actions performed were walking, jogging, run-
ning, boxing, hand waving, and hand clapping. Scenarios covered involved outdoor,
scale variations, clothing variation and indoor recordings. For the original study, the
600 continuous recordings are divided to provide 2391 single execution sequences.
Despite the simplistic nature of the actions performed, the set has become prominent
within the appearance based HAR community, with hundreds of citations making use
of the dataset for validation. The original study [22] used the dataset to extract lo-
cal space-time features from the observation for classification. Of the vast number of
subsequent uses of the KTH dataset there have been uses of individual sequences for
classification methodologies [172–175], while several sequences are often appended to
test segmentation methods [44].

MSR Action. The Microsoft Research group have provided a number of appearance
based HAR datasets, including MSR Action-I and Action-II, Figure 8,. These sets are
readily available to the research community at [112] and include actions, daily activities
and gestures. The Microsoft Research (MSR) Action I dataset [112] contains 16 video
sequences of 10 subjects performing 3 different action classes: clapping, waving and
boxing. Each sequence contains continuous recording of different actions being car-
ried out in series, often in a cluttered outdoor environment or with multiple subjects in
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Figure 8: Example images for MSR Action-I dataset - boxing, boxing and waving, clapping

Figure 9: Example images for MuHAVi dataset - climb ladder, pick up and throw, punch

the observation. Manually provided ground truth labeling is given as a spatio-temporal
bounding box over for each frame in which the action is present, and in [113] cor-
rect detection is determined by the overlap of ground truth and prediction areas. The
dataset is used within [113] for the purpose of action detection and localization within
the scene; it has since been used for evaluating a variety of HAR recognition and de-
tection methods [176, 177] MSR Action II [112] is an expansion on the previous set,
containing the same 3 action classes; clapping, waving and boxing. The set includes
54 continuous video sequences recorded in crowded environments, including multiple
subjects and non-subject individuals. Both the MSR Action I and Action II datasets
contain action classes that allow them to be overlapped with the KTH dataset, intend-
ing to promote cross-dataset action detection evaluation. The dataset has been used to
validate methods in action detection, localization and recognition [114, 178, 179]

MuHAVi. The Multicamera Human Action Video (MuHAVi) dataset [116], Figure 9,
is a large scale multi-view action recognition set, capturing 17 action classes performed
by 14 subjects. The action classes are performed within the capture area and include
punch, kick, run and stop, walk and turn, collapse, pull object, pick up and throw, walk
and fall, look in car, crawl, wave, draw graffiti, jump over fence, drunk walk, climb
ladder, smash object, and jump over gap. Many of these classes contain sub-action
primitive action classes themselves, which can either be handled separately or as a
compound action. The project is ongoing, and provides ground truth silhouette masks
for a number of sequences and ground truth frame annotation for all sequences. A large
number of publications use the MuHAVi set for evaluation of action recognition and
view invariant methods, most of which are detailed in [116].
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Figure 10: Example images for Olympic Sports dataset - diving springboard, snatch, tennis serve

Figure 11: Example images for Stanford 40 Actions dataset - applauding, fixing a bike, jumping

Olympic Sports. The Stanford Olympic Sports dataset [118], Figure 10, contains
video clips of 16 sport actions taken from YouTube; high-jump, long-jump, triple-
jump, pole-vault, basketball, bowling, tennis-serve, platform, discus, hammer, javelin,
shot put, springboard, snatch, clean and jerk, and vault. The clips include cluttered
scenes, dynamic camera movement, varying scales and execution styles. [119] uses
the dataset to evaluate their method of modeling temporal structure motion for action
recognition. The suggested testing and training split of the 50 video sequences is pro-
vided at [118] and the ground truth is provided as simple whole sequence labels.

Stanford 40 Actions. The Stanford 40 Actions dataset [180], Figure 11, is a collec-
tion of 9532 still images that represent naturally executed actions including riding a
horse, rowing a boat, fishing, applauding, and smoking. There are between 180 and
300 images per action class and the dataset provides bounding box annotation for the
subject in the observation for the purpose of action localization and recognition. The
challenge of understanding human action from a singular instance is explored in [127],
learning the context between actions and the objects contained within the image, with
further study into the use of still image understanding being evaluated on the dataset
[181, 182].

UCF. The UCF action datasets are a collection that make use of video to represent ac-
tion sequences. UCF-11, UCF-50 and UCF-101 are all video sets taken from YouTube
designed to provide an action recognition problem that focuses on the accurate recog-
nition of observations in which there are highly variable training observation samples.

The UCF-11 dataset [132], Figure 12, was produced to enable the evaluation of
recognition methods upon unconstrained observations of an action class. The collec-
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Figure 12: Example images for UCF11 dataset - biking, basketball, tennis swing

Figure 13: Example images for UCF50 dataset - high jump, skiing, yo-yo

tion provides 1168 sequences from 11 different action classes, with over 100 instances
in each action class. The actions presented include basketball shooting, cycling, diving,
golf swinging, horse back riding, soccer juggling, swinging, tennis swinging, tram-
poline jumping, volleyball spiking, and walking with a dog. Liu [133] presents this
dataset as an evaluation set for the understanding of action classes from natural obser-
vations that were produced for reasons other than for HAR, providing little knowledge
about camera quality, viewpoint and motion. The samples are grouped into 25 cat-
egories, with each category containing numerous instances of the same action from
similar scenarios.

UCF-50 [134], Figure 13, extends upon the UCF-11 dataset by introducing yet
more action classes, increasing the total count to 50, including baseball pitch, basket-
ball shooting, bench press, biking, billiards shot, breaststroke, clean and jerk, diving,
drumming, fencing, golf swing, playing guitar, high jump, horse race, horse riding,
hula hoop, javelin throw, juggling balls, jump rope, jumping jack, kayaking, lunges,
military parade, mixing batter, nunchucks, playing piano, pizza tossing, pole vault,
pommel horse, pull ups, punch, push ups, rock climbing indoor, rope climbing, row-
ing, salsa spins, skate boarding, skiing, skijet, soccer juggling, swing, playing tabla, tai
chi, tennis swing, trampoline jumping, playing violin, volleyball spiking, walking with
a dog, and yo yo. Again the initial use of the dataset is in the recognition of actions
from an unconstrained set of recordings [135]. This dataset has since been superseded
by the UCF-101 dataset.

UCF-101 [130], Figure 14, is the latest extension of the UCF appearance based
action datasets, containing 101 separate action classes collected from various sources,
which are grouped into 5 activity types; Human-Object Interaction, Body-Motion Only,
Human-Human Interaction, Playing Musical Instruments and Sports. The sub-activity
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Figure 14: Example images for UCF101 dataset - apply eye makeup, drumming, mopping floor

actions include apply eye makeup, apply lipstick, archery, baby crawling, balance
beam, band marching, baseball pitch, basketball shooting, basketball dunk, bench
press, biking, billiards shot, blow dry hair, blowing candles, body weight squats, bowl-
ing, boxing punching bag, boxing speed bag, breaststroke, brushing teeth, clean and
jerk, cliff diving, cricket bowling, cricket shot, cutting in kitchen, diving, drumming,
fencing, field hockey penalty, floor gymnastics, frisbee catch, front crawl, golf swing,
haircut, hammer throw, hammering, handstand pushups, handstand walking, head mas-
sage, high jump, horse race, horse riding, hula hoop, ice dancing, javelin throw, jug-
gling balls, jump rope, jumping jack, kayaking, knitting, long jump, lunges, military
parade, mixing batter, mopping floor, nunchucks, parallel bars, pizza tossing, playing
guitar, playing piano, playing tabla, playing violin, playing cello, playing daf, play-
ing dhol, playing flute, playing sitar, pole vault, pommel horse, pull ups, punch, push
ups, rafting, rock climbing indoor, rope climbing, rowing, salsa spins, shaving beard,
shotput, skate boarding, skiing, skijet, sky diving, soccer juggling, soccer penalty, still
rings, sumo wrestling, surfing, swing, table tennis shot, tai chi, tennis swing, throw dis-
cus, trampoline jumping, typing, uneven bars, volleyball spiking, walking with a dog,
wall pushups, writing on board, and yo yo. Over 13,320 sequences are collected to pro-
vide over 100 instances of each action class, with each sequence containing variation
in subject, scenario and camera parameters. The original publication [131] provides a
baseline recognition score by extracting Harris3D corners from a clip and represent-
ing them via HOG/HOF descriptors. These descriptors were then used to generate a
histogram of video words, utilizing the training and testing splits provided at [130]
to evaluate the performance of an SVM developed on the histogram vectors. These
baseline results allow for the evaluation of novel methods on the previously developed
methods by utilizing the benchmark splits.

Overall the use of the UCF Action datasets for method evaluation has been reported
within numerous publications, especially in the recognition of action classes from ob-
servations that contain little similarity in regards to the camera positioning and quality
[165, 166, 183].

UCF Sport. The UCF Sport dataset [136], Figure 15, is similar in construction to the
previous UCF Action sets, with sequences being collected from previously recorded
events. The main difference is that the focal domain of the dataset is within the recog-
nition of sporting activity domain, providing class labels such as diving, golf swing-
ing, kicking, lifting, horseback riding, running, skating, swinging, and walking. The
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Figure 15: Example images for UCF Sport dataset - skateboarding front, kicking side, golf swing side

Figure 16: Example images for ViHASi dataset - punch, running, jump kick

dataset collects 200 sequences and contains the same unconstrained camera parame-
ters as the previous action sets. The dataset has since been used for the evaluation of
action recognition methodologies both within the generic and sports specific domain,
including [174, 184, 185].

ViHASi. The Virtual Human Action Silhouette (ViHASi) dataset [142], Figure 16,
provides synthetic silhouette masks that have been produced by using 20 actions per-
formed by 9 virtual actors. The use of a virtual environment has allowed for the gen-
eration of 40 virtual viewpoints from which the silhouettes are produced, creating a
dataset that provides evaluation of view invariant silhouette based action recognition.
The 20 action performances are generated using the same motion capture sequences,
ensuring that each virtual actual performs the same action execution. Classes include
hang on bar, jump on bar, jump over object, run and pull object, run and push ob-
ject, run and turn left, run and turn right, hero smash, hero door slam, knockout spin,
knockout, grenade, collapse, stand and look, punch, jump kick, walk, walk and turn
back, and run. Differing subjects were developed that included not only differences in
body proportions but also variation in clothing which impact upon the silhouettes pro-
duced. Despite being a niche dataset there have been several works that make use of the
ViHASi dataset, evaluating the use of silhouette pose projection for action recognition
[143, 186–188].

Weizmann. One of the three main appearance based action recognition datasets, the
Weizmann dataset [24, 146], Figure 17, provides RGB recordings of 10 actions per-
formed by 9 subjects, captured at 50fps. Actions performed were running, walking,
skipping, jumping-jacks, jump forwards, jump in place, sideways gallop, two-handed
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Figure 17: Example images for Weizmann dataset - bend, jump forwards, two-handed wave

Figure 18: Example images for WVU MultiView dataset - waving, standing still, waving from alternate
viewpoint

wave, one-handed wave and bend. Each recording uses a static camera to capture
multiple executions of the same action against a solid wall background. Tangential to
the main dataset are a series of samples deemed for method robustness testing; with
recordings including occlusion, abnormal execution style and carrying objects. De-
spite providing readily definable action classes, the Weizmann dataset has been used
repeatedly for HAR method validation since its creation [48, 173, 174, 189–192].

WVU MultiView. The WVU MultiView dataset [148], Figure 18, is comprised of
two sets; with WVU MultiView-I containing sequences of a single action execution
from one of 12 action classes, and WVU MultiView-II describing continuous combi-
nations of 9 available actions in an interleaved fashion. The intention is to utilize the
first dataset to perform action recognition, while the second requires detection and seg-
mentation. WVU MultiView makes use of 8 cameras to collect data that can be used
to test view-invariant methods. The classes included in the first dataset are standing
still, nodding head, clapping, waving one hand, waving two hands, punching, jogging,
jumping jack, kicking, picking up, throwing and bowling. In WVU-II the actions show
slight overlap; including clapping hands, waving one arm, waving two arms, punching,
jogging in place, jumping in place, kicking, bending, and underarm bowling. The two
datasets are often used as a validation method for multiple distributed camera action
recognition [149, 150, 193].

3.1.2. Interaction
BEHAVE. BEHAVE, Figure 19, is a human action recognition project that is com-
prised of two separate datasets, the Multiagent Interaction dataset [60], featuring multi-
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Figure 19: Example images for BEHAVE dataset - in group, fight, following

Figure 20: Example images for BIT Interaction dataset - bow, handshake, push

person interactions captured from an elevated viewpoint, and the Optical Flow set
[194], containing recordings of human flow in a train station exit under three scenar-
ios. The Multiagent Interaction set contains 10 interaction classes being performed
by multiple individuals in an outdoors environment, recorded using static RGB cam-
eras from 2 non-simultaneous viewpoints. The set contains bounding box annotations
of the individual and their action class, including; InGroup, Approach, WalkTogether,
Meet, Split, Ignore, Chase, Fight, RunTogether, Following. There are 163 instances
with varying number of instances per class. The class WalkTogether contains 43 in-
stances at a total of 6694 frames, while the classes Meet and Following only contain
a single instance each, comprising of less than 100 frames each. The majority of the
sequences are annotated by providing the ground truth individual bounding box loca-
tions. Action labels are then provided along with start and end frames for the event;
this is coupled with the identification labels for each individual involved in the event.
Ref. [60] also provides image pixel position measurements for the computation of the
ground plane homography. One viewpoint of the set is captured from inside a building,
filmed through a window, and as such contains a large amount of noise in the illu-
mination of the scene due to reflections from the glass. The BEHAVE Optical Flow
dataset has been used several times for event detection in crowded scenes [195, 196],
while the Multiagent Interaction set has been utilized for the recognition of actions and
identification of individuals within the surveillance domain [197–200].

BIT-Interaction. The Beijing Institute of Technology (BIT)-Interaction dataset [63],
Figure 20, consists of 400 AVI video clips capturing 8 interaction events with 50 videos
per class. The dataset provides a further level of complexity by introducing varying
occlusions, appearances, temporal and spatial scale. The classes include these which
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Figure 21: Example images for CAVIAR dataset - fight, slump, leave bag unattended

Figure 22: Example images for ETISEO dataset

are definable by their respective poses, such as bow, boxing, handshake, high-five,
hug, kick, pat, and push. The presence of pedestrians, occlusions and variable views
results in a dataset that can be used for detection, localization and recognition. The
original publication [64] utilized the BIT-Interaction set to develop a set of high-level
phrases which describe the interaction in terms of the interdependencies of lower-level
attributes belonging to each individual in the interaction.

CAVIAR. The Context Aware Vision using Image-based Active Recognition (CAVIAR)
project [70], Figure 21, provides action recognition sets for the purpose of determining
if local image descriptors guided by contextual knowledge of the scene can improve
image-based action recognition. The project provides two RGB sets, one from an
entrance lobby of the Institut National de Recherche en Informatique et en Automa-
tique (INRIA) labs, the second utilizes 2 simultaneous views from within a shopping
center. The INRIA subset provides 4 single person actions: walk, browse, rest/slump,
and leave bag unattended; the set also provides 2 interaction classes: meet and fight.
The shopping center subset provides the remaining 3 action classes enter shop, win-
dow shop, and leave shop. Both subsets provide the ground plane homography mea-
surements for the scene. The ground truth labeling in the sets are XML hand labeled
bounding boxes for each image in the sequence. The CAVIAR dataset is one of the
most utilized appearance based datasets for human action recognition alongside KTH
and Weizmann, being utilized for evaluation of numerous methodologies, including
tracking, recognition and segmentation [201–203].

ETISEO. The ETISEO dataset [80], Figure 22, provides a methodology and accom-
panying dataset for video surveillance evaluation. 5 main scenarios are presented, con-
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Figure 23: Example images for JPL dataset - throwing object, handshake, punch

taining instances of 15 action classes. 10 are single person actions: walk, run, sit, ly-
ing, crouching, holding, jumping, pick up, put down, and tailgate. 5 are person-person
interactions: push, fight, meet, exchange, and queue. The dataset is annotated with
bounding boxes detailing both events and physical objects within the frame, and the
project provides evaluation metrics on a variety of problems including object detec-
tion, object localization, object tracking, object classification, and event recognition.
The project is a multi-institute venture into developing a benchmark for evaluating
security and surveillance domain observations, containing detailed information regard-
ing it’s use as a validation tool and the data structures provided [81]. ETISEO has been
used as a benchmark for the detection, localization, and recognition of both pedestrians
and behavioral actions in a surveillance domain [204–206].

JPL First-Person Interaction. The Jet Propulsion Laboratory (JPL), Figure 23, at
the California Institute of Technology provide a first person viewpoint dataset into
person-person interactions [98]. The project captures a mixture of positive and nega-
tive interactions from a camera positioned on a non-static subject as they traverse an
office environment. During the sequences the subject encounters 7 interactions which
are recorded from their perspective of recipient; including handshake, petting subject,
wave at subject, conversation with pointing at subject, punching subject, and throwing
objects at subject. In the associated publication [99] the use of local motion descriptors
across space-time provides a bag of visual words representation for recognition of first
person recipient view interactions. The egocentric domain is often used for determining
the actions of the observer and of the subject observed [99, 207], with complications
arising from the motion and perspective captured by the camera’s location on the body
[208, 209].

UT-Interaction. The UT-Interaction dataset [140], Figure 24, contains 20 continuous
static camera recordings of multiple subjects performing multiple interactions within a
scene. Each recording captures all action classes recorded from an elevated angle. The
interactions between two individuals including handshake, hug, kick, point, punch, and
push. Several subsets are present within the dataset; with static backgrounds, dynamic
backgrounds, multiple events in the scene and crowded scenes. Ground truths are
provided in terms of bounding box frame-by-frame annotation. The UT-Interaction set
has often been used for evaluating interaction recognition within a surveillance domain
[141, 210, 211].
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Figure 24: Example images for UT Interaction dataset - kick, handshake, hug

Figure 25: Example images for VIRAT dataset

37



Figure 26: Example images for MPII Cooking dataset

VIRAT. The VIRAT dataset [144], Figure 25, provides action classes expected within
a surveillance domain, describing natural scenes and interactions between individuals
and the environment. The sequences within the collection are annotated with a high
level of detail, providing information via bounding box annotations regarding the peo-
ple, objects, vehicles and the interactions that occur between them. 12 activity classes
are provided, including loading an object on a vehicle, unloading an object from a vehi-
cle, opening the trunk of a vehicle, closing the trunk of a vehicle, getting in to a vehicle,
getting out of a vehicle, gesturing, digging, carrying an object, running, entering a fa-
cility, and exiting a facility. The challenge of this dataset is in the natural executions
of the interactions, and also in the cluttered scene that is observed, a common problem
task for real world surveillance domain. Common use of the VIRAT dataset is in the
analysis of surveillance domain action detection and localisation [212–215].

3.1.3. Activity
CASIA. The CASIA action database [68] provides a multi-view action and interac-
tion dataset containing 8 single person actions and 7 person-person interactions. The
single person actions include walk, run, bend, jump, crouch, faint, wander, and punch
car. The interactions include rob, fight, follow, follow and gather, meet and part, meet
and together, and overtake. The scene is captured from three simultaneous static view-
points; horizontal/side on, top down and angle, although global locations of the cam-
eras are not provided. The choice of viewpoint provides a surveillance style dataset
with simultaneous viewing allowing the evaluation of view-invariant methods. Each
AVI sequence is annotated as a whole clip by filename; detailing the viewing angle, ac-
tion class, subject ID, and action repetition number. The CASIA dataset has been used
to evaluate view-independent, surveillance based action recognition [69, 216–218].

MPII Cooking. The Max Planck Institut Informatik (MPII) Cooking datasets, Figure
26, are a pair of closely related datasets that concern the daily living activities of cook-
ing and the action and interactions that are compounded into the higher level semantic
classes. The MPII Cooking Activities dataset [108] contains 44 continuous recordings
of naturally executed daily cooking activities, with 12 participants completing activi-
ties that included any number of 65 potential activities, such as chopping and pouring.
These fine grained activities are recorded as part of a higher level semantic activity,
such as preparing a salad or cake, allowing flow between each action to be natural. The
focus of [109] is to detect and recognize the execution of the lower level actions within
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Figure 27: Example images for Rochester AoDL dataset - answering phone, chopping banana, eat snack
chips

an activity, with the dataset providing detailed frame annotation to facilitate evaluation.
The MPII Composite set [110] is an expansion upon the MPII Cooking set, introduc-
ing more detailed information regarding the higher level activity classes. 14 activities,
such as cake, omelet, mashed potato, and pancake, are provided as composite activ-
ities which are built from the finer actions provided by the MPII Cooking Activities
set. These two sets provide a method of evaluating methods that are able to recognize
events at differing levels of abstraction. The overall activity can be decomposed into a
set of lower level actions and interactions.

Rochester AoDL. The Rochester Activities of Daily Living (AoDL), Figure 27, dataset
contains 10 natural action classes performed 3 times by five subjects in front of a waist
height desk. Actions performed include answering a phone, dialing a phone, looking
up a phone number in a telephone directory, writing a phone number on a white-board,
drinking a glass of water, eating snack chips, peeling a banana, eating a banana, chop-
ping a banana, and eating food with silverware. The intention of the project is to
perform HAR on more realistic executions of behavior classes, with [123, 219–221]
using tracked key point trajectories for action recognition and [222] considering the
pairwise spatio-temporal relationships of the interest points in the scene.

3.2. Pose Based sets
MoCap has allowed for highly accurate localization of body positioning, using

markers to identify joints and bones in coordinates of a volume space. Motion capture
techniques often utilize the pose of an individual during an action’s execution. There
are several purely MoCap datasets available, however most now use MoCap techniques
as part of a multimodal collection. In recent years community focus has moved from
traditional motion capture techniques to the collection of joint positioning via com-
mercial depth sensors, such as the Microsoft Kinect. Depth data has become prolific
in the community since the release of the Microsoft Kinect depth sensor; mostly due
to its ability to accurately track a human, and provide a skeleton representation in 3D.
Most depth sets also provide their corresponding skeleton representations so that the
same skeletons are also part of the standard training and testing methods. It is not only
the visual information that is used to identify action events. Often there can be use of
accelerometers and gyroscopes to capture the kinematics of the body during the perfor-
mance of an action. Sometimes these additional depth based modalities are captured in
parallel with more conventional methods, sometimes they are the sole modality under
focus.
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Figure 28: Example images for Berkeley MHAD dataset - two handed wave RGB, two handed wave depth,
sit down

Figure 29: Example images for CMU MoCap dataset - jump, punch, kick

3.2.1. Action
Berkeley Multimodal Human Activity Database. The Berkeley MHAD [62], Figure
28, contains 660 sequences of 12 participants performing 11 actions, recorded using
RGB video, depth sensors, marker based motion capture, accelerometers and micro-
phones. Action classes include jumping jacks, bend, punch, two handed wave, one
handed wave, clap hands, throw, sit down and stand, sit, and stand. Each class was
recorded 5 times, with jumping jacks, bend, punch, two handed wave, one handed
wave, clap hands, sit down and stand containing 5 continuous repetitions per record-
ing. 3D coordinates for 43 markers were recorded via 8 MoCap cameras. 12 RGB
cameras were grouped into 2 stereo vision clusters and 2 4-camera multi-view clusters.
Two Kinect sensors captured RGB-D data. 6 tri-axial accelerometers were affixed to
the wrist, ankles and hips to record limb dynamics during an action. Sensor recordings
are geometrically and temporally synchronized to allow multimodal HAR. The mo-
tion capture system is first calibrated, with RGB and Kinect sensors being calibrated
for both intrinsic and extrinsic parameters, referencing all sequences to a the motion
capture world coordinate system. Due to the vast amount of data provided across nu-
merous modalities the MHAD dataset has been used to evaluated methods that make
use of modality fusion [39, 223], motion capture data [224, 225] and RGB-D joint
tracking information for the purpose of action recognition [225, 226]
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Figure 30: Example images for G3D dataset - bowling RGB, depth, skeleton

Figure 31: Example images for Hollywood3D dataset - run, hug, use phone

Carnegie Mellon University Motion Capture. The CMU Graphics Lab action dataset
[74], Figure 29, contains marker-based MoCap sequences of subjects performing a
large variety of actions. Sequences are grouped in 6 types; Human Interaction, In-
teraction with Environment, Locomotion, Physical Activities & Sports, Situations &
Scenarios and Test Motions. Sequences can contain multiple action executions and
can include person-to-person interactions. The set uses 40-60 markers to capture the
full human skeleton of 109 subjects in 2605 sequences. The C3D format markers are
not consistent from sequence to sequence, and thus require the user to determine the
marker locations beforehand when using the C3D data. However the use of the AMC
formatted joint angles are consistent between sequences. Evaluation on the CMU Mo-
Cap dataset often utilizes a subset of the overall dataset, due to the large number of
sequences and action classes [41, 42, 227].

G3D. The G3D dataset [82], Figure 30, is an action set that focuses on the recognition
of actions designed for gaming and computer interaction. 10 subjects perform 20 game
based actions, with up to 3 repetitions, in front of a stationary Kinect sensor, capturing
synchronized RGB-D data and 20 joint skeletons. Actions recorded by the dataset
include punch right, punch left, kick right, kick left, defend, golf swing, tennis swing
forehand, tennis swing backhand, tennis serve, throw bowling ball, aim and fire gun,
walk, run, jump, climb, crouch, steer a car, wave, flap and clap. The purpose of the
dataset is to develop a framework for the real time recognition of actions within a
observed scene [83].

Hollywood3D. The Hollywood3D dataset [92], Figure 31, contains similar action
classes to that of the appearance based Hollywood and Hollywood-2 datasets; null,
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Figure 32: Example images for HumanEva dataset

run, punch, kick, shoot, eat, drive, use phone, kiss, hug, stand up, sit down, swim,
and dance. However the data modality in this dataset consists of depth maps obtained
from the production of commercial 3D movies. The purpose of [93] is to expand the
complexity of using non-HAR based recordings for the purpose of action recognition
by representing the observations as depth data. The dataset provided a significant chal-
lenge to the community, describing natural observations of action classes as depth in-
formation [228–230].

HumanEva. The HumanEVA-I dataset [95, 231] contains video sequences synchro-
nized with motion capture poses, capturing 6 actions performed by 4 subjects. Actions
include walking, jogging, gesturing, throwing & catching, boxing, and a combo action.
Actions were repeated 3 times, once with MoCap and then twice with a combination
of MoCap and video. The set contains separate training, testing and validation sets,
detailed in [95], allowing comparative results. The MoCap markers were tracked using
6 ViconPeak cameras, while the video data was collected using 3 RGB cameras and
4 grayscale cameras. The grayscale cameras are located in the corners of the capture
space, with the color cameras positioned to the front, left, and right viewpoints of the
subject.

HumanEVA-II, Figure 32, then expands on the previous set by having 2 subjects
perform combinations of the previous actions to develop a secondary testing set that is
ten times smaller than that of HumanEva-I. The dataset is designed as a testing set for
the methods developed on the HumanEva-I dataset, providing only complex continuous
sequences; starting with walking a path, then jogging, concluding with the subject
alternating balancing on each foot. The intent is to use the HumanEva-I set to train
and validate the system, with testing be executed on the HumanEva-II set. The MoCap
markers are tracked using 12 ViconPeak cameras, twice as many as the original dataset,
and the video data is collected by 4 color cameras located in the corners of the capture
space. The HumanEva sets have been used repeatedly to evaluate the performance of
pose estimation and sequence segmentation algorithms due to it’s continuous series
of multiple action classes performed in the combo-action observations and the motion
capture ground truth [232, 233].

Microsoft Research Action3D. The MSR Action3D dataset [40, 41, 112], Figure
33, provides the first example of a public depth map dataset for HAR, capturing both
the depth data for 20 gaming related actions performed by 10 subjects, with up to
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Figure 33: Example images for MSR Action3D dataset - pick up and throw, two hand wave, side kick

Figure 34: Example images for MSR Gesture3D dataset - where, J, finish

3 executions of an action by each subject. Action classes include high arm wave,
horizontal arm wave, hammer, hand catch, forward punch, high throw, draw x, draw
tick, draw circle, hand clap, two hand wave, side boxing, bend, forward kick, side kick,
jogging, tennis swing, tennis serve, pickup and throw, and golf swing. In recent years
the dataset has been expanded to include the tracked joints in screen and real world
coordinates, each skeleton consists of 20 joints captured with a device similar to the
Kinect; head, shoulder center, left shoulder, right shoulder, left elbow, right elbow, left
wrist, right wrist, left hand, right hand, spine, hip center, left hip, right hip, left knee,
right knee, left ankle, right ankle, left foot, and right foot. Due to the computation
involved in learning the 20 total actions the total dataset is divided into 3 subsets, each
containing 8 of the 20 possible actions, dubbed Action Sets. Action Set 1 contains
similar action classes such as high throw and tennis serve. Action Set 2 contains actions
that involve subtle actions with the arms and hands, including draw tick and draw circle.
Action Set 3 then aims to group complicated actions together, including the sporting
actions. 10 samples are considered to be too noisy and are omitted from the use of the
dataset for evaluation [112]. The MSR Action3D dataset is one of the most prominent
action recognition depth based datasets available, with numerous action recognition
methods utilizing the set for evaluation purposes [28, 39, 45, 162, 234].

Microsoft Research Gesture3D. The MSR Gesture3D dataset, Figure 34, contains
336 sequences of American Sign Language gestures. 10 subjects remain in a seated
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Figure 35: Example images for MPI08 dataset

Figure 36: Example images for 50 Salads dataset

position and perform 12 different dynamic sign language gestures in up to three rep-
etitions. The dataset provides the depth maps for each frame in the sequence. In the
associated publication [115] it was possible to develop a real-time system to recognize
input to the Kinect sensor at 10fps. The dataset is captured from a front-on view, with
the lower half of the subject obscured by a table, with focus being on the body, head,
arms and hands. Due to it’s focus on the behavior displayed by the hands the MSR Ges-
ture3D dataset has often been used in the hand pose estimation and action recognition
community [235, 236].

MPI08. The MPI08 dataset [105], Figure 35, collects motion capture recordings of
subjects performing tasks for the purpose of multi-modal body tracking fusion. Despite
this primary purpose it provides several sequences of highly accurate spatial tracking
whilst the subjects execute their actions. The use of modality fusion within this dataset
could be exploited for the purpose of action recognition, utilizing the frame labeling of
the files for action recognition [106, 107].

3.2.2. Interaction
50 Salads. The University of Dundee 50 Salads dataset [58], Figure 36, is a collec-
tion of birds-eye-view recordings of food preparations using an RGB-D sensor and ac-
celerometers for the purpose of recognizing gestures and person-object interactions. 25
participants prepared 2 salads each, utilizing a variety of tools and ingredients, result-
ing in a total of 966 observed action instances, with an average of over 55 observations
per lower level class. The sequences are annotated with a label being assigned to all
frames between a given start and stop frame. There are two tiers of labeling, the first
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Figure 37: Example images for K3HI dataset - kicking, pushing, shaking

describing the higher level action as one of 3 tasks; cut and mix ingredients, prepare
dressing, and serve salad. The second tier describes the frames in terms of a lower level
actions such as peel cucumber, cut cucumber, place cucumber into bowl, cut tomato,
place tomato into bowl, cut cheese, place cheese into bowl, cut lettuce, place lettuce
into bowl, mix ingredients, add oil, add vinegar, add salt, add pepper, mix dressing,
serve salad onto plate, and add dressing. Each of the lower level action labels are given
a suffix of being either prep, core or post the action. Tri-axis accelerometer recordings
are provided for 7 tools used in the sequences. Stein and McKenna [58] provide the
RGB video recordings, depth maps, accelerometer sequences and the synchronization
of all sequences. The sequences begin with an assistant making 4-5 sharp knocks to
an IMU in the scene, allowing synchronization to that point. The 50 Salads set has
been used to explore the impact of learning differing levels of abstraction, focusing on
the information gained between higher and lower level behaviors [237] and the under-
standing of complex scenarios [238].

G3Di. A progression on G3D, the G3Di [84, 85] dataset makes use of a single Kinect
depth sensor to track two individuals interacting within the scene. This dataset cap-
tures 6 pairs of subjects performing actions taken from 6 sports, with 14 action classes.
The top level sports are boxing, volleyball, football, table tennis, sprint, and hurdles.
The primitive actions include right punch, left punch, defend, overhand hit, underhand
hit, jump hit, kick, block, save, serve, forehand hit, backhand hit, run, and jump. The
action classes run and serve span two classes, whereas the remainder are top level ac-
tion specific. The G3Di dataset presents interactions between two individuals who are
side by side with both subjects facing the sensor. This makes it possible to separately
recognize an individuals action, before then compounding this knowledge to recognize
an interaction [85].

Kinect Based 3D Human Interaction. The K3HI dataset [101], Figure 37, contains
8 pairwise person-person interactions performed by 15 individuals. Each of the 320
sequences captures a single execution of one of the 8 action classes; approaching,
departing, kicking, punching, pointing, pushing, exchanging an object, and shaking
hands. Both individuals in the scene are tracked using the Kinect sensor, capturing the
15 joints of each subject. The OpenNI skeleton representation was extracted, tracking
the head, neck, left shoulder, right shoulder, left elbow, right elbow, left hand, right
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Figure 38: Example images for SBU Kinect Interaction dataset - handshake, punch, hug

Figure 39: Example images for UMPM dataset - sit (one person), meet (four person), grab (two person)

hand, torso, left hip, right hip, left knee, right knee, left foot, and right foot. The use of
approaching and departing classes are dismissed for method evaluation in [101], due
to their simplistic nature and high recognition accuracy rates. [101] uses a 4-fold cross
validation method for their initially reported experimentation on the dataset, however
the training/testing splits are not provided in the dataset itself. The dataset has been
used to evaluate positive action recognition in [101].

Stony Brook University Kinect Interaction. The SBU Kinect Interaction dataset
[37, 124], Figure 38, presents person-person interaction recorded via synchronized
video, depth maps and skeletal models of both actors. 7 individuals, in 21 pairings,
performed 8 types of interaction. The interactions between the two individuals are
captured from a side-on view and include approaching, departing, pushing, kicking,
punching, exchanging objects, hugging, and shaking hands. These interactions provide
several classes that involve similar gestures in the arms, namely pushing, punching,
shaking hands and exchanging objects. The dataset provides the RGB video and depth
maps, alongside the OpenNI 15 joint skeleton tracking. The skeleton joints are head,
neck, torso, left shoulder, right shoulder, left elbow, right elbow, left hand, right hand,
left hip, right hip, left knee, right knee, left foot, right foot. In [37] the dataset was used
to identify joint distance and velocity features that are coupled between the individuals
in the scene.
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Figure 40: Example images for CMU MMAC dataset

UMPM. The Utrecht Multi-Person Benchmark (UMPM) [138, 239], Figure 39, is
a synchronized video and marker-based MoCap set that includes numerous subjects
interacting and occluding one another. The set intends to provide a ground truth labeled
standard dataset for the recognition of dense scenes, at risk of inter- and intra-subject
occlusions. The dataset records 9 different scenarios using 4 RGB cameras and a 37
marker MoCap system; 1) walk,jog or run, 2) walk along circle or triangle shape, 3)
walk around while another person hangs or sits on chair, 4) sit, lie, hang or stand on
table, 5) grab object on table, 6) conversation with gestures, 7) throw or pass ball while
moving, 8) stand still and 9) move around. These are all complex activities that contain
actions, interactions and higher level activities that require recognition. This is coupled
with a multi-view approach and the occurrence of a cluttered scene. UMPM has been
used to explore tracking and action recognition that occurs in a scene that contains
numerous complex occlusions [239].

3.2.3. Activity
Carnegie Mellon University Multimodal Activity. The CMU Multimodal Activity
dataset, [73] Figure 40, commonly known as the CMU MMAC, aims to understand
recognition of complicated human daily actions. The dataset utilizes RGB video,
marker-based motion capture, audio, accelerometers and gyroscopes for the capture
of 5 differing cooking recipes by 43 subjects. 6 RGB camera viewpoints record the
scene with a variety of spatial and temporal resolutions, including a first person view
from a head-mounted camera. 63 markers are tracked using a Vicon motion capture
system of 12 cameras which provide the spatial ground truth for the body tracking.
The CMU MMAC database has been used to evaluate the temporal segmentation of
complex activities from a first person perspective [240], and the segmentation of joint
gestures for classification [241].

Cornell Activity Dataset 60. The CAD-60 dataset [65], Figure 41, provides 60 RGB-
D recordings of 4 subjects performing 12 activities across 5 different environments.
Participants were captured executing more natural actions, including rinsing mouth,
brushing teeth, wearing contact lens, talking on phone, drinking water, opening con-
tainer, chopping, stirring, talking on couch, relaxing on couch, writing on white-board,
and working on computer. The dataset is provided as a collection of RGB images,
depth maps and the corresponding 15-joint tracked skeletons. [66] first introduced the
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Figure 41: Example images for CAD60 dataset - Using whiteboard depth, RGB, skeleton

Figure 42: Example images for CAD120 dataset - taking medicine RGB, taking medicine depth, making
cereal

dataset to classify unstructured human activity by constructing a graph of sub-activities
that compound into the top level activities.

Cornell Activity Dataset 120. The CAD-120 set [65], Figure 42, focuses on the ex-
ecution of long daily activities, capturing high and low level actions. 4 participants
provide 120 sequences capturing 10 high level activities, which are each comprised of
a number of 10 potential sub-activities. The compound actions include making cereal,
taking medicine, stacking objects, unstacking objects, microwaving food, picking ob-
jects, cleaning objects, taking food, arranging objects, and having a meal. Gestures
are labeled as reaching, moving, pouring, eating, drinking, opening, placing, closing,
scrubbing and null.

Figure 43: Example images for LIRIS dataset - enter door RGB, exchange object RGB, exchange object
depth map
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Figure 44: Example images for MSR DA3D dataset - play guitar RGB, play guitar skeleton, lay down on
sofa RGB

LIRIS Human Activities. The LIRIS Human Activities dataset [104], Figure 43, pro-
vides RGB-D recordings of 21 subjects completing 10 behavioral classes; discussion,
giving an item, picking up or putting down, entering or leave room, unsuccessful at-
tempt to enter room, unlock room and enter, leaving an unattended bag, handshake,
typing on a keyboard, and talking on a telephone. The dataset attempts to be pur-
posefully difficult by introducing very little constraint in the execution of the behavior,
relying more on the semantics of the behavior. To introduce a more realistic repre-
sentation the use of different contexts and tools within an action class is provided, i.e.
different types of phone are used, and discussions can occur seated or standing. Two
different semi-independent sets are provided, the first represents the depth maps cap-
tured from a Kinect mounted on a joystick controlled robot, the other is a stationary
mounted RGB camcorder.

Microsoft Research Daily Activities 3D. Using the Kinect sensor, 10 subjects were
recorded performing 16 natural daily actions, [41], Figure 44; drink, eat, read book,
call cellphone, write on paper, use laptop, use vacuum cleaner, cheer up, sit still, toss
paper, play game, lie down on sofa, walk, play guitar, stand up, sit down. The actions
were recorded, were possible, in both standing and seated positions in a living room
environment. The majority of the action classes involve person-object interactions,
such as toss paper and write on paper, thus provide a more real-world set of obser-
vations for the purpose of HAR. As with the MSR Action3D dataset, the RGB and
depth map sequences are provided alongside the tracked 20-joint skeletons. No stan-
dard training/testing splits are provided either within the description paper [41] or the
web location [112]. MSR Daily Activities 3D has provided evaluation for numerous
methods in activity recognition via pose features, [29, 242, 243].

POETICON. The POETICON corpus [120] is a collection of scripted scenarios in
which two individuals perform a daily living task such as cleaning the kitchen. The
subjects are tracked using motion capture suits and recorded using 5 RGB camcorders.
Certain tools and objects within the environment were also identified using marker
based tracking. 4 pairs of actors learnt the associated script with 6 different high level
scenarios, performing each activity in 3 repetitions per pair. Wallraven and Schultze
[121] apply the dataset to identifying actions at differing levels of abstraction and gran-
ularity.
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Figure 45: Example images for TUM Kitchen dataset - RGB, skeleton, alternate view RGB

TUM Kitchen. The Technische Universität München (TUM) Kitchen dataset [128,
129], Figure 45, provides a daily living set that describes the preparation of a table set-
ting within a smart kitchen. The set makes use of video, marker-less skeletal tracking,
RFID tagged objects and magnetic sensors to provide detailed information on the hu-
man action in the kitchen. The subjects collect items from cupboards and use them to
set a place on the table. Actions were performed in one of two styles; natural or robotic,
in which subjects could only carry one object at a time. There are also recordings of
certain actions being repeatedly executed in order to train a classifier for recognition.
The TUM Kitchen is designed to facilitate the learning of action events are differing
levels of abstraction; recognizing not only the low level gestures and actions, but also
the overall tasks completed. The TUM Kitchen has often been used for recognition of
activities at various abstraction levels [129], and also for the detection, localization and
segmentation problem [244, 245].

4. Proposed dataset

In the following section we draw upon the findings from the survey to present our
own novel dataset for the recognition of complex conversational interactions between
two individuals. We outline the necessity for the production of the set, the structure of
the dataset and report on several previous publications that have utilized the dataset.

4.1. Requirement for the dataset

As can be seen from the previous sections, datasets that are able to capture hu-
man action using appearance based modalities, such as RGB videos, have developed
from representing non-realistic emphasized actions to considering more complex inter-
actions between individuals and their surrounding environment. The field has moved
from actions which are easily distinguishable in the visual domain, e.g. ‘waving’ and
‘jumping’, to those of interactions, although still recognizable, e.g. ‘hug’ and ‘kiss’
[23, 246]. Due to the availability of these datasets many methods have been produced
and evaluated for the purpose of action recognition and detection, including the use of
SIFT [247], temporal Harris corner features [248] or STIPs [89].

Meanwhile the depth based methodology which has risen to prominence over the
past decade has far fewer publicly available datasets which consider the problem of
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person-person interactions, with most considering either emphasized actions or inter-
actions. As such we believe that the publication of a dataset that represents highly
complex person-person interactions is timely. We have chosen to capture conversa-
tional interactions between two individuals using the Kinect depth sensor, posing the
challenge of recognizing subtle interaction classes.

The primitive action provided by many of the available datasets can be decomposed
into a series of definable gestures and atomic poses. However we argue that real-world
social interactions contain more complex and subtle class partitioning, being a product
of multiple actions, semantics and the interplay between those involved. We therefore
propose the problem of recognizing interactions in which the distinguishing features
are containing within the temporal dynamics of the total event, such as that of a verbal
interaction. We provide a dataset in which the interaction is labeled as a whole, rather
than describing the event based on the primitive gestures within the scene. By providing
such a dataset we hope to move the field towards the recognition of scenarios in which
the defining descriptors are highly complex and context specific.

4.2. Apparatus setup
In this work, we choose seven conversational action categories and use a two-

Kinect setup to capture 3D human pose during the interaction between two individuals.
The collection environment consisted of a cleared space within a boardroom (Figure
46); in order to keep the dataset complex, no effort was made to homogenize the envi-
ronment by use of any backdrops. Two Kinect sensors were located at opposite ends of
the room, approximately two meters away from a marker on which a subject would be
loosely located. Each person was recorded using a single Kinect Sensor at 30fps. The
Kinect was offset to the front right of the subject in order to avoid occlusion from the
opposing subject, which could occur if taking a frontal recording of the subject. Sub-
jects were placed approximately one meter apart but not limited in their movement.
Two PAL cameras (B cameras in Figure 46) were located to capture the full body of
a single participant, with a third camera (M in Figure 46) located to capture the en-
tire recording scene. These recordings are purely for the monitoring of the experiment
and synchronization, thus are not provided within the dataset published in [1]. Cam-
eras were also located to capture the face of each participant (F cameras in Figure 46),
these provide the RGB recordings used to generate the gaze estimation provided. The
recording devices were not located in the same place, and as such there is orientation
variance between the depth maps and the RGB recordings.

4.3. Action descriptions
Participants were required to complete 7 different conversational tasks, outlined

in Table 10. There was no time limitation on the execution of each task, and some
tasks took naturally longer than others. Several tasks were given revealed to the par-
ticipants before collection, to allow preparation; the actions that required preparation
were describing work, story telling, debate, discussion and jokes (4.4 and 4.4). If the
participants were given the problem or subjective question before the study then there
may have been a reduction in interaction between the individuals.

Each task was performed and then there was a small break while the participants
were reminded of the next task to carry out. The first task was to discuss an area of their
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Figure 46: Layout of the CONVERSE data capture environment. a) Plan view of the capture environment b)
Photo showing subjects within the cluttered environment.

current work. The second task was to prepare an interesting story to tell their partner,
such as a holiday experience. The third task was to jointly find the answer to a problem.
The fourth task was a debate, where the participants were asked to prepare arguments
from opposing view points on an issue we gave to them. In the fifth task they were
asked to discuss the issues surrounding a particular statement and come to agreement
whether they believe the statement is true or not. The participants were asked to reach
an agreement through discussion; hence, it is different to the debate task, which was
based on conflicting views. The sixth task was to answer a subjective question, and the
seventh task was to take it in turn telling jokes to one another.

4.4. Participants

16 subjects responded to a call for participants to take part in dataset collection
and provided their consent for the collection. Participants were then organized into 8
pairs to record the person-person interaction during the following series of conversa-
tional styles. Interested individuals were asked to prepare for tasks ‘Describing Work’,
‘Story Telling’, ‘Debate’ and ‘Joke’ in advance, while the topics for ‘Problem Solving’,
‘Discussion’ and ‘Subjective Question’ were provided during collection. Participants
were not subjected to time limitations or any execution styles.

4.5. Data provided

The main data in the collection is the skeletons extracted using the Microsoft Kinect
SDK, providing the 20 tracked joints and the confidence of the tracking at each frame
in the sequence. The raw depth and RGB recordings from the Kinect are also available
alongside the RGB recordings from the separate camcorder. We also provide facial
tracking features used for the tracking of gaze and facial dynamics which have been
used for feature fusion in [249]. Despite the benefit that audio provides to action clas-
sification [30, 250–252], the audio has been stripped from all recordings due to the
private natures of the conversations that occurred during the interactions. This allows
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Figure 47: Example recordings from each of the 7 action classes, sampled at 2 second intervals and omitting
the lower half of the body.
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Figure 48: Example recordings and skeleton poses from each of the 7 action classes, sampled at 2 second
intervals and omitting the lower half of the body.
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Table 10: Description of each of the tasks given to the participants to perform. The rightmost column
describes whether the participants were told about the task and asked to prepare before attending.

Task Name Description Prepared in advance

Describing Work Each participant describes their current work or project to
partner. The partner then repeats the description back, to con-
firm they had understood.

Yes

Story Telling Participant were asked to think of an interesting story they
could tell their partner.

Yes

Problem Solving Participants were given the problem “Do candles burn in
space and if so what shape and direction?”, and asked to think
of the solution of together.

No

Debate Participants prepared arguments for a given point of view, pro
or con, on the topic “Should University education be free?”,
and then debated this between them.

Yes

Discussion Participants were asked to jointly discuss issues surrounding
the statement “Social Networks have made the world a bet-
ter place”, and come to agreement whether they believe the
statement is true or not.

No

Subjective Question Participants responded to the subjective question “If you
could be any animal, what animal and why?”

No

Telling jokes Participants were asked to take it in turn telling three separate
jokes.

Yes

the conversations to be natural, providing a more realistic representation of the scenar-
ios than if each subject was given a script. Although this may be disappointing to those
wishing to carry out audio-visual feature fusion, we believe that CONVERSE provides
a more complex challenge to be solved when occluding the audio cues of conversation.

4.6. Results obtained on CONVERSE

To provide insight into the use of CONVERSE for interaction recognition we pro-
vide baseline results achieved using various state of the art methods for subject-specific
classification, with results reported in Tables 11 and 12. To achieve this level of accu-
racy we followed the methods outlined in [249]; utilizing pose, face and head ori-
entation features to provide a visual vocabulary of words and topics. Discriminative
classifiers, SVM and Random Forest (RF), were trained to classify each CONVERSE
task based on the discriminative power of the features. K-Nearest Neighbor (KNN) was
selected as a baseline classification technique for comparison. First a Gaussian Mix-
ture Model (GMM) was fitted to low level features (joint-joint/joint-plane distances
and joint velocity) in order to obtain a vocabulary of 740 visual words consisting of the
Gaussian components taken from 5 second clips, 370 words from facial features and
370 from pose features. Sequences were also sub-sampled into 20 second segments and
Latent Dirichlet Allocation performed to obtain the 25 visual topics that made up each
document. Both visual words and topics were used as temporal feature descriptors for
each class. All sequences from the CONVERSE set were utilized, with 10 fold cross
validation used to evaluate the performance. The RF classifier was produced using 100
trees with random sampling with replacement. The SVM was trained using a radial
basis function kernel on the same training set.

55



Table 11: Classification results using visual words (%).
Face&Pose

KNN RF SVM SVM-R
Describing Work 81.2 90.6 88.4 100.0
Story Telling 59.7 51.0 70.6 80.2
Problem Solving 41.4 12.8 35.1 80.7
Debate 55.3 51.6 67.7 91.8
Discussion 50.0 62.7 69.5 61.1
Subjective Question 30.8 5.2 35.8 91.7
Jokes 36.3 14.2 47.7 80.0

Average 50.7 41.2 59.3 89.1

It was found that visual topics provide a generalization of the classes which benefit
SVM and RF performance (Table 12), while KNN produced more accurate classifica-
tion on data at the visual words level (Table 11). The importance of each feature was
identified via novel use of particle swarm optimization (PSO) to generate a Ranked
Feature SVM (SVM-R) classifier, reducing the dimensionality of the feature space and
simultaneously performing optimal SVM model selection. The PSO method locates the
optimal hyper-parameters that are used to subsequently train the SVM-R classifier by
selecting towards correct identification of training samples, removal of redundant fea-
tures, and the selection of compact feature vectors. This method significantly improved
over the previous methods due to the selection of key partitioning features, increasing
the accuracy on both visual word and topic feature sets. SVM-R optimization achieved
89.1% and 87.3% accuracy for word and topic respective levels of generalization due to
its optimized feature set pruning. More detail regarding the use of the SVM-R classifier
can be found in [249, 253].

Although these accuracy rates are relatively high, the results have been obtained on
subject specific classification utilizing features extracted from long temporal segments
of the observation. The main challenge we propose with CONVERSE is for the role of
global recognition across multiple subjects for these complex interaction classes.

Table 12: Classification results using visual topics (%).
Face&Pose

KNN RF SVM SVM-R
Describing Work 63.5 91.7 76.4 100.0
Story Telling 35.1 73.2 68.3 80.2
Problem Solving 37.1 73.6 74.3 80.7
Debate 48.6 73.6 67.1 81.97
Discussion 38.4 78.7 63.5 61.11
Subjective Question 22.5 63.3 63.5 91.74
Jokes 27.5 70.3 66.3 80.0

Average 38.9 74.9 68.5 87.3
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5. Conclusion

This paper presents the current state of the art in regards to the datasets that are
available to the HAR community, highlighting the need for a dataset that presents sub-
tle interactions between two individuals. The field has progressed over the previous
decades, moving from the simplistic single action sequences towards a more natural
representation of daily actions and interactions. We also provide clear definitions re-
garding the level of abstraction within the observations that are commonly encountered
in the field, placing our proposed dataset within that of complex conversation interac-
tion rich activities. By using pose based techniques we have shown that the recognition
of top level action classes within the CONVERSE dataset is possible from using pose
estimation output obtained from the Kinect sensor, [75–77, 249]. We have utilized
current techniques, such as the Bag of Key Words, to describe the higher level event
in terms of the composition of lower level action primitives. The full dataset is made
publicly available for further research into the understanding of highly complex inter-
actions at [1].
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