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Abstract— An accurate, robust, and automatic registration
of overlapping range images is usually a pre-requisite step for
range image analysis and applications. While accurate depiction
of object geometry requires the increase of the resolutions of
images and thus, the amount of data to process, an efficient
processing of such data then usually becomes an issue. In this
paper, we first employ the efficient tensor analysis and k means
clustering methods to hierarchically segment and cluster the
original range images into a small number of planar patches
represented as the closest points in the original images to their
centroids. Then an advanced ICP variant is adopted to register
such closest points. Finally, another ICP variant is used to
refine the registration results obtained over all the points in the
images. The experimental results based on real range images
show that the proposed technique significantly outperforms the
selected two state of the art ones for accurate and efficient
registration of overlapping range images.

I. INTRODUCTION

The latest laser scanning technologies enable the acqui-
sition of both depth and intensity information about the
objects of interest in the form of range and/or intensity
images (Figure 1). Since the laser scanning systems (range
cameras) have a limited field of view, a number of images
have to be captured from different viewpoints so that a full
coverage of the object surface can be obtained. All these
images are depicted in local laser scanning system centred
coordinate frames. To construct a full model of the object
and/or fuse the geometrical and optical information in these
images, all these images usually have to be aligned into
a single global coordinate frame. This process is called
registration. Range image registration has two goals: one
is to establish correspondences between overlapping range
images, the other is to estimate the camera motion parameters
that bring one range image into the best possible alignment
with the other. Fixing either of these two goals renders
the other trivial. However, they are in practice interwoven,
complicating the range image registration process.

A. Previous work
Range image registration is a fundamental problem in nu-

merous applications of the latest laser scanning technologies
such as 3D object modelling and recognition. As a result, a

large number of automatic algorithms have been developed
in the literature. These algorithms can be classified into
three main categories with regard to the order between the
establishment of possible correspondence and the evaluation
of camera motion parameters: (1) feature extraction and
matching [5], [4]; (2) an optimal combination of points [3],
[2], and (3) camera motion search and its evaluation [10],
[13]. Different categories classified here are not exclusive
from each other. They can be either alternative or comple-
mentary [10], [12]. Each category has its own advantages
and disadvantages:

• The first class of algorithms can establish correspon-
dences between any two overlapping range images
subject to either small or large camera motions, while
the second and third classes of algorithms require that
the camera motion be either approximately known or
small;

• The first class of algorithms has to extract and match
geometrical and/or optical features from range images,
while the second and third classes of algorithms do not
need to extract and match any feature at all;

• While the extraction of features is often sensitive to
noise caused by point sampling on the object sur-
face, surface orientations, reflectance properties, and the
electronic and mechanical errors, the matching of the
extracted features is usually not straightforward due to
the fact that: (1) the similarity metric must be powerful
in distinguishing between different features; and (2)
since the features attached to a point in one image have
to match those attached to each candidate in another,
the established point matches could be entirely wrong.
The second class of algorithms heavily depends on both
optimization and explicit outlier modelling. In contrast,
while the third class of algorithms has an advantage of
finding the global optimal solution, it is usually time
consuming and difficult to determine the termination
conditions; and

• The second class method [10], [12] is usually employed
to refine the registration results of the first and third



class methods and thus, plays a more fundamental role
for accurate and efficient registration of overlapping
range images.

Fig. 1. Real range images used. From left column to right column
and first to second in every two rows: lobster80 and 60, duck80 and
60, frog100 and 80, tubby100 and 80, valve10 and 0, buddha20 and
0, cow42 and 39, bird20 and 60, bunny100 and 60, block1-1 and 2,
and curvblock1 and 2.

Consequently, automatic range image registration still re-
mains open and advanced algorithms need to be developed.

B. Our work

Currently, the manufacturing of laser scanners has a ten-
dency to increase their resolutions and fields of view so that
the accuracy for the representation of the geometry of the
object of interest can be increased. The increase of either
resolution or field of view implies that the data captured
increases usually quadratically. For example, while a Minolta
Vivid 700 range scanner has a resolution of 200 × 200 and
a field of view of about 40◦ and capture 40,000 points
in a single range image, a Leica HDS6000 scanner has a
resolution of as high as 1024 × 1024 and a field of view of
as large as 360◦ and capture as many as 1 million points.
The latter has 25 times as many points as the former. In this
case, computationally efficient approaches to process such a
huge amount of data are desperately needed to be developed.

The most effective way to efficiently process such range
images may be to reduce the number of points. If so, then
the remaining problem is how to select a subset of points
from the original range images. Various techniques have been
proposed in the literature such as uniform resampling [7],
random sampling [5], normal space sampling [12], and multi-
resolution [6]. These methods have a common shortcoming
that their performance is usually unstable due to uncertainty
in sampling and poor initialization and representation of the
geometry in the range images.

While the existing segmentation methods [1] mainly con-
cern the composition of range images and thus, are usually
computationally intensive, we in this paper propose to use
the efficient tensor analysis and k means clustering methods
to hierarchically segment and cluster the original images into
a small number of planar patches. Each patch is represented
as the closest point in the original image to its centroid. Since

ICP variants are guaranteed to establish high quality possible
correspondences [9], an advanced ICP variant (EvolICP) [8]
is then adopted to register these closest points. Due to the
complexity of hierarchical segmentation and clustering, the
registration results obtained are normally not very accurate
and need to be further refined. As such, the efficient ICP
variant-iterative closest reciprocal point (ICRP) [11] is finally
employed to refine the registration results obtained using all
the points in the original images.

To validate the performance of the proposed hierarchical
segmentation and clustering (HSC) algorithm for efficient
and accurate range image registration, the normal space
sampling (NSS) method [12] and the spin image extraction
and matching (SI) method [5], [4] were selected. All selected
algorithms have an advantage of easy implementation. The
NSS method samples the same number of points in the
normal space as that of the planar patches in the proposed
HSC algorithm and they then use the same procedures
to roughly align the given images and finally refine the
registration results obtained. The SI method extracts and
matches spin images from range images for possible cor-
respondences, resulting in the given images being roughly
aligned. For a fair comparison, its results are also refined
using the same ICRP algorithm as either the proposed HSC
or NSS method does. Such comparative study is valuable,
since the comparison can reveal which method provides
more reliable and accurate initial registration results for the
ICRP algorithm to refine: EvolICP based on hierarchical
segmentation and clustering generated points or randomly
sampled points in the normal space; or the feature extraction
and matching method. It appears that the efficient variant of
the ICP algorithm as proposed in [12] is a better candidate for
comparison. However, we experimentally found that it is too
sensitive to initial registration parameters to be selected for
comparison. The comparative study is based on real range
images (Figure 1) downloaded from a publicly accessible
range image database currently hosted by the Signal Analysis
and Machine Perception Laboratory at Ohio State University.
While the block range images were captured using the MSU
Technical Arts 100X range scanner with varied resolutions
from 119×193 to 225×216 and include objects with planar
surfaces, all others were captured using a Minolta Vivid 700
range camera with a fixed resolution of 200×200 pixels and
include objects with free form surfaces respectively.

The rest of this paper is structured as follows: while
Section II describes the novel HSC algorithm, Section III
presents the experimental results. Finally, Section IV draws
some conclusions.

II. HIERARCHICAL SEGMENTATION AND CLUSTERING
BASED REGISTRATION

In this section, we describe the novel HSC algorithm for
efficient and accurate registration of two given overlapping
range images, which are represented as point clouds: P={p1,
p2, · · ·, pn1} and P′={p′

1, p′
2, · · ·, p′

n2
}. Due to occlusion,

appearance and disappearance of points in either cloud, n1

is not necessarily equal to n2. The points with the same



Fig. 2. The registration results of the proposed HSC algorithm applied
to different images with the number α of patches represented as a
percentage of the number of total points in the original image taking
different values. Top three: lobster80-60; Bottom three: duck80-60.
Left column: α = 0.5%; Middle column: α = 1%; Right column:
α = 10%.

subscript do not mean that they are correspondences. The
following notations are used throughout this paper: capital
letters denote vectors or matrices, lower case letters denote
scalars, a ·b denotes the dot product between two vectors a
and b, and superscript T denotes the transpose of a vector
or a matrix.

Fig. 3. The registration results of the proposed HSC algorithm
applied to different images with each patch represented using different
methods. Left two: frog100-80; Right two: tubby100-80. Odd columns:
centroids; Even columns: closest points.

A. Tensor analysis

Given a set of points pi in 3D space, the tensor analysis
can be applied. The centroid p̄ of these points pi can be
computed as: p̄ = 1

n1

∑n1
i=1 pi and their covariance matrix

A can be computed as: A=
∑n1

i=1(pi − p̄)(pi − p̄)T .
Let the singular value decomposition of the

3 × 3 covariance matrix A be: A = UWUT =

(emax emid emin)

(
λmax 0 0

0 λmid 0
0 0 λmin

)(
eT

max

eT
mid

eT
min

)

where the diagonal elements of W are the eigenvalues
λmax, λmid and λmin of A and the columns of U are
the corresponding normalized eigenvectors "emax, "emid

and "emin. Since A is symmetric positive semi-definite, its
eigenvalues λmax, λmid and λmin are all non-negative.
These mutually perpendicular eigenvectors define the
three axis directions of a local coordinate frame with
origin at p̄. The eigenvalue λmin measures the deviation

of a set of points from a plane that passes through p̄
and is spanned by the two eigenvectors "emax and "emid

corresponding to the two largest eigenvalues λmax and
λmid. So Err = λmin/(λmax + λmid + λmin) is defined in
this paper to measure the extent to which a set of points is
coplanar. The smaller the error Err, the more likely the set
of points is coplanar. It is used in this paper as an indicator
whether a set of points needs to be split.

B. Hierarchical segmentation and clustering
Each cluster Ck is represented by four parameters: the

centroid cenk, the index array Indk, the main axis ek, and
Errk. cenk is the centroid of the cluster k. The array Indk

records the subscripts of all the points in the cluster: Indk =
{k1, k2, · · · , knk}. ek records the main axis ek,max of the
local coordinate system through the tensor analysis in the
last section.

At the beginning of segmentation, the error Err is usually
larger than a threshold ρ (0.001 in this paper) and the number
of points in the cluster is larger than 4. Then we select the
cluster Cm with the largest error Err and split this cluster
into two smaller clusters. To this end, the k means clustering
method is applied (k=2 in this case). To initialize the k means
clustering, (1) all the points in the cluster Cm that lie on the
left and right hand sides with respect to em from cenm are
selected: if (pmj − cenm) · em > 0, then point pmj lies on
the right hand side. Otherwise, it lies on the left hand side;
(2) the centroids cenm,1 and cenm,2 of the points on the
two hand sides are calculated respectively. Then the k means
clustering method is applied to split the cluster Cm into two
smaller clusters. When either the members in each cluster
do not change or the maximum number (10 in this paper) of
iterations has been reached, it terminates.

To save space, we always use one of the two new clusters
to replace the original one Cm. In this case, after each split,
the overall number of clusters is increased by one, rather
than two.

C. Outline of the HSC algorithm
The proposed hierarchical segmentation and clustering

based registration algorithm is summarised as follows:
1) Initialize the cluster representation using all the points

in each range image
2) Initialize the maximum numbers M1 and M2 of

patches to be segmented in the two images being
registered

3) Use the pure translational motion derived from the
centroid difference between the two overlapping range
images being registered to initialize the registration
parameters

4) For images P and P′, use the approaches described in
the previous two sections to do the iterative hierarchi-
cal segmentation and clustering respectively until ei-
ther the maximum number of patches has been reached
or the selected cluster cannot be further split, yield-
ing centroids ceni(i = 1, 2, · · · , N1) and cen′

j(j =
1, 2, · · · , N2), respectively.



5) Find the closest points qi and q′
j in P and P′ to ceni

and cen′
j respectively

6) Use the method in [8] to register points qi and q′
j

7) Use the ICRP algorithm in [11] to refine the registra-
tion results obtained over P and P′

In the experiments described below, the following values
were used: M1 = 0.1n1 and M2 = 0.1n2.

III. EXPERIMENTAL RESULTS

In this section, we report the experimental results for the
validation of performance of the proposed HSC algorithm
for accurate and efficient registration of overlapping range
images. The experimental results are presented in Figures 2
through 5 and Tables I through IV. RC denotes reciprocal
correspondence [11], [8]. The rotation angle of the camera
motion around an unknown axis for the images captured us-
ing the Minolta Vivid 700 range camera can be derived from
the image file name and thus, is one parameter of interest. In
the figures, yellow colour represents the transformed images
P, the green colour represents the reference images P′.

A. The number of planar patches
The numbers M1 and M2 of planar patches play a key role

for the representation of the original range images and are
determined by the geometries that the range images include.
Too small a number of patches can hardly retain the infor-
mation in the original range images and thus adversely affect
the registration results. Too large a number of patches will
not help reduce the computational cost of the range image
registration. In this section, we experimentally investigate
the effect of the number α of patches to be segmented
on the final registration results. The number α of patches
is represented as a percentage of the total points in the
original image and is varied from 0.5%, 1%, to 10%. Two
pairs of overlapping images, lobster80-60 and tubby80-60, as
illustrated in Figure 1, were selected for the experiments. The
experimental results are presented in Figure 2 and Table I.

Figure 2 and Table I show that when α = 0.5%, the
proposed HSC method failed to register the lobster80-60
images. When α = 1%, it inaccurately registered the duck80-
60 images, increasing the average registration error by as
much as 16.67%. The inaccurate registration results have
been manifested as the fact that the two lobster images
intersect in 3D space and the beaks of the duck in the two
duck images are clearly separate. Thus, in the rest of this
paper, we let α = 10%.

B. Patch representation
In this section, we investigate how to represent the seg-

mented patches so that more accurate registration results can
be obtained. To this end, two pairs of overlapping images,
frog100-80 and tubby100-80, as illustrated in Figure 1,
were used for the experiments. The experimental results are
presented in Figure 3 and Table II.

Figure 3 and Table II show that the representation of seg-
mented patches using the closest points in the original range
images yields slightly more accurate registration results than

using the centroids especially in the sense of the estimated
rotation angle of the camera motion. For example, while the
former produced an error of 0.45% in the estimation of the
rotation angle of the camera motion for the registration of the
tubby100-80 images, the latter produced an error of 3.08%.
Thus, in the rest of this paper, we will always use the closest
points for the representation of the segmented patches.

C. Performance refinement

In this section, we use experiments to show that it is
usually necessary to use the ICRP algorithm to refine the
registration results obtained by the initial HSC algorithm,
due to the complexity of hierarchical segmentation and
clustering. The block1-1-2 and curvblock1-2 images (Figure
1) were used for the experiments. The experimental results
are presented in Figure 4 and Table III.

Fig. 4. The registration results of the proposed HSC algorithm applied
to different images with and without refinement. Left two: block1-1-2;
Right two: curvblock1-2. Odd columns: No; Even columns: Yes.

From Figure 4 and Table III, it can be seen that even
though the partial HSC method produced good results in the
sense of the average registration error within just seconds,
there is still room for improvement. For example, the ICRP
algorithm decreased the average registration error of the HSC
algorithm from 0.037mm to 0.020mm for the registration of
the block1-1-2 images. Thus, in the rest of the paper, we will
always use the ICRP algorithm to refine the results obtained
from registering the hierarchical segmented and clustered
planar patches.

D. Comparative study

In this section, a comparative study is carried out based
on real range images. All the algorithms show similar
behaviour. Due to space limit, only 5 pairs of representative
images (Figure 1) were used for the experiments: valve10-0,
bunny80-60, cow42-39, bird20-60 and bunny100-60. These
images were subject to camera motions with rotation angles
as large as 40◦ around unknown axes and include free form
surfaces with varied geometries and cluttered background.
The experimental results are presented in Figure 5 and
Table IV.

From Figure 5 and Table IV, it can be seen that all the
three algorithms accurately registered both the valve10-0 and
bunny100-60 images with the estimated rotation angles of
the camera motions close to the expected ones. Even though
the NSS method also successfully registered the bird20-60
images, it failed to register either the buddha20-0 or the
cownum42-39 images. While the proposed HSC method
also accurately registered the buddha20-0, cow42-39, and



TABLE I
THE AVERAGE eµ AND STANDARD DEVIATION eδ OF REGISTRATION ERRORS IN MILLIMETRES BASED ON RCS, EXPECTED AND CALIBRATED

ROTATION ANGLES θ AND θ̂ IN DEGREES OF THE CAMERA MOTION, THE NUMBER N OF FINALLY ESTABLISHED RCS, AND REGISTRATION TIME t IN

SECONDS FOR THE PROPOSED HSC ALGORITHM APPLIED TO DIFFERENT RANGE IMAGES WITH THE NUMBER α OF PATCHES REPRESENTED AS A

PERCENTAGE OF THE NUMBER OF TOTAL POINTS IN THE ORIGINAL IMAGE TAKING DIFFERENT VALUES.

Image α eµ (mm) eδ (mm) θ (◦) θ̂ (◦) N t (sec.)
0.5 0.65 0.85 5.05 705 174

lobster80-60 1 0.41 0.33 20 18.69 4642 42
10 0.41 0.33 18.69 4636 26
0.5 0.30 0.18 18.84 6614 32

duck80-60 1 0.35 0.22 20 15.21 6391 35
10 0.30 0.17 19.06 6570 33

TABLE II
THE AVERAGE eµ AND STANDARD DEVIATION eδ OF REGISTRATION ERRORS IN MILLIMETRES BASED ON RCS, EXPECTED AND CALIBRATED

ROTATION ANGLES θ AND θ̂ IN DEGREES OF THE CAMERA MOTION, THE NUMBER N OF FINALLY ESTABLISHED RCS, AND REGISTRATION TIME t IN

SECONDS FOR THE PROPOSED HSC ALGORITHM APPLIED TO DIFFERENT RANGE IMAGES WITH PLANAR PATCHES REPRESENTED USING DIFFERENT

METHODS.

Image PatchRep. eµ (mm) eδ (mm) θ (◦) θ̂ (◦) N t (sec.)
frog100-80 Centroid 0.31 0.14 20 19.48 7139 14

ClosestPoint 0.31 0.14 19.52 7121 17
tubby100-80 Centroid 0.27 0.15 20 19.38 3129 6

ClosestPoint 0.26 0.16 20.09 3101 6

TABLE III
THE AVERAGE eµ AND STANDARD DEVIATION eδ OF REGISTRATION ERRORS IN MILLIMETRES BASED ON RCS, EXPECTED AND CALIBRATED

ROTATION ANGLES θ AND θ̂ IN DEGREES OF THE CAMERA MOTION, THE NUMBER N OF FINALLY ESTABLISHED RCS, AND REGISTRATION TIME t IN

SECONDS FOR THE PROPOSED HSC ALGORITHM APPLIED TO DIFFERENT RANGE IMAGES WITH AND WITHOUT REFINEMENT.

Image Refinement? eµ (mm) eδ (mm) θ̂ (◦) N t (sec.)
block1-1-2 No 0.037 0.019 51.21 7108 3

Yes 0.020 0.008 51.44 7591 78
Curvblock1-2 No 0.020 0.008 25.70 15087 8

Yes 0.015 0.006 25.43 15585 10

TABLE IV
THE AVERAGE eµ AND STANDARD DEVIATION eδ OF REGISTRATION ERRORS IN MILLIMETRES BASED ON RCS, EXPECTED AND ESTIMATED ROTATION

ANGLES θ AND θ̂ IN DEGREES OF THE CAMERA MOTION, THE NUMBER N OF FINALLY ESTABLISHED RCS, AND REGISTRATION TIME t IN SECONDS

FOR DIFFERENT ALGORITHMS APPLIED TO DIFFERENT RANGE IMAGES.

Image Algorithm eµ (mm) eδ (mm) θ (◦) θ̂ (◦) N t (sec.)
HSC 0.38 0.21 10.13 11058 19

valve10-0 NSS 0.38 0.21 10 10.13 11060 6
SI 0.38 0.21 10.12 11060 119

HSC 0.58 0.24 20.20 10729 32
buddha20-0 NSS 0.92 0.62 20 2.62 8185 14

SI 0.83 0.51 11.75 9282 176
HSC 0.71 0.39 29.91 2805 117

cow42-39 NSS 0.87 0.53 30 154.38 507 283
SI 1.05 0.81 43.14 996 240

HSC 0.30 0.16 40.31 2916 88
bird20-60 NSS 0.31 0.18 40 40.39 2883 67

SI 0.56 0.33 134.30 426 359
HSC 0.24 0.13 40.08 2879 10

bunny100-60 NSS 0.24 0.13 40 40.11 2893 17
SI 0.24 0.12 40.08 3583 35



Fig. 5. The registration results of different algorithms applied to
different images. Top row: HSC; Middle row: NSS; Bottom row: SI.
From left to right column: valve10-0, bunny80-60, cow42-39, bird20-
60 and bunny100-60.

bird20-60 images, the SI method failed to register all of
them. On average, the proposed HSC method reduced the
average registration error of the NSS and SI algorithms
by as much as 18.75% and 27.78% respectively, despite
the fact that all their results were refined using the ICRP
algorithm. This is because both the estimation of the normal
vector in the NSS method and the spin image extraction
in the SI method are sensitive to imaging noise, occlusion,
appearance and disappearance of points in either image and
both the normal space sampling in the NSS method and the
uniform sampling in the SI method are not always effective to
characterise the range images being registered. In contrast,
the proposed HSC algorithm is essentially a deterministic
two-phase scheme. The first phase is resistant to inaccurate
segmentation and clustering. For example, a limited number
of planar patches can hardly approximate the free form valve,
buddha, cow, bird, and bunny surfaces. In this case, an
advanced ICP variant is employed to register the closest
points in the original images to their centroids, yielding
reasonable registration results for the ICRP algorithm in the
second phase to refine.

The NSS method is the most computationally efficient.
This is because it usually converges pre-maturely, yielding
poor results. The SI method is the most computationally
expensive, since it has to match a sampled point of interest
in one image to any sampled point in another. The proposed
HSC algorithm makes a good tradeoff between registration
accuracy and computational efficiency and thus, performs
best on the whole.

IV. CONCLUSIONS

This paper proposes a novel algorithm for accurate and
efficient range image registration. The novelty lies in that
the intensively investigated hierarchical principal component
analysis and k-means clustering approaches in the pattern

recognition, data mining, and machine learning literature
have been synthetically integrated into the process of range
image registration for more efficient and accurate results.
To the best of our knowledge, this is the first time ever
that the hierarchical principal component analysis and k-
means clustering approaches have been directly employed
for such a purpose. Experimental results based on real range
images captured using two different range scanners show that
such integration is successful. Thus, it may open a novel
avenue for accurate and efficient range image registration.
Compared with the existing ones [5], [12], our algorithm
has the following two advantages: (1) it operates on the
given points themselves in the images without any feature
extraction and matching and thus is easier to implement; and
(2) it does not require a good initialization of registration
parameters and has a much larger range for convergence and
thus is more stable. The latter is in sharp contrast with the
efficient ICP variants [12]. Despite the fact that they have
an advantage of fast convergence, they require very good
initialization of registration parameters, which is usually not
available, as is the case for the experiments reported in this
paper. Otherwise, they might fail. Further research includes
investigating how the registration results in the first phase
can be further improved and the computational time in the
second phase can be further reduced.
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