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Chapter 1

An Applied Comparative Study on
Active Contour Models in
Mammographic Image Segmentation

Xianghua Xie
Department of Computer Science, University of Wales Swansea,
Faraday Tower, Singleton Park, Swansea SA2 8PP, UK.

Deformable contour models, also known as snakes, are commonly used in image processing and
computer vision due to their natural handling of shape variation and independence of operation (once
initialized), which make them highly appropriate to segment mass lesions in digital (or digitized) mam-
mographic images. The extracted shape and texture information through contour based segmentation
are useful in determining benignancy or malignancy. In this chapter, we thoroughly examine four edge
based active contour models in segmenting mass lesions in mammogram images. Two of them are widely
used, classic active contour models and the other two are most recent advances in active contouring.
Experiments are carried out on both synthetic and real world images to compare their segmentation
accuracy, as well as the ability in handling weak edges and difficult initializations.

1.1 Introduction

Breast cancer is one of the leading cause of cancer deaths in women and the risk of developing breast
cancer in life time for women is very high, from eight to twelve percent [60]. Early detection is ex-
tremely important, since breast cancer can be successfully treated [35, 60] if diagnosed in the early
stage. Mammography has been proved effective in examining abnormalities for early detection which is
the key to improve breast cancer prognosis. Hence great effort has been put into digital mammogram
analysis. Analyzing mammogram using computer vision has been widely reported in the literature,
e.g. [23, 38, 41].

More often than not, the mammogram images are preprocessed using skin-line segmentation to isolate
the breast region, e.g. [13,50,60]. In [60], fast marching method was used to delineate the breast region.
Rule based fuzzy reasoning was used in [50] and in [13] active contour model was used to extract the
skin line. Extracted regions of interests may also be further preprocessed, such as feature enhancement.
Then various post processing tasks will be carried out. In [36], the authors provided a brief overview
of image processing techniques applied to mammogram image analysis.

Segmenting mass lesions is a critical step in automatic or computed aided detecting abnormalities
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Figure 1.1: Example mass lesions in mammogram images.

and diagnosis. Masses are space occupying lesions, characterized by their shape, margin and density. A
benign neoplasm is smoothly marginated, while a malignancy often has an indistinct border with low
contrast which appears more spiculated over time [29]. Some example mass lesions are shown in Fig. 1.1.
Potential lesion sites can be automatically or semi-automatically detected and located, e.g. [23]. These
regions will be closely examined. Thus lesion segmentation is useful to delineate them from surrounding
tissues. Various techniques have been developed to carry out this task. In [23], the authors used shape
prior based radial gradient index and intensity profile to segment mass lesions. Simple intensity priors
are used to segment lesions [5, 52]. Texture features derived from Wavelet transform, Laws filtering
and Gaussian derivative filtering to detect tumor tissues in mammogram. Markov random filed has
also been used to model the lesion regions [12, 17, 27, 44]. In [15], an improved region growing method
which takes into account the uncertainty present around the boundary of tumor was used to segment
mass lesions. Other techniques used in mammogram image segmentation include unsupervised learning
using SOM [24], fuzzy sets [40], morphological process [18], watershed segmentation [41], and active
contouring [38, 52].

Active contour models, also known as snakes, are commonly used in image processing and computer
vision due to their natural handling of shape variation and independence of operation (once initialized),
which make them highly appropriate to segment mass lesions in digital (or digitized) mammographic
images. Examples works can be found in [52] where a geometric snake was used and in [38] where active
contour model energy functional was minimized using genetic algorithms (GA). In this chapter, we
thoroughly examine four edge based active contour models in segmenting mass lesions in mammogram
images. Two of them are widely used, classic active contour models and the other two are most recent
advances in active contouring. Experiments are carried out on both synthetic and real world images
to compare their segmentation accuracy, as well as the ability in handling weak edges and difficult
initializations.

The rest of the chapter is organized as follows. In Section 1.2, we discuss important aspects in
designing an active contour model. Section 1.3 provides an overview of geometric active contour model
and the level set method. In Section 1.4, we provide detailed reviews of the four edge based active
contour studied in the chapter. Implementation details and numerical solutions are presented in Section
1.5. Experimental results and comparative studies are given in Section 1.6, followed by discussions on
parameter settings and computational complexity in Section 1.7. Concluding remarks are given in
Section 1.8.

1.2 Active Contour Design

Active contour or snake based methods have been widely used for shape recovery due to their natural
handling of shape variation, e.g. [7, 33, 56]. Their design normally involves the consideration of the
following three fundamental issues: contour representation and its numerical solution, object boundary
description and stopping function design, and initialization and convergence.
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1.2.1 Contour representation and numerical method

Contour representation involves the decision whether to use a parametric or implicit representation.
Parametric active contours are usually represented as polynomials or splines, e.g. [4, 21], and interpo-
lated using landmarks. They suffer from topological issues as it is difficult to determine the evolution of
the contour crossing points and its reparameterization after every topological change, hence, predefined
topology adaptations are usually necessary, e.g. [10]. The selection of landmarks is also non-trivial and
critically influences shape description. Implicit representations, on the other hand, do not explicitly
interpolate the contours. Instead, they embed the contour into another function, which is then tempo-
rally adapted to affect snake deformations. The Level Set method [43] is the most widely used technique
to implicitly represent active contours that handle topological changes. The snake is embedded in the
zero level set and its temporal evolution is achieved by deforming the entire level set function. It
can naturally model contour propagation and topological changes, however, it is generally slower than
parametric methods as the deformation of a higher dimensional function is necessary. Very recently
Morse et al. [30] proposed to implicitly represent active contours using radial basis functions (RBFs)
by placing RBFs at snake landmarks. This then avoids manipulating a higher dimensional function,
however, it requires dynamic insertion and deletion of landmarks. Similar to parametric representation,
the resolution of the landmarks can affect the accuracy of contour representation.

While choosing a representation scheme, one also needs to select appropriate numerical methods to
solve the contour evolution equation. The Finite Element Method [11] is the common technique used
in parametric snake models, while the Finite Difference Method [43] is mostly used in implicit snake
models to numerically solve the partial differential equations (PDEs). Alternative approaches do exist,
amongst them [20] which adopted the stochastic dynamics of interface propagation into the level set
framework.

1.2.2 Object boundary description and stopping function design

These functions determine where the contours are expected to be attracted to and be stabilized at.
Boundary description using the image gradient is the most commonly used technique e.g. [7,26,34,45,56],
which assumes object separation by way of intensity discontinuities. This often results in broken edges
and weak boundaries due to the lack of global information. Techniques such as anisotropic smoothing
[47] can be used to enhance and refine the boundaries.

On the other hand, region-based techniques such as [9, 33, 46, 48, 61], generally use more global
information to define object boundaries. Zhu and Yuille [61] proposed a region competition approach
by performing statistical tests while growing multiple regions independently and using a minimum
description length (MDL) criteria to minimize the overlapping of the growing regions competing for
neighboring pixels. In [33], Paragios and Deriche used a bank of isotropic Gaussian filters, LoG filters,
and Gabor filters to extract textural features modeled using a mixture of Gaussians. Their region-based
snake segmentation then was based on the maximization of a posteriori probabilities. Wang and Vemuri
[49] proposed an active contour model based on tensor field segmentation using a piecewise constant
region model. These techniques are generally application dependent, need some prior knowledge of the
objects of interests, and like other region segmentation methods are liable to over-segment or under-
segment the object.

There have also been attempts to bridge boundary and region-based techniques, e.g. [8, 16, 49, 53].
For example, Chakraborty et al. [8] integrated region segmentation and gradient based boundary in-
formation in a Bayesian framework, while Xie and Mirmehdi [53] used diffused region forces to prevent
the snake from leaking through weak edges. One of the main challenges for integrated approaches is
that the region and boundary information may not locally correspond.
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Stationary Point:Saddle Point:

Figure 1.2: The four-disc problem - from left: An image contains four discs, the GGVF vector map,
enlarged saddle point (red square) and stationary point (green square).

1.2.3 Initialisation and convergence

As snakes generally provide locally minimized solutions, it is a great challenge to achieve initializa-
tion invariancy and robust convergence, particularly for boundary based methods. The problem is
compounded when the snake has to deal with complex topologies and concave shapes.

Methods that rely directly on the boundary gradient inevitably have very limited capture range and
are not able to reach deeper concavities. Using the distance transform to obtain a distance vector flow
(DVF) was one attempt to enlarge the capture range [11], but this still has difficulties with concave
shapes. Caselles et al. [7] introduced the constant flow into the geometric active contour model to
speed up its convergence and to pull or push the active contour towards object boundaries. However,
this only monotonically expands or shrinks the contour. The weighted area functional addition to the
geodesic snake by Siddiqi et al. [45] also did not provide a satisfactory solution to convergence on weak
edges [58]. Xu and Prince [56, 57] iteratively diffused the edge gradient vector to significantly enlarge
the capture range and increase the ability to reach concavities. Their snake was initialized across the
object boundary due to the bidirectional nature of the vector field, where vectors point towards the
object boundary from both sides. This can prevent the snake from leaking through small boundary
holes or weak edges, but only to some degree. Also, bidirectionality can cause their contours to collapse
on approach to the same object boundary. More importantly, Xu and Prince’s GVF/GGVF active
contours fail to evolve at saddle points, i.e. when the contour is tangent to the force vector. This can be
demonstrated using the four-disc problem in Fig. 1.2 where there are four saddle points (indicated in
dark red) and five stationary points (in light green) in the GGVF vector map (final results in Fig. 1.8).
These critical points are commonly found in real images when using GVF/GGVF force fields, greatly
restraining their application to real world problems.

There have been several attempts to solve the convergence issue. Paragios et al. [34] added the
constant flow to the GVF model which pushes the active contour when it is close to tangent to the
underlying vector. This however can not deal with stationary points, e.g. the center of the image in the
four-disc problem in Fig. 1.2. Li et al. [26] suggested the active contour be split along stationary and
saddle points but this strategy is inappropriate when the active contour is initialized inside or crosses
the object boundary. Gil and Radeva [14] proposed the curvature vector flow (CVF), derived from
a curvature dependent distance transform, to push the contour into concavities. Their method only
reduces the number of stationary or saddle points and can not completely eliminate them. Moreover, it
requires there be no gaps in the object boundary. Very recently, Li and Acton [25] proposed convolving
the image edge map with a vector field kernel, which comprises radial symmetric vectors pointing
towards the center of the kernel. This is equivalent to assigning an attraction force for each pixel
position, based on which the snake is evolved. The authors have shown better initialization and noise
insensitivity. However, it is still a stationary vector field which will suffer from the convergence issues
discussed above.

Combined optimization techniques have also been used to improve initialization invariancy and con-
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vergence ability. Boykov and Kolmogorov [3] considered the segmentation problem as finding geodesics,
similar to [7], but using graph cuts to find the global minimum. This exhibits less sensitivity to ini-
tialization, but graph cuts tend to choose shorter cuts which may result in inaccurate segmentation.
Similar ideas have been explored by others, e.g. see [2].

Recently, Jalba et al. [19] proposed a charged particle model (CPM) based on electrostatics. The
particles are attracted towards object boundaries due to the potential forces while being repelled by
each other. The authors demonstrated that the particles could be initialized randomly across the image
and did not suffer from convergence issues related to GVF/GGVF as particles once attracted to the
boundaries would move along the boundary under the influence of the repulsive force. However, as shown
in [59], particles on weak edges will be attracted to nearby strong edges resulting in broken contours.
The method also frequently involves particle insertion and deletion, and is computationally expensive.
Yang et al. [59] migrated this particle model to a contour model by using similar, but conditionally
imposed, attraction and repellant forces. Their model showed improvements on the original CPM, the
geodesic, and the GVF snakes.

In [54], Xie and Mirmehdi proposed a snake external force field based on magnetostatics. The authors
hypothesized magnetic interactions between the active contours and the object boundaries, resulting in
a magnetic field that can push the contours to object boundaries. A simplified snake model was applied
to synthetic boundaries to illustrate the convergence ability of the model. The authors later extended
the work in [55], which is reviewed in depth later in Section 1.4.

1.2.4 Some remarks

The three issues discussed above are not always independent of each other. An appropriate snake
representation ensures the snake handles the deformations properly, however, representation schemes
that support topological changes do not necessarily always achieve the desired contour evolutions.
Better boundary description can improve convergence ability by preventing the contour from leaking
through and good convergence ability is paramount to not compromise any gains from carefully chosen
contour representation and boundary extraction. On the other hand, good convergence properties
can compensate certain inadequacies in boundary description, e.g. bidirectional forces can stabilize
contours at weak edges. In [55], the authors showed that using a novel contour evolution force can
achieve significant improvement in initialization invariancy and convergence ability, even when using
very simple boundary descriptions directly based on the image gradient.

1.3 Geometric Active contour and Level Set

In this section, we review the geometric active contour model and the level set method. Readers who
are familiar with these topics can proceed to Section 1.4. However, this section serves as the foundation
for the methods described in this chapter.

1.3.1 Geometric active contour

Geometric active contours were introduced by Caselles et al. [6] and Malladi et al. [28] and are based
on the theory of curve evolution. Using a reaction-diffusion model from mathematical physics, a planar
contour is evolved with a velocity vector in the direction normal to the curve. The velocity contains
two terms: a constant (hyperbolic) motion term that leads to the formation of shocks, a discontinuity
in orientation of the boundary of a shape and it can also be thought of as a zero-order continuity, from
which more varied and precise representations of shapes can be derived, and a (parabolic) curvature
term that smoothes the front, showing up significant features and shortening the curve.

Let C(x, t) be a 2D active contour. The Euclidean curve shortening flow is given by

Ct = κN̂ (1.1)
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Figure 1.3: Motion under curvature flow: A simple closed curve will (become smoother and) disappear
in a circular shape no matter how twisted it is.

where t denotes the time, κ is the Euclidean curvature, and N̂ is the unit inward normal of the contour.
This formulation has many useful properties. For example, it provides the fastest way to reduce the
Euclidean curve length in the normal direction of the gradient of the curve. Another property is that
it smoothes the evolving curve (see Figure 1.3).

In [7,22], the authors unified curve evolution approaches with classical energy minimization methods.
The key insight was to multiply the Euclidean arc-length by a function tailored to the feature of interest
in the image.

Let I : [0, a] × [0, b] → �+ be an input image in which the task of extracting an object contour is
considered. The Euclidean length of a curve C is given by

L :=
∮

|C′(q)|dq =
∮

ds (1.2)

where ds is the Euclidean arc-length. The standard Euclidean metric ds2 = dx2 +dy2 of the underlying
space over which the evolution takes place is modified to a conformal metric given by

ds2
g = g(|∇I(C(q))|)2(dx2 + dy2) (1.3)

where g(.) represents a monotonically decreasing function such that g(x) → 0 as x → ∞, and g(x) → 1
as x → 0. A typical function for g(x) can be:

g(x) =
1

1 + x
(1.4)

Using this metric, a new length definition in Riemannian space is given by

L� :=
∫ 1

0

g(|∇I(C(q))|)|C′(q)|dq. (1.5)

Then the minimum path between two point in this metric is no longer necessary to be a straight
line, which is the case in the standard Euclidean metric. The minimum path is now affected by the
weighting function g(.). Two distant points in the standard Euclidean metric can be considered to be
very close to each other in this metric if there exists a route along which values of g(.) are nearer to
zero. The steady state of the active contour is achieved by searching for the minimum length curve in
the modified Euclidean metric:

min

∫ 1

0

g(|∇I(C(q))|)|C′(q)|dq (1.6)

Caselles et al. [7] have shown that this steady state is achieved by determining how each point in the
active contour should move along the normal direction in order to decrease the length. The Euler-
Lagrange of (1.6) gives the right-hand side of (1.7), i.e the desired steady state:

Ct = g(|∇I|)κN̂ − (∇g(|∇I|) · N̂ )N̂ (1.7)
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Figure 1.4: Motion under constant flow: it causes a smooth curve to evolve to a singular one.

Two forces are represented by (1.7). The first is the curvature term multiplied by the weighting
function g(.) and moves the curve towards object boundaries constrained by the curvature flow that
ensure regularity during propagation. In application to shape modeling, the weighting factor could be
an edge indication function that has larger values in homogeneous regions and very small values on the
edges. Since (1.7) is slow, Caselles et al. [7] added a constant inflation term to speed up the convergence.
The constant flow is given by Ct = N̂ showing each point on the contour moves in the direction of its
normal and on its own can cause a smooth curve to evolve to a singular one (see Figure 1.4). However,
integrating it into the geometric snake model lets the curvature flow (1.1) remain regular:

Ct = g(|∇I|)(κ + c)N̂ − (∇g(|∇I|) · N̂ )N̂ (1.8)

where c is a real constant making the contour shrink or expand to the object boundaries at a constant
speed in the normal direction.

The second term of (1.7) or (1.8) depends on the gradient of the conformal factor and acts like a
doublet, which attracts the active contour further to the feature of interest since the vectors of −∇g
point towards the valley of g(.), the middle of the boundaries. This −∇g increases the attraction of
the active contour towards the boundaries. For an ideal edge, g(.) tends to zero. Thus, it tries to force
the curve to stop at the edge, but the convergence quality still highly depends on this stopping term.
If g(.) is not small enough along edges, there will be an underlying constant force caused by c.

1.3.2 Level Set Method

Level sets describe a moving front in an implicit function and are the basis for the numerical algorithm
for curve evolution according to functions of curvature, introduced by Osher and Sethian [32,43]. In the
application to active contours, the evolving contour is embedded into a higher dimensional surface as a
zero level set. The entire surface, the level sets, is an implicit representation of the embedded contour.
As shown in Figure 1.5, the snake is initially built in a three dimensional surface, which later evolves
according to underlying forces. Finally, the converged snake is extracted from the level sets by cutting
it at zero height.

Let C be a level set of a function of φ : [0, a] × [0, b] → �. That is, C is embedded into the zero
level set with φ an implicit representation of the curve C. This representation is parameter free and
intrinsic. Given a planar curve that evolves according to Ct = FN̂ for a given function F, then the
embedding function should deform according to φt = F|∇φ|, where F is computed on the level sets.
By embedding the evolution of C in that of φ, topological changes of C are handled automatically and,
accuracy and stability are achieved using numerically stable computations.

The internal curvature and the advecation force, the first term in (1.8), can be easily transferred to
a level set representation: {

Ct = g(|∇I|)κN̂ → φt = g(|∇I|)κ|∇φ|
Ct = g(|∇I|)cN̂ → φt = g(|∇I|)c|∇φ| (1.9)
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Figure 1.5: Level sets evolution for an embedded snake - top row: initial snake on test image, evolving
contour, and final converged snake - bottom row: Corresponding evolving level sets. The snake is
tracked at zero height.

The other external forces in (1.8) are static vector fields derived from image data which do not change
as the active contour deforms. Static force fields are defined on the spatial positions rather than the
active contour itself. Since N̂ is the inward normal, the level set representation of the inward unit
normal is given by

N̂ = − ∇φ

|∇φ| (1.10)

Then, we have

F · N̂ = − 1
|∇φ| (F · ∇φ) (1.11)

Combining (1.9) with (1.11), the level set representation of (1.8) is given by:

φt = g(|∇I|)(κ + c)|∇φ| + ∇g(|∇I|) · ∇φ (1.12)

where g(.) is the stopping function as before. The expression for the curvature of the zero level set
assigned to the interface itself is given by

κ = ∇ ·
( ∇φ

|∇φ|
)

=
φxxφ2

y − 2φyφxφxy + φyyφ2
x

(φ2
x + φ2

y)3/2
(1.13)

1.4 Edge Based Active Contour Models

Here we review four edge based deformable models which we shall later apply to for comparison in
mammogram image segmentation. All the models come with certain advantages and disadvantages. In
what follows, f is the gradient magnitude of image I, x is a pixel position, N̂ is the unit inward normal
of the evolving contour, and κ denotes the curvature.

1.4.1 Geodesic snake

This model has been detailed in the previous section. To briefly summarize, the image dependent
constant flow can be formulated as Ct = g(x)N̂ . This shows each point on the contour moving in
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the direction of its normal at a speed proportional to g(x). It monotonically shrinks or expands the
contour towards the object boundary and plays an important role in both the geodesic snake model
introduced by Caselles et al. [7], and in later incremental improvements, such as [45]. The geodesic
snake formulation is given in (1.8) and its level set representation takes this form:

Φt = g(x)∇ ·
( ∇Φ
|∇Φ|

)
|∇Φ| + cg(x)|∇Φ| + ∇g(x) · ∇Φ. (1.14)

1.4.2 Generalised gradient vector flow (GGVF) snake

The parametric GVF [57] and its generalized version GGVF [56] introduced by Xu and Prince have
been widely used in active contour models as external forces, e.g. [39]. The GGVF field, ṽ(x), is defined
as the equilibrium solution of the partial derivatives of:

vt(x) = p(|∇f(x)|)∆v(x) − q(|∇f(x)|)(v −∇f(x)), (1.15)

where the initial vector field v(x, t = 0) = ∇f(x), and p(.) and q(.) are monotonically non-increasing
and non-decreasing functions respectively, controlling the amount of diffusion. These two functions are
selected such that p(.) gets smaller as q(.) becomes larger with the desired result that in the proximity
of large gradients, there will be very little smoothing and the vector field will be nearly equal to ∇f(x),
i.e. p(|∇f(x)|) = e−

|∇f(x)|
K and q(|∇f(x)|) = 1 − p(|∇f(x)|), where K is a constant and acts as

a trade-off between field smoothness and gradient conformity. The GGVF active contour can then be
defined as:

Ct = αg(x)κN̂ + (1 − α)(ṽ(x) · N̂ )N̂ . (1.16)

Its level set representation then takes this form:

Φt = αg(x)∇ ·
( ∇Φ
|∇Φ|

)
|∇Φ| − (1 − α)ṽ(x) · ∇Φ. (1.17)

1.4.3 Geodesic GVF/GGVF (GeoGVF/GeoGGVF) snake

In [34], Paragios et al. integrated the GVF with the geodesic active contour model, referred to here
as GeoGVF. The GVF provides the bidirectional force to drive the contours towards edges, while the
constant flow from the geodesic model poses conditional inflation or deflation forces on the contour.
The two forces are mutually exclusive [34]:

Ct = g(x)
(
ακ + H(x) + (1 − |H(x)|)ṽ(x) · N̂

)
N̂ , (1.18)

where the weighting function H(x) is:

H(x) = sign(ṽ(x) · N̂ )e−δ|ṽ(x)·N̂ |, (1.19)

and δ is a scaling factor. Its level set representation takes this form:

Φt = αg(x)∇ ·
( ∇Φ
|∇Φ|

)
|∇Φ| + g(x)H(x)|∇Φ| − g(x)(1 − |H(x)|)ṽ · ∇Φ. (1.20)

The additional adaptive bidirectional constant force is designed to determine the curve propagation
when the GVF term becomes inactive, e.g. at saddle points. GGVF generally outperforms GVF [56],
and as such we implement this method with GGVF instead of GVF. We shall refer to it as GeoGGVF.
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1.4.4 MAC Model

The MAC model [55] is one of the most recent advances in edge based active contouring. It has shown
significant improvements over other edge based models and comparable performances against more
sophisticated region based methods. Next, we present the MAC model in detail.

As demonstrated in [14,26,56–58], bidirectionality is a very useful feature for an external force field as
it facilitates more arbitrary, cross boundary initialization and improves the snake’s performance towards
weak edges and broken boundaries. However, the vector force fields in all these works are stationary.
This means almost inevitably, there exist critical points, such as saddle points, that prevent the snake
from continued propagation towards object boundaries.

Combining multiple force fields each with its different influences on a contour’s evolution is a common
way to improve snake evolution, e.g. [34, 59]. In both of these works, an external force field is pre-
computed as the basis for manipulating snakes, i.e. the GVF in [34] and the attraction force field
in [59]. These force fields are stationary and independent of the snake evolution. Later, as their snake
deforms, these force fields are modified according to the snake’s position. In the case of [34] a weighted
balloon force, borrowed from the geodesic snake, is used to influence the contour deformation. However,
the direction of the balloon force at each contour position is merely a projection of the GVF vector on to
the snake normal. This combination can not sufficiently resolve the problems related to the vector field
itself. In [59], an image dependent competition force exerted by the snake itself as it moves is combined
with the stationary attraction force to obtain a dynamic force field. However, the balance between the
attraction force and the competition force in this technique is critical for successful convergence and
sometimes requires careful tuning.

In the MAC model, a novel approach is taken to define a single external bidirectional force field
which has the ability to dynamically update itself while the contour evolves. This is significantly
different from other works and it does not involve the introduction of any extra forces to mobilize the
force field. In brief, it is hypothesized that electric currents flowing through both the object boundary
and the active contour. The magnetic fields generated by each of the currents will interact and cause
a force between them. This magnetic vector field behaves as an external force to push or pull the
contour towards the object boundary. Although the magnetic field caused by the image gradient is
stationary, the force it imposes on the snake is dependent on the snake’s evolution. Thus the force field
is dynamically changing along with the snake. We show that by using this electromagnetic interaction
analogy the snake is then much less sensitive to its initial position and much more robust towards
complex geometries and topologies. Next, we present the basic theory of magnetostatics which is used
to provide the analogy for MAC. The Level Set method is then used to implicitly represent and evolve
MAC.

The magnetostatic field

Consider two points P and Q with charges, qP and qQ, and velocity vectors uP and uQ respectively.
The magnetostatic force exerted upon qP due to qQ is [51]:

FQP = qPuP × BP ,

BP = µ0qQuQ × R̂QP

4πR2
QP

,
(1.21)

where BP is known as the magnetic flux density at point P due to the point charge at Q, µ0 is the
permeability constant, RQP is the distance between the two charges, R̂QP is their unit distance vector,
and × denotes the cross product. The magnetic field H is then defined as H = µ−1

0 BP . It is clear
that qu can be viewed as an elementary current introduced by a moving charge. In order to obtain the
magnetic field introduced by a current, we consider infinitesimal current segments dlP and dlQ at P
and Q on loops C1 and C2 with electric currents I1 and I2 respectively (see Fig. 1.6). The total force
on dlP due to current I2 is then:

dFP = I1dlP × BP , (1.22)
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Figure 1.6: Magnetic force between two currents - see text for details.

where BP is re-written as:

BP ≡ µ0

4π
I2

∮
C2

dlQ × R̂QP

R2
QP

, (1.23)

commonly known as the Biôt-Savart Law. It defines how the magnetic flux density is obtained from a
given current. In Fig. 1.6, the red ‘+’ symbols denote the magnetic field going perpendicularly into the
image plane and the blue ‘·’ symbols denote the magnetic field coming out of the image plane. These
symbols represent the overall magnetic field due to current I2. The magnetic force dFP at position P
on C1 is in its outward normal direction. Next, we make an analogy of these principles in our active
contour model.

The Basic MAC model

Instead of assigning fixed charges as in the CPM model [19], we allow the charges flow through the
edges. These flows of charges will then generate a magnetic field. The active contour, carrying similar
flow of charges, will be attracted towards the edges under this magnetic influence. Magnetostatic theory
described earlier is now applied to our active contour model by charging both the object boundary and
the active contour with electric currents. The concept is represented again in Fig. 1.6 by treating C1 as
an active contour and C2 as an object boundary. As we are interested in the deformation of the contours,
only the forces exerted by the object boundary on the active contour are needed. In other words, we
shall ignore magnetic forces introduced by the active contour. We then obtain an estimation of the
hypothesized direction of the currents in the object boundary and the active contour, and compute the
resulting magnetic flux density at each pixel position in the image using (1.23). Based on this field the
active contour drives towards the object boundary according to (1.22).

Without losing generality, let us consider the image plane as a 2D plane in a 3D space whose origin
coincides with the origin of the image coordinates. Additionally, the third dimension of this 3D space
is considered perpendicular to the image plane.

The direction of current for the object boundary can be computed using boundary orientation esti-
mation. Let Ix(x) and Iy(y) be the partial derivatives in x and y for image I. This gradient vector field,
(Ix(x), Iy(y)), contains vectors that are locally perpendicular to edges. Thus, the boundary orientation,
O(x), can be conveniently obtained by a 90◦ rotation in the image plane of the normalized gradient
vectors (Îx(x), Îy(x)):

O(x) = (−1)λ(−Îy(x), Îx(x), 0), (1.24)

where λ = 1 gives an anti-clockwise rotation in the image coordinates, and λ = 2 provides a clockwise
rotation. This is then assigned as orientation of current in the object boundary.

In a similar fashion, the direction of current, denoted as Υ, for the active contour is given based
on the estimation of the contour orientation. However, as we are using a level set representation, the
contour is already embedded in a 3D surface Φ, obtained from the signed distance transform on the
contour. No extra preparation is therefore necessary other than similarly rotating the gradient vector
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∇Φ of the level set function either in a clockwise or anti-clockwise direction. Similar to O, Υ is also
three dimensional and lies in the image domain, i.e. Υ(x) = (−Φ̂y(x), Φ̂x(x), 0). As a result, these
rotated vectors with hypothesized electric currents will interact with each other according to (1.22) and
(1.23) as illustrated in Fig. 1.6. The rotated gradient vectors given in (1.24) attract nearby contour
segments that have the same current direction and repulse those that have the opposite. This means a
value of 1 or 2 for λ results in opposing contour propagation.

Next, we can work out the magnetic flux density B(x) at each pixel position x due to the electric
current applied to the object boundary. Note only pixels on the object boundary will contribute to the
magnetic field. Let S denote the set containing all the boundary pixels and s denote a boundary pixel.
So, given current If(s), the magnetic flux density is computed as:

B(x) =
µ0

4π

∑
s∈S,s �=x

If(s)Γ(s) × R̂xs

R2
xs

, (1.25)

where Γ(s) is the electric current vector at s and proportional to the edge strength, that is, Γ(s) = f(s)O,
R̂xs is the 3D unit vector from x to s, and Rxs is the distance between them. Then, given the current
IC applied to the active contour C, its force field due to the magnetic field is:

F(c) = ICΥ(c) × B(c), (1.26)

where Υ(c) denotes the electric current vector on the active contour position c and is the rotated unit
vector from ∇Φ. Note F(c) is always perpendicular to Υ(c), i.e. the force is always imposed in the
contour normal inward or outward direction. Thus, the propagating contour will not suffer from saddle
and stationary point issues, e.g. it will deal successfully with the four-disc problem. As the snake is
embedded in the level set function and no longer considered as an explicit function, we also need to
extend the forces imposed on the snake itself across the image domain in order to deform the level set
function. This can be achieved using a force extension method such as [1], however, in this study we can
simply treat each level set in Φ as a snake and compute its forces using (1.26). Thus, F(c) is extended
to F(x), that is, across the image.

Note from (1.25) and (1.26), we can see that B intersects the image plane perpendicularly and F is
always perpendicular to both Υ and B. Thus, F also lies in the image domain and its third element
equals to zero. For simplicity, from now on, we shall ignore its third dimensional component and denote
F(x) as a 2D vector field in the image domain.

Given the force field F(x) derived from the magnetic interactions between the object boundary and
the active contour, the evolving active contour under this force field is:

Ct = (F(x) · N̂ )N̂ . (1.27)

As contour smoothing is usually desirable, the standard curvature flow is added to rewrite the full MAC
contour evolution formulation as:

Ct = αg(x)κN̂ + (1 − α)(F(x) · N̂ )N̂ , (1.28)

where g(x) is the stopping function as before. Its level set representation then takes this form:

Φt = αg(x)∇ ·
( ∇Φ
|∇Φ|

)
|∇Φ| − (1 − α)F(x) · ∇Φ. (1.29)

The external forces in GVF and GGVF, (1.16), are static with direction and magnitude based on
spatial position only, hence the contour in these cases can not propagate through stationary or saddle
points. In the geodesic model (see (1.8)) direction is solely based on the active contour but magnitude
is based on the boundary, thus it can only monotonically expand or shrink and can not recover broken
boundaries or be initialized across boundaries. The GeoGGVF (see (1.18)) is dominated by the external
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Figure 1.7: From top left: estimated boundary orientation, magnitude of the magnetic field, initial
active contour, initial external force field, evolving contour, and its associated external force field. Final
result is shown in the penultimate row of Fig. 1.8.

GGVF force but is conditionally influenced by a constant force imposed on the contour, however as
the direction of the constant force is mainly determined by the external vector flow, it still can not
resolve the topological issues of the static external force. In contrast to these models, MAC has the
distinctive feature in that its direction relies on both spatial position and the evolving contour. The
external bidirectional force is dynamically adaptive based on contour position (see 1.26), and equally
importantly its direction is always normal to the evolving contour. The strength is determined by the
magnitude of the magnetic field, thus the snake can be initialized across the object boundary and reach
into concavities. Fig. 1.7 illustrates MAC’s adaptive external force field.

Edge preserving magnetic force field diffusion

In keeping with other snake models based on image gradients, MAC can also suffer from image noise.
Here, we perform anisotropic diffusion based on the idea in [56,57] for the GVF/GGVF snakes to refine
the magnetic force field when necessary. However, we modify the diffusion functions in order to better
preserve edges and show that only diffusing a scalar field, rather than a vector field, is sufficient. Thus,
there is also a gain in computational efficiency.

Note that the hypothesized magnetic forces are 3-dimensional in nature but perpendicular to the
image plane, and we are only interested in the forces in the image plane. So, the magnetic flux density
in (1.25) only has a non-zero component which is perpendicular to the image plane and we only need
to diffuse the flux density along this direction. Thus, diffusing this component, denoted as B(x), is
equivalent to diffusing B(x) in the image plane. The diffused field B̂(x), is the equilibrium solution of:

Bt(x) = p(B(x))∆B(x) − q(B(x))(B(x) − B(x)), (1.30)

where B(x) is initially set to B(x), and p(B(x)) and q(B(x)) are given as:

p(B(x)) = e−
|B(x)|f(x)

K ,
q(B(x)) = 1 − p(B(x)),

(1.31)

Weighting the flux density magnitude with f(x) in the diffusion term, p(B(x)), ensures there is as little
diffusion as possible at the object boundaries, while homogeneous areas will generally have small flux
density due to a lack of support from edges, resulting in substantial diffusion.
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1.5 Implementation

In this section, we provide implementation details of the MAC model, numerical solutions to GVF/GGVF
and GeoGVF/GeoGGVF, and finite difference method based numerical solutions for the level set im-
plementation that is applicable to all the four methods.

1.5.1 MAC implementation

Object boundary description may be obtained using any standard edge detector, such as the Sobel filter
as used in this paper. Some erroneous edges can be removed by dropping those with magnitude less than
a very small percentage, say 10% , of the maximum magnitude. This also reduces later computational
costs.

The main computational costs lay in two stages: evolving the level set function and computing the
magnetic flux density. The Narrow Band approach [43] is used in order to save on costs associated with
updating the level set function. The summation involved in the magnetic flux density computation (see
(1.25)) is generally computationally expensive. However, this can be significantly reduced by letting
only edge pixels be involved in the summation. More savings can be made by approximating the flux
density based on interactions in a fixed radial distance Rc, instead of across the whole image, i.e. by
replacing s ∈ Ωf(s) with s ∈ ΩRc in (1.25). Rc should be reasonably large to prevent null flux density.
In this paper, we used Rc = 100 throughout the experiments and found it a good tradeoff between
accuracy and speed.

Alternatively, a slightly less precise but an even faster approach can be used based on the relationship
between the magnetic field and the magnetic vector potential. The magnetic flux density can be
calculated based on its magnetic vector potential A(x) [51]:

B(x) = ∇× A(x),
A(x) = µ0

4π

∑
s∈f(s),s �=x If(s)

Γ(s)
Rxs

.
(1.32)

The magnetic vector potential can be decomposed into two orthogonal terms corresponding to the image
coordinates, (i, j), i.e. A(x) = (Ai(x), Aj(x)),

Ai(x) = µ0
4π

∑
s∈f(s),s �=x If(s)

γi(s)
Rxs

,

Aj(x) = µ0
4π

∑
s∈f(s),s �=x If(s)

γj(s)
Rxs

,
(1.33)

where γi(s) and γj(x) are the two corresponding orthogonal components of Γ(s). Both of them take the
same form as the Coulomb force potential [37]. Thus, the P3M method [37] can be used to efficiently
approximate the magnetic vector potential by computing short range interactions exactly and long
range interactions approximately as used in [19, 59]. We also note that equations in (1.33) can each be
viewed as a convolution with an inverse distance kernel. This can then be very efficiently solved in the
frequency domain using FFT.

1.5.2 Numerical Solutions

Numerical solutions for GVF/GGVF

Initially, a mesh grid needs to be selected, with final accuracy directly dependent on its resolution.
However, due to the nature of a digital image, the grid resolution is constrained to the pixel level. It
was shown in Section 1.4.2 that the steady solution can be achieved by computing the equilibrium state
of (1.15). The initial state of the force vector field v is given by the gradient of the edge map f . Simple
central differences can be used to approximate ∇f , resulting in vectors that are then diffused. Let ∆x
and ∆y be the grid spacing, ∆t be the time step, and i, j, and n represent the spatial position and
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time. The partial derivative of time can be approximated by forward difference as

ut =
un+1

i,j − un
i,j

∆t
(1.34)

The spatial partial derivatives can be solved using central differences approximation given by

∇2u =
ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j

∆x∆y
(1.35)

The solutions to partial derivatives of v(x, y, t) are similar to those of u(x, y, t). Thus, we have the
following iterative solutions: {

un+1
i,j = un

i,j + ∆tΛ
vn+1

i,j = vn
i,j + ∆tΩ

(1.36)

where,

Λ =
p(.)i,j

∆x∆y
(un

i+1,j + un
i,j+1 + un

i,j−1 + un
i−1,j − 4un

i,j) − q(.)i,j(un
i,j − fx,ij)

and

Ω =
p(.)i,j

∆x∆y
(vn

i+1,j + vn
i,j+1 + vn

i,j−1 + vn
i−1,j − 4vn

i,j) − q(.)i,j(vn
i,j − fy,ij)]

where fx,ij and fy,ij are partial derivatives of f . They also can be approximated by central differences
as {

fx,ij = fi+1,j−fi−1,j

2∆x

fy,ij = fi,j+1−fi,j−1
2∆y

(1.37)

The convergence is guaranteed with the time step restriction of ∆t ≤ ∆x∆y
4pmax

. This numerical scheme
can be similarly applied to magnetic force diffusion in the MAC model.

Numerical solution for the level set implementation

The initial level sets φ(x, t) = 0 is defined with the property that the zero level set corresponds to the
initial contours of the snake. The signed-distance transform can be used to build the initial level sets.
A brute-force Euclidean distance transform would be computationally infeasible. Practically, accuracy
is required only near the initial contours and discrete values based on grid distance can suffice further
away. A positive sign is given to the points outside the contours, and a negative sign is applied to the
points inside.

Let φi,j denote the value of φ at the grid position of xi = i∆x, yi = j∆y, where ∆x and ∆y are the
grid steps along x and y directions respectively. Denote φ(xi, yj , tn) by φn

i,j , the time derivative φt at
(i, j, tn) is approximated by forward difference as φt(i, j, tn) = (φn+1

i,j − φn
i,j)/∆t, where ∆t is a small

time interval. Although the four models shown in (1.14), (1.17), (1.20), and (1.29) take in different
forms, their underlying forces can be categorized into three types based on the nature of their motions.

1. The first motion is of a smoothing and collapsing nature with speed proportional to its curvature
as shown in Figure 1.3. It can be numerically approximated using central differences, because
the curvature is only dependent on the contour. It is independent of time and spatial position.
It is a parabolic contribution to the equation of motion and it can be approximated with central
differences. The curvature κ is only dependent on contours; it is independent of time and spatial
position, hence it can also be solved using central difference approximations. The curvature motion
at time t is approximated as

(g(.)κ|∇φ|)n
i,j = g(.)i,jK

n
i,j(D

0x
i,j

2
+ D0y

i,j

2
)1/2 (1.38)
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where D0x
i,j = (φn

i+1,j −φn
i−1,j)/2∆x, D0y

i,j = (φn
i,j+1−φn

i,j−1)/2∆y, and Kn
i,j is the central difference

approximation to the curvature expression given in (1.13):

(φx)n
i,j = D0x

i,j , (φy)n
i,j = D0y

i,j (1.39)

(φxx)n
i,j =

φn
i+1,j − 2φn

i,j + φn
i−1,j

∆x2 , (φyy)n
i,j =

φn
i,j+1 − 2φn

i,j + φn
i,j−1

∆y2 (1.40)

(φxy)n
i,j =

φn
i+1,j+1 − φn

i−1,j+1 − φn
i+1,j−1 + φn

i−1,j−1

4∆x∆y
(1.41)

2. The second is expanding or shrinking with a spatially constant speed, characterized by cg(.) in
the normal direction of the curve. However, when the constant term exists the normals can
collide with each other while evolving. Thus shocks, or corners, will form and once a shock has
developed, some information will be lost as it evolves. This means that shocks cause irreversibility;
information can not be recovered by tracing ‘backwards’ in time. Generally, no new information
can be created while evolving, which is referred to as an entropy condition. Central difference
approximation can not be used to approximate the gradient in this case, as it suffers from shocks
where the entropy condition is invoked. An upwind scheme can be used, as an entropy-satisfying
scheme, that engages information upwind of the direction of its propagation. In other words, in
order to achieve a stable numerical scheme, the numerical domain of dependence should contain
the mathematical domain of dependence. Thus, in order to approximate the gradient of the
constant term, it is important first to know which way the speed function points, and whether it
is negative or positive. Then we can choose proper backward or forward difference approximations.
It must be approximated through entropy-satisfying schemes [43]. Let V0 be the constant speed
function regarding to cg(.). Following Sethian’s upwinding finite difference scheme, the solution
is given by 



(V0|φ|)n
i,j = V0i,j [max(D−x

i,j , 0)2 + min(D+x
i,j , 0)2+

max(D−y
i,j , 0)2 + min(D+y

i,j )2]1/2 if V0i,j ≥ 0

(V0|φ|)n
i,j = V0i,j [max(D+x

i,j , 0)2 + min(D−x
i,j , 0)2+

max(D+y
i,j , 0)2 + min(D−y

i,j )2]1/2 otherwise

where D+x
i,j = (φn

i+1,j −φn
i,j)/∆x, D+y

i,j = (φn
i,j+1 −φn

i,j)/∆y and D−x
i,j = (φn

i,j −φn
i−1,j)/∆x, D−y

i,j =
(φn

i,j − φn
i,j−1)/∆y are the forward and backward differences respectively.

3. The third type of motion (∇g(.) for geodesic, ṽ(.) for GVF/GGVF and GeoGVF/GeoGGVF, and
F for MAC) is contributed by the underlying static velocity field, the direction and strength of
which are based on spatial position. It is independent of the shape and position of the snake.
The motion of contours under this velocity field can be numerically approximated through upwind
schemes by checking the sign of each component of the velocity field and constructing one-sided
upwind differences in the appropriate direction. For a positive speed component, backward dif-
ference approximation is used, otherwise forward difference approximation should be applied.

Let �U(x, y, t) denote the underlying static velocity field. We check the sign of each component of
�U and construct one-sided upwind differences in the appropriate (upwind) direction [43]:

(�U · ∇φ)n
i,j = max(un

i,j , 0)D−x
i,j + min(un

i,j, 0)D+x
i,j +

max(vn
i,j , 0)D−y

i,j + min(vn
i,j , 0)D+y

i,j (1.42)

where �U = (u, v).
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(a) (b) Geodesic (c) GGVF (d) GeoGGVF (e) MAC

Figure 1.8: Comparing shape recovery on synthetic images (by columns) - (a) initial snakes; (b) recov-
ered shape using geodesic, (c) GGVF, (d) GeoGGVF, and (e) MAC snakes.

By using these finite difference schemes, (1.14), (1.17), (1.20) and (1.29) can be numerically im-
plemented. For general numerical solution to level sets, including concepts such as entropy condition
and upwind scheme, the interested reader is referred to works by Sethian [42, 43] and by Osher and
Fedkiw [31].

1.6 Experimental Results

In this section, we extensively compare these four edge based active contour models. First, we closely
study their convergence and initialization independence, as well as their ability to handling weak edges
which frequently occur in mammogram images, using synthetic images which allows us to objectively
carry out performance comparison. Next, we test the algorithms on a set of real world mammogram
images to segment mass lesions. Hand labled results are used to evaluate their performance.
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1.6.1 Convergence and initialization independence study

To objectively examine their initialization invariancy and convergence ability, we first present results
on various shape geometries and topologies using synthetic images with well-defined object boundaries.
These include the four-disc problem, acute concavities, multiple objects with complex geometry and
topology, and imperfect boundaries.

The four-disc problem

Even though this is such a simple image and the active contour models are all using level set repre-
sentation, convergence issues still arise. The solution becomes particularly challenging under certain
initialization conditions. The first two rows in Fig. 1.8 show comparative recovered shapes for the
geodesic, GGVF, GeoGGVF, and MAC models in columns (b) to (e) respectively. When the initial
contour was placed outside the four discs (first row), only the geodesic snake and MAC could accurately
recover them. However, in a more arbitrary cross-boundary initialization case (second row), only MAC
was successful. The saddle and stationary points (see Fig. 1.2) prevented the other contours from
recovering the discs. The geodesic active contour in this case simply disappeared after reaching the
image borders.

Recovering acute concavities

Next, we consider the recovery of an acute concavity as shown in the third and fourth rows in Fig. 1.8,
again with different initialization conditions. For the GGVF and GeoGGVF snakes, their stationary
vector force fields exhibit stationary and saddle points, e.g. the saddle point at the entrance of the
concave shape which prevents the snake converging to the object boundaries. Again, given an arbitrary
cross-boundary initialization, the geodesic snake suffers severe problems. MAC was the only active
contour model that could successfully recover the shape in both initializations.

Handling complex geometries and topologies

When dealing with complex geometries, such as the swirl shape shown in the last row in Fig. 1.8, MAC
was the only model that managed to fully recover the shape.

Table 1.1 presents comparative results for the four-disc problem and recovering concavity and complex
geometries with different initializations. The accuracy was measured by calculating the percentages of
foreground pixels that were actually segmented as foreground (FG) and background (BG). The overall
accuracy gives the measure for correctly segmented pixels given the total number of pixels in the image.
The proposed MAC model significantly outperforms other boundary based snakes with a very high
overall accuracy of 98.96% while the rest were well below 75%.

Handling weak edges

To further illustrate the importance of bidirectionality and dynamic force fields, Fig. 1.9 shows a
circular object with a partially blurred boundary segment, commonly used for weak-edge analysis, e.g.
in [53,58]. The geodesic snake in row (a) leaks through the weak edge due to the noisy stopping function.
The GGVF and GeoGGVF snakes can converge to the weak edge with careful initialization due to their
bidirectional force fields, however a more arbitrary initialization as seen in row (b) causes those snakes
to collapse resulting in failure. MAC, on the other hand, does not suffer from these issues and can
successfully localize the object, as shown in row (c).

Arbitrary initializations

In the previous examples, e.g. Fig. 1.8, we showed MAC’s resilience to arbitrary initialization. Two
more examples are given in Fig. 1.10. In the first row, the swirl shape is used with the initial snake just
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Table 1.1: Comparative results on synthetic images (%).
Geodesic GGVF GeoGGVF MAC

Four-disc FG 100 100 99.2 99.3
outside BG 97.9 74.0 79.5 100
initialization Overall 98.8 85.2 88.0 99.7
Four-disc FG 100 1.5 0.3 100
cross BG 0 79.7 80.1 98.9
initialization Overall 43.4 45.8 45.5 99.4
Concavity FG 100 100 99.9 100
outside BG 100 71.1 74.4 96.4
initialization Overall 100 83.0 84.8 97.9
Concavity FG 100 37.2 32.4 98.7
cross BG 0 99.3 100 98.8
initialization Overall 41.0 75.3 74.9 99.3
Swirl FG 99.7 37.2 32.4 98.7
cross BG 0 92.6 96.0 98.4
initialization Overall 30.3 75.8 76.7 98.5
Overall Average 62.70 73.03 73.98 98.96

Figure 1.9: Recovering an object with weak edges - (a) geodesic, (b) GGVF, and (c) MAC snakes.

Figure 1.10: Arbitrary initializations using the MAC model.
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Figure 1.11: Mass lesion segmentation - Top row: mass lesion image and the hand labeled segmentation;
row (a): initial geodesic snake, its evolution, and its final result; row (b): initial GGVF snake, its
evolution, and its final result; row (c): initial GeoGGVF snake, its evolution, and its final result; row
(d): initial MAC snake, its evolution, and its final result.

crossing the object. In the next row, several circular snakes were evenly distributed across the image
domain.

These comparative analysis on synthetic images clearly show the advantages of the MAC model. Its
initialization independency provides great flexibility in mammogram mass lesion segmentation since it
does not require close initializations. Its ability to handle weak edges is equally important as the lesion
boundaries are often blurred and indistinct.

1.6.2 Tumor and lesion segmentation

Here, we test these four edge based active contour models to segment lesions in a set of mammogram
images. These lesions or potential lesions can be automatically detected using the techniques discussion
earlier in Section 1.1. These mass lesion images are also hand labeled so that quantitative analysis can
be carried out.

Fig. 1.11 provides the first example of mass lesion segmentation. The lesion boundaries are largely
diffused, however, maintain relatively consistent contrast to the background. This allows the geodesic
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Figure 1.12: Mass lesion segmentation - Top row: mass lesion image and the hand labeled segmentation;
row (a): initial geodesic snake, its evolution, and its final result; row (b): initial GGVF snake, its
evolution, and its final result; row (c): initial GeoGGVF snake, its evolution, and its final result; row
(d): initial MAC snake, its evolution, and its final result.

to converge to desired region boundary with careful initialization and parameter selection (mainly its
constant expansion force), see row (a). A larger constant force will resulting in boundary leaking. In
row (b), GGVF successfully localized the region, however careful initialization is necessary. GeoGGVF
achieved similar performance as shown in row (c). The segmentation result of the MAC model was
very similar to the others as shown in row (d). However, its initialization is much more challenging.
The initial contour crosses the region boundary and only sits on the edge of the lesion boundary. The
contour did not collapse itself but converged reasonably. None of the other techniques can achieve such
result with this difficult initialization.

Another example is given in Fig. 1.12. However, this time the edge contrast around the lesion is no
longer consistent and the texture is busier than the previous example. This forced the geodesic snake
to choose a relatively larger constant force and as a result the contour stepped through weak edges (see
row (a)). GGVF and GeoGGVF achieved good results as shown in rows (b) and (c). However, they
again require dedicated initialization. The MAC model produced reasonable segmentation even with a
very challenging initialization (see row (d)). This initialization independence ability of the MAC model
allows automatic lesion segmentation, following automatic lesion detection. Lesion detection algorithms
may not be able to find the center of the lesion and often have little knowledge of the shape of the lesion
region which makes it very difficult to place the initial contours in the way that is necessary for GGVF
or GeoGGVF to successfully converge. MAC, on the hand, provides great flexibility and robustness
towards initialization.

More examples are given in Fig. 1.13. The geodesic, GGVF and GeoGGVF had to be carefully
initialized, whileas the MAC achieved even better results without dedicated initialization. The quan-
titative results are shown in Table 1.2. GGVF, GeoGGVF and MAC all performed reasonably well,
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Figure 1.13: Mass lesion segmentation - Row (a): original mass lesion images row (b): geodesic results;
row (c): GGVF results; row (d): GeoGGVF results; row (e): MAC results; row (f): hand labeled
segmentations.
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Table 1.2: Segmentation Comparison.
Test No. 1 2 3 4 5 6 7 8 Overall

spec. 100 99.98 4.04 99.96 0 99.96 0.02 99.63 62.95
Geodesic sens. 76.40 70.75 91.25 79.65 93.14 75.72 94.38 81.25 82.82

accu. 96.34 97.35 28.52 95.02 3.14 98.56 7.68 96.23 65.36
spec. 100 99.98 99.19 99.84 100 99.97 99.89 99.38 99.78

GGVF sens. 88.05 85.14 82.58 80.14 64.38 83.85 69.44 65.89 77.43
accu. 98.14 98.65 94.53 95.04 98.80 99.04 97.42 93.19 96.85
spec. 100 100 99.26 99.96 100 99.98 99.59 99.15 99.74

GeoGGVF sens. 87.17 81.24 81.97 78.51 62.93 82.60 86.80 71.38 79.08
accu. 98.01 98.31 98.41 94.74 98.75 98.98 98.55 94.02 97.47
spec. 98.59 99.26 95.03 98.01 99.94 98.92 96.37 96.40 97.82

MAC sens. 97.78 95.17 96.73 92.89 89.31 97.50 98.78 98.22 95.80
accu. 98.47 98.89 95.51 96.76 99.58 98.84 96.56 96.74 97.67

except the geodesic snake. Overall, MAC outperformed the rest.
On the application to mass lesion segmentation, we again found that MAC’s ability to handle difficult

initialization provided superior performance compared to the other edge based snakes. The MAC model
showed great potential in automatic lesion detection and segmentation. The shape information and other
feature extracted from the segmentation can be passed on for further automatic analysis. This means
the whole lesion analysis process can be automated without human intervention, which can improve
throughput and may reduce the possibility of false negative since more data can be processed.

1.7 Parameter settings and computational complexity

The weight for the constant force in the geodesic snake model is critical. It has to be carefully tunned
to avoid weak edge leakage. The diffusion parameters for GGVF and GeoGGVF controls the degree
of smoothness of the resulting vector field. Strong diffusion can result in relatively weaker edges be
suppressed by nearby strong edges, which may not be desirable. If the diffusion is too small, there will
be too many local minima which often leads to false convergence.

The parameters for the MAC model are α, λ, and K. Parameter α appears in all level set based
snakes and is used to control the contribution from curvature flow for smoothing. For most applications
it can remain a constant. Parameter λ determines the edge orientation estimated as clockwise or anti-
clockwise, one of which results in localizing objects and the other in localizing their background. This
is application dependent and can be determined by the user. Parameter K is only used when noise
interference is significant. In general, K = 0.2 is large enough to diffuse noise corruption. Here, it is
not used.

MAC was developed in Java on a 2.8 GHz Pentium 4 running Linux. The main computational cost
occurs at two stages: computing the magnetic field and evolving the level set embedded snake. The
latter is similar to that of the geodesic snake, but MAC converges faster when near edges. For the
former, a direct magnetic field computation is relatively expensive, e.g. 107s for a 254 × 193 pixel
image. This reduced to 44s when the magnetic interactions within a radial distance of 100 pixels only
were computed. Alternatively, only 16s was required when using the P3M method or as little as 3s
was needed for the FFT based method described in Section 1.5. More computational efficiency can be
gained through code optimization and by implementing in a compiled language such as C.

A fair computational performance comparison for all the snakes mentioned in this paper is rather
difficult, if not naive, to contemplate. Not all the snakes are successful on the same image and except
for MAC, all the other snakes require specific parameter tuning and/or careful initialization. However,
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a simple comparison was made on a 256 × 256 image containing a circular object which all the snakes
could fully localize with the same initialization. The computational times on the same platform for the
different snake models were: 61s for the geodesic snake, 34s for the GGVF snake, 75s for the GeoGGVF
snake, and 38s for MAC.

1.8 Conclusions

In this chapter, we reviewed four important edge based active contour model for mass lesion segmenta-
tion. In particular, we introduced the MAC model in detail. The MAC model uses a novel external force
field which is based on hypothesized magnetic interactions between the object boundary and the active
contour. It can attract the contour into deep concave regions and does not suffer from saddle point
and stationary point problems. The analogy of magnetic interaction between the active contour and
the object boundaries works well. However, these interactions do not necessarily have to obey physical
laws. In other words, we may modify the interactions in favor of our problem domain without main-
taining their physical meaning. The comparative study on both synthetic and real world mass lesion
mammogram image data showed significant improvement in initialization invariancy and convergence
capability of the MAC model compared to other advanced edges based methods.
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