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Abstract. Detecting faces in the wild is a challenging problem due to
large visual variations introduced by uncontrolled facial expressions, head
pose, illumination and so on. Employing strong classifier and designing
more discriminative visual features are two main approaches to over-
coming such difficulties. Notably, Deep Neural Network (DNN) based
methods have been found to outperform most traditional detectors in
a multitude of studies, employing deep network structures and complex
training procedures. In this work, we propose a novel method that uses
stacked denoising autoencoders (SdA) for feature extraction and random
forests (RF) for object-background classification in a classical cascading
framework. This architecture allows much simpler neural network struc-
tures, resulting in efficient training and detection. The proposed face
detector was evaluated on two publicly available datasets and produced
promising results.

1 Introduction

Face detection has been an active research topic in computer vision for decades.
View-specific face detection methods, such as VJ detector (Viola-Jones object
detection framework [37]), have achieved great success and are used in various
commercial products. Recently, researchers are focusing on more challenging
face detection problems under uncontrolled environment, i.e. so-called faces in
the wild, where factors such as large pose and facial expression variations, severe
occlusion and clutter, and poor lighting scenario are taken into consideration.
Zhang et al. [43], and Zafeiriou et al. [42] provide a comprehensive review on
recently proposed face detection methods. However, faces in the wild remain a
challenging problem.

Cascade based methods with strong classifiers and discriminative features
are popular in tackling multi-view detection problems, utilizing methods such as
aggregating channel features [39], multi-scale block local binary pattern [27], and
normalized pixel difference feature [26]. The features are designed specifically for
certain detection problems, which may not be universally applicable. Deformable
Part Model (DPM) [11, 12, 16] defines an object as a pictorial configuration of
its parts. For example, an human pose can be estimated using a star-structured



model by finding a confident configuration of torso root and its displaced limb
parts [6]. The benefit of having flexible representation of an object can greatly
help to tackle the challenges of occlusion, pose and appearance variations, at the
cost of considerably more complex computation requirements. There are some
works on accelerating DPM-based detection, such as cascade part pruning [38].
Exemplar-based face detection methods [33, 24] formulate the problem as an
image retrieval task, where a detection occurs when a successful matching is
found in face exemplars for hypothesis by using visual feature descriptors, such
as SIFT (Scale-Invariant Feature Transform). Matching with exemplars is time
consuming, especially when a very large face dataset is required to cover huge
amount of variations under uncontrolled environment, meaning that a sliding
window method is not feasible. In these cases Hough voting based methods at
multiple scales are used instead, to produce a confidence voting map to locate
region candidates. The face can then be found by searching the peak regions on
the ensemble confidence map. In order to achieve better performance, a large
face exemplar dataset is critical in order to cover different variations in an un-
controlled environment. Meanwhile, detection speed will suffer due to exploring
larger search space. Contour based object tracking method such as [5] can also
be applied to face detection task.

The application of neural networks methods to detection problems goes back
to 1980s [18, 40], but its place was quickly taken by support vector machine and
boosting based methods due to the limitations on computational cost. With the
developments of better unsupervised initialization methods, availability of large
amount of labeled data, and hardware improvements, especially the GPGPU
(General-Purpose Graphics Processing Unit), training a deep neural network be-
comes a routine [17, 23]. The success of Convolutionary Neural Networks (CNNs)
on large scale object detection and recognition [22, 32, 34, 15] shows that search-
ing deep representative structures with a learned convolutionary feature space
is vitally important for high-level visual recognition tasks, whereas it is indeed
computationally expensive for relatively simple tasks. For instance, traditional
object detection problem where over hundreds of thousands of sub-windows are
required to evaluate for just one image, is not affordable in real-time applica-
tion. However, the power of representative feature learning of deep neural net-
work should not be overlooked. Region-based CNNs (R-CNNs) [13, 14, 30] are
a series of CNN-based methods for multi-object detection and semantic seg-
mentation. In order to avoid densely scanning an image, R-CNN methods use
selective search methods [35] to generate a relatively small amount of object re-
gion proposals. The features of the candidate regions are extracted by CNN, and
a linear SVM is used to classify them into object categories. Its CNN consists of
five convolutional layers and two fully connected layers, and it was pre-trained
on a large image dataset, LSVRC2012 (Large Scale Visual Recognition Chal-
lenge [31]) discriminatively, and then followed by domain-specific fine tuning.
Precisely locating an object is still a challenging problem to R-CNNs even with
the help of bounding box refinement regressor. As R-CNN methods have been
reported with relatively weak performance [10], Farfade et al. proposed DDFD



(Deep Dense Face Detector) by densely scanning through the image with sliding
windows, and then performing a binary classification directly using the output
of a fine-tuned AlexNet [22]. The idea of using CNN as a classifier component
was further extended to DPM [29, 41] for face detection. The most relevant work
to our SdA-RF detector is [25], which constructed a 3-stages cascade detector
using 3 detection nets, and 3 calibration nets. Within each stage, the detection
net separates face and background, and then calibration net refines the locations
of retained windows. The next stage processes the refined windows with the same
procedure but using double resolution and deeper CNN models.

In this paper, we propose a general cascade object detection method, SdA-
RF which embeds SdA and RF into a cascade framework. Two main differences
compared to the deeper models make it unique. First, SdA-RF uses a rather
simple neural network, 1-layer SdA, to extract the features, and RF to perform
classification, which makes densely scanning an image possible for better local-
ization without any refinement procedure. Second, SdA-RF does not rely on any
pre-trained model. Unsupervised pre-training and supervised fine-tuning can all
be done using the same dataset. The paper is organized as follows: In Sec. 2,
we introduce SdA-RF model, and then present how an object detection cascade
is built via combining individual SdA-RF stage classifiers; In Sec. 3, we show
the experimental results on two public datasets, and discuss the findings; We
conclude our work in Sec. 4.

2 Proposed Method

2.1 Stage Classifier

For detection problems, an ideal cascade detector requires individual stages
trained with high recall rate and low fallout rate, which enable the cascade to
eliminate negative sub-windows as early as possible, meanwhile preserve most
of the positives. However, there is no free lunch to train such an ideal classifier.
For example, Viola-Jones method [37] trained Adaboost classifiers via searching
the feature space exhaustingly to meet the recall rate requirement. In that way,
the classifiers constructed normally have very high recall but also have relatively
high fallout, therefore increasing the number of stages is necessary to filter out
most negatives. The upper bound of detection rate within a Viola-Jones cascade
Upper(Rc) depends on the number of stages N , and the recall rate of individual

stage Rsi , where Upper(Rc) =
∏N

i Rsi . Bourdev et al. [2] proposed a so-called
soft cascade method, where the sub-windows are eliminated based on votes of
multiple stages with importance weights, instead of one stage in a traditional
cascade method. However, such a accumulative elimination scheme involves du-
plicative computational cost for each sub-windows. We seek to train each stage
with a stronger classifier, which can greatly reduce the number of stages but also
retain considerable high recall rate and low fallout rate.

Y. Bengio et al. [1] proposed a deep representation learning method, namely
Stacked Autoencoder (SA). Individual layer of SA is a latent model trained it-
eratively using two phases, encoding and decoding in an unsupervised fashion.



Given the observation v ∈ RDv , where Dv is the number of dimensions of vis-
ible variable, firstly the encoder maps (upwards) v into latent representation
h ∈ RDh , where Dh is the number of dimensions of the latent variable. Between
visible nodes and latent nodes, a fully connected network is constructed to rep-
resent the mapping functions, but intra-connection between the same type of
node is not allowed in order to keep the complexity of the model itself rela-
tively simple. The decoder works in an opposite way to the encoder, it maps
(downwards) the latent representation v back to the so-called reconstructed ob-
servation x̄. The mapping functions are rametrized using a continuous-value
extension of Restricted Boltzmann Machine (RBM) [17] with θ = (W,W ′, b, b′),
where the upwards and downwards mappings are formulated as h = S(Wx+ b),
and x̄ = S(W ′h + b′) respectively. Typically, the sigmoid is used as activation
function S, and tied weights constrain, W ′ = WT , is applied to the model. The
estimator of the model can be obtained by minimising the squared reconstruction
error, Loss(x̄, x) = ||x̄ − x||2. Greedy layer-wise training is applied, where the
latent variable of the previous layer is fed into the current layer as input. Trained
layers are stacked hierarchically and followed by a fine-tuning procedure, which
also can be done in a supervised way by stacking a Softmax layer on the top.
Furthermore, P. Vincent [36] proposed SdA model, which introduces an artificial
input corruption scheme into the layer-wise training procedure in order to avoid
identity learning and improve robustness. For an input x, SdA stochastically
forces a certain amount of input channels to 0 in order to generate a corrupted
version x̃, and then trains a normal autoencoder using x̃. This training strategy
shows that sensibility to small irrelevant changes in input can be significantly
reduced.

SdA offers a layer-wise unsupervised representation learning method, which
can be used as a general feature extractor for various object detections. In the
case that ground truth labels are available, supervised fine-tuning will help to
improve classification performance even further. However, it is notable that the
classification power of SdA with Softmax layer is relatively weak compared to
the-state-of-art discriminative models. For example, random forests (RF) was
used for human interaction recognition [7], which is one of challenge problems
in computer vision field. In order to address such shortcomings, in this work,
RF is trained using encoded representations learned by SdA to classify sub-
windows into positives and negatives. RF [4] grows a number of decision trees
independently using the bagging subsets [3] which are randomly sampled from
the complete training set with replacement. Individual decision tree consists
of a set of tests (non-leaf node) and predictors (leaf node), where either Gini
impurity or information gain is used to find the best split. During the prediction
stage, the testing samples traverse through each decision tree by evaluating its
properties at non-leaf node, and finally reaches a leaf node at the bottom, which
votes the class with largest proposition of training samples it holds. The random
forests combine all voting results from individual decision trees, and assigns
the most voted class to the testing sample. The training procedure for stage



classifier combining SdA feature learning, and RF classification is described in
Algorithm 1.

Algorithm 1: Train a Stage Classifier for Binary Classification using SdA
and RF.

1 function M = trainSdARF (I, L);
Input : I is a set of training images containing positives and negatives.
Input : L is a set of ground truth labels for I, where Li ∈ {0, 1},

corresponding to negative and positive respectively.
Output: M is stage classifier, which consists of one SdA model and one RF

model.

2 nLayers ← set the number of hidden layer used for training SdA;
3 nHiddens ← set the numbers of hidden nodes of each layers;
4 nTrees ← set the number of decision tree used for training RF;
5 rLayers(0) ← initialise the encoded feature with original image I for the first

layer training;
6 for j ← 1 to nLayers do
7 sdaLayers(j) ← train an SdA model using input feature rLayers(j − 1) in

an unsupervised fashion with nHiddens(j) hidden nodes;
8 rLayers(j) ← encode output feature using trained model sdaLayers(j) and

input feature rLayers(j − 1);

9 end
10 smLayer ← train a Softmax layer using encoded feature rLayers(nLayers)

given by the top level SdA model, and ground truth label L in a supervised
fashion;

11 Network ← stack the pre-trained sdaLayers and smLayer layer-wise to form a
fully connected neural network;

12 Network ← fine-tune Network using input image I and label L in a supervised
fashion;

13 Representation ← collect the features encoded using Network;
14 Forests ← train an RF model using Representation and label L with nTrees

trees;
15 M ← assemble the neural networks encoder Network and RF Forests;
16 return M ;

2.2 Detection Cascade

For object detection, as the number of positives is far less than negatives,
cascade-based methods, which often bias towards negatives, are relatively more
efficient. However, as discussed in Sec. 2.1, adding more stages is required to
reduce false positive rate, at the expense of reducing true positive rates. The
proposed stage classifier Algorithm 1 addresses this contradiction by introduc-
ing better feature learning methods and more discriminative models. To train



each classifier stage a sliding window method is used to generate negative sub-
windows, which then pass through the previous stage’s classifier. Only those
predicted as positives are retained and used for training the current stage. It is
notable that the classification problem becomes more challenging with increasing
stage depth, as retained sub-windows are collected from more different images.
With the number of stage growth, the number of tree in RF is progressively in-
creased to overcome the difficulties introduced by the larger diversity present in
the negative set. The cascade training procedure is described in Algorithm 2.

Algorithm 2: Train an Object Detection Cascade.

1 function C = trainCascade (Pos,Neg);
Input : Pos is a set of positive training images all of which have the same

size. h, w, nPos are height, width, and total number of positive
images respectively.

Input : Neg is a set of negative training images with no target object, where
nNeg is the total number of negative images.

Output: C is object detection cascade, which consists of multiple stage
classifiers.

2 maxStages ← set the maximum number of stages;
3 minRecall ← set the minimum overall recall rate;
4 maxFallout ← set the maximum overall fallout rate;
5 ratioNegPos ← set the number ratio of training samples, negatives over

positives;
6 nTrees ← set the number decision trees used for training stage classifier;
7 for j ← 1 to maxStages do
8 trnWindows ← create nPos× ratioNegPos negative samples of size (h,w)

using sliding window methods from negative images Neg, where only those
ones pass through C(1 : j − 1) are retained, and then combine with positive
sample Pos;

9 trnLabels ← label the training windows as 0 for negative, and 1 for positive;
10 Ctemp ← train a stage classifier with nTrees using trnWindows and

trnLabels;
11 nTrees ← increase the number of decision trees for next stage training;
12 (oaRecall, oaFallout) ← compute the overall recall rate, and fallout rate;
13 if (oaRecall < minRecall) ‖ (oaFallout > maxFallout) then
14 break the stage training loop;
15 end
16 C(j) ← Ctemp assign stage classifier to collection;

17 end
18 return C;



3 Experiments and Discussion

We used AFLW (Annotated Facial Landmarks in the Wild [21]) dataset to train
a face detector. The dataset contains 22,712 labelled faces out of 21,123 images.
The positive face windows were further augmented by applying 5 random per-
turbations to the location of face window within the range of 5% of its size, and
also collecting all flipped face windows. In total, 227,120 faces are used in the
training procedure, and some examples of positive samples are shown in Fig. 1
(a). The negative images should contain no face. To bootstrap non-face images
the AFLW dataset was used, where the labeled face windows were replaced with
no face patches randomly cropped from PASCAL VOC dataset [9, 8] (person
subset was excluded). In total, 19,458 negative images were generated using this
bootstrapping approach. As considerable amount of images of AFLW dataset
are not well labeled with face bounding box, we further applied face detection
on the negative images using Koestinger’s VJ-LBP model (Viola-Jones detector
with Local Binary Patterns feature) [20]. After removing those that have true
positive response, the negative image set contains 18,089 images.

(a) (b)

Fig. 1. Positive training face images (a), and negative images (b) from AFLW and
PASCAL VOC datasets.

The size of the training image window is 24 × 24 pixels, to which all face
windows were resized and converted into grey scale. There is no histogram equal-
ization or any further image enhancement. To create negative training windows,
we applied sliding window method to each negative image with scale factor
Sn = 1.2, and stride Sx = Sy = 2 pixels. The generated negative windows were
firstly sent to previous stage classifiers, only those ones passed through were
retained for current training procedure. For SdA model, one hidden-layer with
12×12 nodes was used, which was trained in an unsupervised fashion with image
intensity, this was then followed by a supervised fine-tuning. Fig. 2 shows the
visualization of the partial weights given by hidden nodes of the first and last
stage classifier before and after supervised fine-tuning. The weights are shown
as a set of basis for reconstructing original image signal using the output of
encoder, which capture the characteristics of face rather well. It is notable that
the reconstruction basis of the last stage classifier (2nd row) is more informative
compared to the first stage (1st row). When the cascade goes deeper, training
a stage classifier becomes more challenging, because easy negative windows are
filtered out by the previous stages and hard ones are retained. Also we observed



that fine-tuning SdA by back-propagating the prediction error given by the Soft-
max layer makes the basis more specific for face detection. For example, two red
bounding boxes in Fig. 2 show the weights from the same hidden node before
and after supervised fine-tuning. The same phenomenon can be observed across
all stages. The output of the encoder was used as a high-level representation
to train an RF classifier. The minimum number of samples in each leaf node
was set to 3 in order to avoid over-fitting. The number of decision trees of the
first stage was set to 25, and it was progressively increased with 5 more trees
every one stage deeper. The whole cascade training finished with 5 stages as no
more negative windows can be generated given 18,089 non-face images. This is
a significant reduction in terms of number of stages compared to traditional VJ
detectors (20 stages used in[21]).

(a) Stage 1, Before fine-tuning (b) Stage 1, After fine-tuning

(c) Stage 5, Before fine-tuning (d) Stage 5, After fine-tuning

Fig. 2. The visualisation of SdA weights before and after supervised fine-tuning from
the first and last stages.



Fig. 3. Representative results of face detection on GENKI-SZSL dataset. Green bound-
ing boxes are the ground truth, and yellow boxes are detection results given by SdA-RF
detector.

Fig. 4. Representative results of face detection on FDDB dataset.



The face detector was verified on two public datasets, GENKI [28] and FDDB
(Face Detection Dataset and Benchmark [19]) and qualitative results are shown
in Fig. 3 and Fig. 4 respectively. We evaluated our detector on SZSL, a subset of
the GENKI database, which contain 3,500 images. Fig. 3 shows our detector can
handle different face expressions, view angles, illumination conditions. FDDB
contains 2,845 images with a total of 5,171 faces. It is extremely challenging
dataset, for example, Fig. 4 shows some representative detection results on im-
ages with severe occlusion and blurring (see 3rd and 4th images of 1st row), and
over 90 degree rotation (see 3rd image of the 2nd and 3rd rows, and 2nd image
of 4th row).

4 Conclusion and Future Work

In this paper, we presents a general cascade-based object detection methods by
employing SdA for feature extraction, and RF for object-background classifi-
cation. It shows that by combining shallow neural networks and discriminative
classifier it is possible to carry out binary object detection, and there is per-
haps no need to introduce deeper models and complex training procedures. The
preliminary results on two public datasets are promising. Quantitative analysis,
code optimization with GPU implementation, and application on other detection
problems such as pedestrian, are three main aspects for our future work.
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