
Gradient Leakage and Protection for
Federated Learning

Hanchi Ren
845231

Submitted to Swansea University in fulfilment
of the requirements for the Degree of Doctor of Philosophy

Department of Computer Science

Swansea University

May 11, 2023

Declaration
This work has not been previously accepted in substance for any degree and is not being

concurrently submitted in candidature for any degree.

Signed .. (candidate)

Date ..

Statement 1
This thesis is the result of my own investigations, except where otherwise stated. Other sources

are acknowledged by footnotes giving explicit references. A bibliography is appended.

Signed .. (candidate)

Date ..

Statement 2
I hereby give my consent for my thesis, if accepted, to be available for photocopying and for

inter-library loan, and for the title and summary to be made available to outside organisations.

Signed .. (candidate)

Date ..

Hans Ren
14/03/2023

Hans Ren
14/03/2023

Hans Ren
14/03/2023

I would like to dedicate this work to my wife, Yi Hu, who gives me unwavering support

and encouragement during my Ph.D studies. Thank you, my dear!

Abstract

In recent years, data privacy has become a critical issue in the field of Machine Learning (ML),

given the significant amount of sensitive data involved in training and inference processes.

Several approaches have been developed to address this challenge, including cryptography

and collaborative training. Cryptography techniques, such as Homomorphic Encryption (HE)

and Differential Privacy (DP), have gained popularity due to their ability to protect sensitive

data during computation. HE allows computations to be performed directly on encrypted data

without the need to decrypt it, thus ensuring privacy while still providing accurate results. On

the other hand, DP adds random noise to data to protect individuals’ privacy while preserving

statistical accuracy. Collaborative training methods, such as Secure Multi-Party Computation

(MPC), Distributed Learning, and Federated Learning (FL), aim to address privacy concerns

by enabling secure local computation. In MPC, parties collaborate to compute a function

without revealing their inputs to each other, making it suitable for privacy-preserving ML tasks.

Distributed Learning allows data to be distributed across multiple devices or nodes, reducing

the risk of data breaches while still achieving accurate results. FL enables the training of ML

models on decentralised data without transferring raw data to a central location. While these

techniques have proven effective in protecting sensitive data, they also have some limitations.

For instance, HE and DP may be computationally expensive, which can hinder their widespread

adoption. Additionally, collaborative training methods may require significant communication

overhead and synchronisation, which can affect training efficiency.

Collaborative training through gradient exchange has been widely used in Deep Learning

(DL) as a secure way to train a robust model. However, recent research has shown that this

method may not be entirely secure. In fact, sensitive information can be recovered from

the shared gradient, compromising privacy and leading to malicious actors’ potential theft of

valuable data. Various studies have demonstrated that the publicly shared gradient can reveal

sensitive information about the training data, such as the presence of specific individuals or

properties. This can lead to significant privacy breaches, especially in sensitive areas such as

i

healthcare or finance. As the demand for privacy-preserving ML grows, there is a need for

further research and development of effective and robust techniques to ensure data privacy

during collaborative training.

This thesis aims to investigate how to reconstruct private input data from the publicly

shared gradient and how to prevent gradient leakage in terms of gradient-sharing protocol and

a private key-lock module. We first show that in an FL system, image-based privacy data

can be easily retrieved from the shared gradient through our proposed Generative Regression

Neural Network (GRNN). Our attack involves formulating the problem as a regression task

and optimising two branches of the generative model by minimising the gradient distance.

The findings of our study demonstrate that even seemingly innocuous shared information can

lead to the recovery of sensitive data. This highlights the importance of developing robust

privacy-preserving techniques to protect sensitive information during collaborative ML. Our

proposed GRNN attack serves as a wake-up call to the ML community to address the privacy

concerns associated with FL.

Our following study found that the generalisation ability of joint models in FL is poor

on Non-Independent and Non-Identically Distributed (Non-IID) data, particularly when the

Federated Averaging (FedAvg) strategy is used, leading to weight divergence. To address this

issue, we propose a novel boosting algorithm for FL that addresses the generalisation and

gradient leakage problems, resulting in faster convergence in gradient-based optimisation. Our

proposed boosting algorithm aims to improve the performance of FL models by aggregating

models trained on subsets of data, addressing the weight divergence issue. The algorithm

leverages an adaptive weighting strategy, where the weights of each model are adjusted based

on their performance, with models that perform better receiving more weight. Additionally, we

introduce a privacy-preserving component to the algorithm, where local models are encrypted to

reduce the risk of gradient leakage. Our proposed boosting algorithm shows promising results

in addressing FL’s generalisation and gradient leakage issues, leading to faster convergence in

gradient-based optimisation. The findings of our study highlight the importance of developing

robust techniques to improve the performance of FL models and ensure data privacy during

collaborative ML.

At last, our research proposes a new approach to defending against gradient leakage attacks

in FL through a private key-lock module (FedKL). This method involves securing arbitrary model

architectures with a private key-lock module, where only the locked gradient is transferred

to the parameter server for aggregating the global model. The proposed FedKL method is

designed to be robust against gradient leakage attacks, ensuring that sensitive information

cannot be reconstructed from the shared gradient. The key-lock module is trained in a way

that, without the private information of the module, it becomes infeasible to reconstruct training

data from the shared gradient. Furthermore, the inference performance of the global model is

significantly undermined without the key-lock module, making it an integral part of the model

architecture. Our theoretical analysis explains why the gradient can leak private information

and how the proposed FedKL method defends against the attack based on our analysis. The

proposed FedKL method provides a new perspective on defending against gradient leakage

attacks in FL, enhancing the security and privacy of sensitive data.

We will continuously work on the privacy-preserving FL. In our previous work, we have

identified a number of follow-up research point. Examples include gradient leakage for Natural

Language Processing (NLP), an adaptive gradient aggregation method and partial gradient

leakage. Since we have theoretically proven that the private information is carried by the

gradients, so finding the state-of-the-art methods of stealing data and defending against leakage

is a long-term study in safeguarding privacy.

Acknowledgements

First and foremost, I would like to express my deep gratitude to my supervisor, Prof. Xianghua

Xie and Dr Jingjing Deng, for their invaluable guidance and support throughout my Ph.D studies.

Their knowledge, expertise, and unwavering support have been instrumental in helping me

navigate the challenges of graduate school and complete my research.

I am also grateful to Yi Hu, my wife, for her unwavering support and encouragement

throughout my Ph.D journey. Her love, patience, and understanding have been my constant

source of strength and motivation. Without her, I would not have been able to overcome the

many obstacles and setbacks that I encountered along the way. But most of all, thank you for

giving birth to our son, Ansen. Her strength and resilience during pregnancy and childbirth were

truly inspiring, and I will always be grateful for the gift of our handsome child. She truly is the

best partner and mother anyone could ask for, and I am so blessed to have her in my life. Thank

you for everything she does for our family and for her unwavering support and love. I love her

more than words could ever express.

I would also like to thank my family, my mother, father, grandmother, mother-in-law and

father-in-law, for their love and support throughout my academic study career. I just wanted to

take a moment to express my gratitude for their financial support for my Ph.D studies. Their

generosity has allowed me to focus on my research and education without the stress and worry

of financial burdens. Their belief in me and my goals has meant so much to me, and I am forever

grateful for their unwavering support. I promise to make them proud by dedicating myself to

my studies and using my knowledge and skills to impact the world positively.

Finally, I want to express my gratitude to the rest of my family and friends who have

supported me in various ways throughout my Ph.D studies. Their encouragement, advice, and

camaraderie have been invaluable in helping me stay focused and motivated. Their love and

support have meant the world to me, and I am truly grateful for everything they have done for

me.

v

Contents

List of Acronyms ix

List of Tables xii

List of Figures xiv

1 Introduction 1
1.1 Motivations . 1

1.2 Overview and Contributions . 3

1.3 Outline . 7

2 Background 9
2.1 Introduction . 9

2.2 Deep Learning and Machine Learning . 9

2.3 Federated Learning . 13

2.4 Private Issues . 15

2.5 Summary . 23

3 Generative Data Leakage Attack 25
3.1 Introduction . 25

3.2 Proposed Method . 27

3.3 Experiment and Discussion . 32

3.4 Summary . 51

4 Protected Gradient Boosting 53
4.1 Introduction . 53

4.2 Proposed Method . 55

vii

4.3 Experiment and Discussion . 61

4.4 Summary . 70

5 Leakage Defence with Key-Lock 73
5.1 Introduction . 73

5.2 Proposed Method . 76

5.3 Experiment and Discussion . 87

5.4 Summary . 98

6 Conclusions and Future Work 99
6.1 Conclusions . 99

6.2 Future Work . 101

6.3 The End . 103

Bibliography 105

List of Acronyms

AdaBoost Adaptive Boosting

AI Artificial Intelligence

AIGC AI Generated Content

ANN Artificial Neural Network

BiLSTM Bidirectional Long-Short Term Memory

BN Batch Normalisation

CD Cosine Distance

CE Cross Entropy

CMA-ES Covariance Matrix Adaptation Evolution Strategy

CNN Convolutional Neural Network

CRNN Convolutional Recurrent Neural Network

CTC Connectionist Temporal Classification

DCGAN Deep Convolutional GAN

DL Deep Learning

DLG Deep Leakage from Gradients

DNN Deep Neural Network

DP Differential Privacy

DT Decision Tree

EEA European Economic Area

EM Earth Mover’s

ix

EMD Earth Mover’s Distance

EU European Union

FC Fully-Connected

FCNN Fully-Connected Neural Network

FedAvg Federated Averaging

FedBoosting Federated Boosting

FedSGD Federated Stochastic Gradient Descent

FL Federated Learning

GAN Generative Adversarial Network

GBM Gradient Boosting Machines

GDPR General Data Protection Regulation

GGL Generative Gradient Leakage

GLU Gated Linear Unit

GPU Graphics Processing Unit

GRNN Generative Regression Neural Network

HE Homomorphic Encryption

HMM Hidden Markov Model

iDLG Improved Deep Leakage from Gradients

IG Inverting Gradient

IID Independent and Identically Distributed

LFW Labelled Faces in the Wild

LPIPS Learned Perceptual Image Patch Similarity

MAP Maximum A Posteriori

ML Machine Learning

MPC Secure Multi-Party Computation

MSE Mean Square Error

NLP Natural Language Processing

Non-IID Non-Independent and Non-Identically Distributed

PRECODE Privacy Enhancing Module

PSNR Peak Signal-to-Noise Ratio

ReLU Rectified Linear Unit

RNN Recurrent Neural Network

SGD Stochastic Gradient Descent

SSIM Structural Similarity

SVM Support Vector Machine

TEE Trusted Execution Environment

TVLoss Total Variation Loss

WD Wasserstein Distance

WGAN Wasserstein GAN

XGBoost eXtreme Gradient Boosting

List of Tables

3.1 Construction of upsampling block. 30

3.2 Examples of data leakage attack. 33

3.3 Examples of data leakage attack. 34

3.4 Average PSNR scores achieved by DLG and GRNN. 35

3.5 Comparison of image recovery. 37

3.6 Data leakage attack with different training batch sizes. 39

3.7 Examples of failed data leakage attack. 39

3.8 Some randomly selected ground truth images and corresponding recovered images. 40

3.9 Data leakage attack using GRNN. 42

3.10 Recovered images with different resolutions using GRNN. 43

3.11 Randomly selected images recovered by GRNN and IG. 44

3.12 Comparison of image recovery. 45

3.13 Comparison of label inference accuracy (%). 46

3.14 The re-identification results. 47

3.15 Performances of different network architectures. 48

3.16 Average PSNR scores with different noise types and scales. 50

4.1 Recognition accuracies (%) . 63

4.2 Visual example of testing results. 64

4.3 Recognition accuracies (%) . 67

5.1 Testing accuracy(%) from models trained at different settings. 88

5.2 Testing accuracies and losses . 90

5.3 Accuracy (%) of models trained by FedKL . 91

5.4 Comparison of image reconstruction . 93

5.5 Experiments performed on GGL. 94

xii

5.6 Quantitative comparison . 95

5.7 Comparison of image reconstruction . 96

List of Figures

3.1 Illustration of how GRNN as a malicious server is deployed in a FL system. 28

3.2 Details of the proposed GRNN . 29

3.3 Distances between true and generated images . 36

3.4 MSE loss visualisation for DLG and GRNN with batch size 32. 37

3.5 Successful attack rate . 41

3.6 MSE distances between true images and generated fake images 49

4.1 The schematic diagram of proposed FedBoosting and encryption protocol. 56

4.2 Decision boundaries . 62

4.3 Visual example of training images . 62

4.4 Testing accuracy of FedAvg and FedBoosting . 66

4.5 Testing accuracy of FedAvg and FedBoosting . 67

4.6 Performance comparison . 69

5.1 Illustration of FedKL . 74

5.2 Details of key-lock module . 85

5.3 FL system with the key-lock module. 86

xiv

Chapter 1

Introduction

1.1 Motivations

Artificial Intelligence (AI) is an interdisciplinary field of computer science that focuses on

creating machines and algorithms that can perform tasks that typically require human-like

intelligence, such as Natural Language Processing (NLP), image and speech recognition,

decision-making, and problem-solving. In recent years, there has been a huge advancement in

the development of AI, benefited by the availability of large-scale data, powerful computing

resources, and innovative algorithms. As laws improve and people become more conscious of

privacy protection, it will not be appropriate to centralise data from different data providers on

one side. Federated Learning (FL) is a promising approach for training Machine Learning (ML)

models on distributed and decentralised datasets, without the need to centralise the data. This

makes it attractive for applications in which data privacy and security are critical, such as

healthcare or finance. However, FL also poses new challenges, one of which is the potential for

gradient leakage. This occurs when the local model updates sent by the participating clients

during the training process contain information about their private data, which could be inferred

by an adversary. The typical FL approach heavily relies on a central parameter server for

global model aggregation. In FL, multiple local clients collaboratively train a global model by

exchanging model updates with the central server, which performs the model aggregation and

updates the global model. On the other hand, FL is also a communication-intensive framework,

it creates a potential attack surface for malicious. An attacker could be the parameter server.

Alternatively, an attacker could hack into the communication channels and intercept the local

gradients, compromising the privacy of the participants’ data. Therefore, it is essential to

1

1. Introduction

implement robust security measures to protect against such attacks and ensure the privacy of the

participants’ private data.

Gradient leakage is a significant security concern in ML, as it can allow an attacker to infer

sensitive information about the data used to train a model. This can have serious consequences,

such as revealing personal information about individuals or compromising the security of

essential systems. Defending against gradient leakage is a challenging problem because it

requires a deep understanding of both the ML model and the data it is trained on. One approach

to defence is to use private training algorithms that are designed to prevent the leakage of

information. These algorithms often use techniques such as Differential Privacy (DP) or Secure

Multi-Party Computation (MPC) to ensure that the model can be trained without revealing

sensitive information. Another approach to defence is to use robust learning algorithms resistant

to attacks that try to extract sensitive information from the model. These algorithms often use

adversarial training or regularisation techniques to make the model less susceptible to attacks.

Gradient leakage can undermine the privacy and security of FL; therefore, it is important

to understand its mechanisms and develop effective defence strategies. To address this prob-

lem rigorously and comprehensively. The research could involve developing new theoretical

frameworks for understanding and preventing gradient leakage and designing and evaluating

practical defences against gradient leakage. In this thesis, I will investigate the problem of

gradient leakage in FL and propose novel defence methods to prevent it. The study in this thesis

will contribute to the growing body of knowledge on FL and provide practical solutions to

improve its privacy and security. The impact of this research could be significant, as gradient

leakage is a primary concern in the field of ML, and the development of effective defences

against it could help to ensure the security of ML systems. Additionally, the research could

have critical practical applications, such as developing ML systems for sensitive applications

such as healthcare or finance.

The major motivations for studying gradient leakage and defence are as follows:

• To protect the privacy of individuals whose data is used to train FL models. Ensuring that

sensitive information is not leaked during the training process, prevents attackers from

gaining access to this information and using it to their advantage.

• To improve the security of FL models. Making models resistant to attacks that try to

extract sensitive information, prevents attackers from using the model to make predictions.

• To advance the field of FL. By studying gradient leakage and defence, gain insights into

2

Hans Ren

1.2. Overview and Contributions

the limitations of existing algorithms and propose new techniques for training private and

robust models.

1.2 Overview and Contributions

This work aims to understand FL and how gradient leakage occurs. We also aim to defence the

gradient leakage to protect the private training information. In Chapter 3, we will present that, in

the FL system, image-based privacy data can be easily recovered in full from the shared gradient

only via our proposed Generative Regression Neural Network (GRNN). We formulate the attack

as a regression problem and optimise two branches of the generative model by minimising

the distance between gradients. In Chapter 4, we will show a novel boosting algorithm for

FL to address both the generalisation and gradient leakage issues, as well as achieve faster

convergence in gradient-based optimisation. In addition, a secure gradient-sharing protocol

using Homomorphic Encryption (HE) and Differential Privacy (DP) is introduced to defend

against gradient leakage attack and avoid pairwise encryption that is not scalable. In Chapter 5,

we will explore a new perspective of method on defending FL gradient leakage by securing

arbitrary model architectures with a private key-lock module (FedKL). Only the locked gradient

is transferred to the parameter server for aggregating the global model. The proposed FedKL

is robust against gradient leakage attacks. In the rest of this section, we will briefly describe

the work presented in each chapter. We will also discuss the connection to the motivations we

discussed in Section 1.1 and the contribution of each proposed approach.

1.2.1 Gradient Leakage Attack

Generative Adversarial Network (GAN) is a generative model proposed by Goodfellow et al. [1]

for image generation. Inspired by the GAN and Deep Leakage from Gradients (DLG) model,

we introduce a gradient-guided image generation strategy that properly addresses the stability

and data quality issues of DLG based methods. The proposed GRNN, a novel data leakage

attack method, is capable of recovering private training images up to a resolution of 256*256

and a batch size of 256. The method is particularly suitable for FL as the local gradient, and

global model are readily available in the system setting. GRNN consists of two branches for

generating fake training data and corresponding labels. It is trained in an end-to-end fashion

by approximating the fake gradient that is calculated by the generated data and label to the

true gradient given the global model. Mean Square Error (MSE), Wasserstein Distance (WD)

3

1. Introduction

and Total Variation Loss (TVLoss) are used jointly to evaluate the divergence between true

and fake gradients. We empirically evaluate the performance of our method on several image

classification tasks and comprehensively compare against the state-of-the-art. The experimental

results confirm that the proposed method is much more stable and capable of producing better-

quality images when a large batch size and resolution are used. The contributions of this work

are four-fold:

• We propose a novel method of data leakage attack for FL, which is capable of recovering

private training images up to a resolution of 256*256, a batch size of 256 as well as the

corresponding labels from the shared gradient. The implementation of the method is

publicly available to ensure its reproducibility.

• We conduct a comprehensive evaluation, where both qualitative and quantitative results

are presented to prove the effectiveness of GRNN. We also compare the proposed method

against the state-of-the-art, which shows that GRNN is superior in terms of the success

rate of attack, the fidelity of recovered data and the accuracy of label inference. In

addition, our method is much more stable than others with respect to the size of the

training batch and input resolution.

• We conduct a face re-identification experiment that shows using the image generated by

the proposed GRNN can achieve higher Top-1, Top-3 and Top-5 accuracies compared to

the state-of-the-art.

• We discuss the potential defence strategies and quantitatively evaluate the effectiveness of

our method against noise addition defence strategy.

The findings of this chapter, including methodology and experimental results, are presented

in the following publication:

• Ren, H., Deng, J., & Xie, X. (2022). GRNN: generative regression neural network — a

data leakage attack for federated learning. ACM Transactions on Intelligent Systems and

Technology (TIST), 13(4), 1-24.

1.2.2 Gradient Protected Boosting

In Chapter 4, we propose the Federated Boosting (FedBoosting) method to address the weight

divergence and gradient leakage issues in the general FL framework. Instead of treating

4

1.2. Overview and Contributions

individual local models equally when the global model is aggregated, we consider the data

diversity of local clients in terms of the status of convergence and the ability of generalisation.

Hence, the different client is given a different aggregating percentage instead of averaging the

gradients from those clients. To address the potential risk of data leakage via shared gradients,

a DP based linear aggregation method is proposed using Homomorphic Encryption (HE) [2]

to encrypt the gradients, which provides two layers of protection. The proposed encryption

scheme only leads to a negligible increase in computational cost.

The proposed method is evaluated using a text recognition task on public benchmarks, as

well as a binary classification task on two datasets, which demonstrates its superiority in terms

of convergence speed, prediction accuracy and security. The performance reduction due to

encryption is also evaluated. Our contributions are three-fold:

• We propose a novel aggregation strategy, namely FedBoosting for FL to address the

weight divergence and gradient leakage issues. We empirically demonstrate that

FedBoosting converges significantly faster than Federated Averaging (FedAvg) while

the communication cost is identical to traditional approaches. Especially when the local

models are trained with a small batch size and the global model is aggregated after

a large number of epochs, our approach can still converge to a reasonable optimum,

whereas FedAvg often fails in such a case. Our implementation is publicly available to

ensure reproducibility. It can also be run in a distributed multiple Graphics Processing

Units (GPUs) setup. 1

• We introduce a dual layer protection scheme using HE and DP to encrypt gradients

flowing between server and clients, which protect the data privacy from gradient leakage

attack.

• We show the feasibility of our method on two datasets by evaluating the decision bound-

aries visually. Furthermore, we also demonstrate its superior performance in a visual

text recognition task on multiple large-scale Non-Independent and Non-Identically Dis-

tributed (Non-IID) datasets compared to the centralised approach and FedAvg. The

experimental results confirm that our approach outperforms FedAvg in terms of con-

vergence speed and prediction accuracy. It suggests that FedBoosting strategy can be

integrated with other Deep Learning (DL) models in the privacy-preserving scenarios.

1https://github.com/Rand2AI/FedBoosting

5

https://github.com/Rand2AI/FedBoosting

1. Introduction

The findings of this chapter, including methodology and experimental results, are presented

in the following publication:

• Ren, H., Deng, J., Xie, X., Ma, X., & Wang, Y. (2022) FedBoosting: Federated Learning

with Gradient Protected Boosting for Text Recognition. IEEE Transactions on Emerging

Topics in Computing (TETC). Under Reviewing.

1.2.3 Gradient Leakage Defence with Key-Lock Module

In Chapter 5, we first theoretically approve that the feature maps computed from the fully-

connected layer, convolutional layer and Batch Normalisation (BN) layer contain the private

information of input data, where such information also co-exists in the gradient at the backward

passing stage. Furthermore, we hypothesise that the gradient leakage attack is possible only

when the gradient spaces between the global and local models are well aligned. Therefore,

we propose FedKL, a key-lock module which is capable of differentiating, misaligning and

locking the gradient spaces with a private key meanwhile keeping the federated aggregation the

same as the typical FL framework. In summary, we reformulate the scale and shift processes

in the normalisation layer. A private key, i.e., randomly generated sequence, is fed into two

fully-connected layers, and the outputs are the privately owned coefficients for the scale and

shift processes. Both theoretical analysis and experimental results show that the proposed

key-lock module is feasible and effective in defending against the gradient leakage attack

as the consistency of private information in the gradient is obfuscated so that the malicious

attacker cannot formula the forward-backwards propagation without the private key and the

gradient of the lock layer. Therefore, it is no longer feasible to reconstruct local training data by

approximating the shared gradient in the FL system. Our theoretical and experimental results

suggest that the FedKL brings the benefits in four aspects:

• Safe - a strong protection strategy against the gradient leakage attack;

• Accurate - negligible degradation of inference performance compared to the model

without the key-lock module;

• Efficient - additional computational cost on the key-lock module is negligible;

• Flexible - applicability to arbitrary network architecture.

The findings of this chapter, including methodology and experimental results, are presented

in the following publication:

6

1.3. Outline

• Ren, H., Deng, J., Xie, X., Ma, X., & Ma, J. (2022) FedKL: Gradient Leakage Defence

with Key-Lock Module for Federated Learning. IEEE Transactions on Pattern Analysis

and Machine Intelligence (TPAMI). In Preparation.

1.3 Outline

The rest of the thesis is organised as follows:

• In Chapter 2, background knowledge is presented, providing the necessary information

that includes the introduction to FL, gradient leakage and gradient leakage defence. Some

classic and state-of-the-art methods are also reported in this chapter.

• In Chapter 3, a state-of-the-art gradient leakage method, GRNN, is introduced. The

proposed method utilised two branches of the generative GAN-based model to generate

fake images and labels. Then regress the fake gradient to the true gradient for optimising

the model to enhance its generative ability.

• In Chapter 4, a novel boosting algorithm is introduced for FL to address both the generali-

sation and gradient leakage issues, as well as achieve faster convergence in gradient-based

optimisation. To achieve the gradient leakage defence, HE and DP are utilised to secure

the gradient transmitting between the client and server.

• In Chapter 5, a new perspective of method on defending Federated Learning Gradient

Leakage by securing arbitrary model architectures with a private key-lock module (FedKL)

is presented. A key sequence is used as the input of two lock layers. Then the lock layers

will output two parameters, one for scale and the other for the shifting process. Hence,

the inheritance of the private input information throughout the gradient is broken. On the

other hand, we theoretically analyse how the gradient leakage takes place in the fully-

connected layer, convolutional layer and BN layer. Mathematical reasoning processing is

provided.

• In Chapter 6, a comprehensive discussion on the proposed approaches and possible

extensions of the work presented in this thesis is reported.

7

Chapter 2

Background

2.1 Introduction

In this chapter, we will look through this thesis’s background knowledge. In Section 2.2,

a comprehensive look back on DL, ML, Convolutional Neural Network (CNN) and image

classification are reported. In Section 2.3, we first introduce the basic concept of FL, FedAvg,

which is the core technique in the thesis. Then, an overview of gradient leakage in FL is

introduced, which includes many state-of-the-art attack methods. At last, we investigate how

to defend against gradient leakage attack, such as gradient perturbation, data obfuscation or

sanitization, DP, HE and MPC. Three state-of-the-art defence methods are reported.

2.2 Deep Learning and Machine Learning

DL and ML are two closely related fields within the broader domain of AI. Both are concerned

with developing algorithms and systems that can learn and adapt to new data. Both have

seen tremendous advances in recent years due to the availability of large amounts of data and

powerful computing resources. DL, in particular, has garnered a lot of attention in recent years

due to its ability to achieve state-of-the-art results in a wide range of tasks, including image

and speech recognition [3–7], NLP [8–12], and machine translation [13–17]. This success is

largely due to the use of Deep Neural Network (DNN)s, which are inspired by the structure and

function of the human brain and can learn to recognise patterns in data by adjusting the weights

of their many interconnected nodes. DL is a more general term that encompasses a wide range

of techniques for learning from data. These techniques range from simple linear regression

9

2. Background

models to more complex algorithms such as Support Vector Machine (SVM) and Decision

Tree (DT). DL algorithms can be divided into two main categories: supervised learning, in

which the algorithm is trained on labelled data and makes predictions based on that training, and

unsupervised learning, in which the algorithm is given unlabelled data and must find patterns

and relationships within the data on its own. Unlike DL, which relies on large amounts of data

and complex models to learn, ML algorithms typically require explicit feature engineering and

manual labelling of the data. This means that the data needs to be structured and processed in a

specific way for the algorithm to learn from it.

Some of the key applications of ML include predictive modelling [18–20], fraud detec-

tion [21–23], and recommendation [24–26]. For example, ML algorithms have been used to

predict stock prices, identify fraudulent transactions, and recommend products or content to

users. While ML has proven effective in many tasks, it is not as flexible or powerful as DL

in some areas. ML algorithms are generally less effective at learning complex patterns and

relationships in unstructured data and may require more data and computational resources to

achieve similar results. Both DL and ML have a wide range of applications in various industries,

including healthcare [27–29], finance [30–32], and transportation [33–35]. In healthcare, for

example, DL algorithms have been used to analyse medical images and predict the likelihood

of certain diseases. In contrast, ML algorithms have been used to analyse patient data and

predict the likelihood of certain outcomes. In finance, ML algorithms have been used to identify

fraudulent transactions and predict market trends, while in transportation, ML algorithms have

been used to improve the efficiency of self-driving cars.

DL and ML are two exciting and rapidly evolving fields within AI that have the potential to

revolutionise a wide range of industries and applications. While both require a strong foundation

in mathematics and computer science, they offer many tools and frameworks that make it easier

for developers to build and deploy ML models. As data and computing resources become more

widely available, we expect to see even more advances in these fields in the coming years.

2.2.1 Convolutional Neural Network

CNNs are a type of artificial neural network specifically designed for image and video recog-

nition tasks [36–39]. They are inspired by how the visual cortex processes information in the

human brain. They have proven to be very effective in a wide range of applications, including

image classification [40–44], object detection [45–49], and video analysis [50–53].

At a high level, a CNN consists of an input layer, one or more hidden layers, and an output

10

2.2. Deep Learning and Machine Learning

layer. The hidden layers consist of convolutional layers, which apply a set of learned filters to

the input data, and pooling layers, which down-sample the data to reduce its dimensionality

and increase the model’s generalisation ability. The output layer produces a prediction based

on the processed input data. One key feature of CNNs is convolutional layers, which apply

filters to the input data to extract meaningful features. These filters are learned during the

training process and can detect edges, lines, and other patterns in the data. The filters are

applied to the input data using convolution, which involves sliding the filter over the input data

and performing element-wise multiplication followed by a sum. This process results from a

feature map, which represents the presence of the learned features in the input data. Another

critical feature of CNNs is the use of pooling layers, which down-sample the data to reduce

its dimensionality and increase the model’s ability to generalise. There are several types of

pooling, including max pooling and average pooling, but max pooling is the most commonly

used. Max pooling works by dividing the input data into a set of non-overlapping windows

and selecting the maximum value in each window. This process reduces the size of the data,

while still preserving the most essential features. In addition to convolutional and pooling layers,

CNNs can also include fully-connected layers, similar to the hidden layers in a traditional neural

network. These layers take the output of the convolutional and pooling layers and apply a set of

weights to produce a prediction. The output layer is typically a softmax layer, which produces a

probability distribution over the possible classes. Training a CNN involves feeding the model a

large dataset of labelled examples and adjusting the weights and biases of the layers to minimise

the error between the predicted and true labels. This is done using an optimisation algorithm,

such as stochastic gradient descent or Adam [54], and requires a large amount of computing

power and data.

CNNs have proven to be very effective for image and video recognition tasks and have

achieved state-of-the-art results on a wide range of benchmarks. They are widely used in

industry and research and are an important tool in the field of DL.

2.2.2 Generative Adversarial Network

GAN is a generative model proposed by Goodfellow et al. [1] for image generation. It is a

class of machine learning framework that has gained significant attention in recent years for its

ability to generate realistic data samples. GANs consist of two neural networks, a generator and

a discriminator, that are trained simultaneously in a game-theoretic setting. The generator cre-

ates synthetic data samples, while the discriminator evaluates the authenticity of these samples

11

2. Background

against real data [55]. One of the key inspirations for GANs comes from game theory, where two

players engage in a zero-sum game [56]. In the context of GAN, the generator aims to produce

realistic samples to fool the discriminator, while the discriminator tries to accurately distinguish

between real and fake data [57]. This adversarial process allows the generator to improve

its output iteratively, ultimately creating highly realistic synthetic data. Since their inception,

GANs have been used in a wide array of applications, including image synthesis [58–61],

video generation [62–65], style transfer [66–68], data augmentation [69–72], and even drug

discovery [73, 74]. Some notable variants and advancements of GANs include Deep Convolu-

tional GAN (DCGAN) [75], Wasserstein GAN (WGAN) [76], and CycleGAN [77], each of

which address specific challenges or extend the capabilities of the original GAN architecture.

WGAN introduces the Wasserstein distance as an alternative loss function, improving training

stability and addressing the mode collapse issue. CycleGAN enables unpaired image-to-image

translation by enforcing cycle consistency, allowing for transformations between different data

domains without paired training samples. Other techniques, such as unrolled GAN [78], focus

on improving the optimisation process by unrolling the discriminator’s optimisation steps during

generator updates, which helps stabilise training. In addition, studies on GAN convergence [79]

have provided valuable insights into the choice of training methods and hyperparameters for

more reliable GAN training. Amortised Maximum A Posteriori (MAP) inference [80] is another

technique that incorporates GAN into Bayesian inference for tasks like image super-resolution,

demonstrating the versatility of GAN in various machine learning applications.

GANs are a powerful class of generative models that leverage adversarial training to create

realistic synthetic data. They have been applied to numerous domains and have seen significant

advancements since their introduction in 2014. However, challenges remain, and ongoing

research seeks to further improve their stability and performance.

2.2.3 Image Classification

Image classification assigns a class label to an input image [81]. It is a fundamental problem

in computer vision and has numerous practical applications, such as in object recognition [36–

38, 82], facial recognition [83–85], and autonomous vehicles [86–88]. The goal of image

classification is to learn a function that maps an input image to a class label. The input

to the function is an image, and the output is a class label. For example, given an image

of a cat, the function should output the class label "cat". There are several approaches to

image classification, including traditional ML methods and DL methods. Traditional ML

12

2.3. Federated Learning

methods for image classification involve extracting features from the image and then training a

classifier on these features. These features could be pixel values, edges, textures, or other image

characteristics. The classifier could be a SVM, a DT, or another type of classifier. DL methods,

on the other hand, do not require explicit feature extraction. Instead, they learn features directly

from the raw image data using neural networks. These methods have been shown to be very

effective for image classification, particularly when using CNNs. A large dataset of labelled

images is required to train a DL model for image classification, such as ImageNet [89]. The

model is trained by presenting it with an image and the corresponding class label and adjusting

the model’s parameters so that it correctly predicts the class label for that image. This process is

repeated for many images in the training dataset until the model performs well. Once the model

is trained, it can classify new images. Given an input image, the model predicts the class label

that it belongs to. There are many challenges in image classification, including the variability of

images, the need for large amounts of labelled data, and the difficulty of obtaining high-quality

labels. However, with the advent of DL and the availability of large datasets and computational

resources, significant progress has been made in the field, and image classification has become

a critical component of many practical applications.

2.3 Federated Learning

FL is a distributed ML approach that enables the training of a ML model on multiple decen-

tralised devices, such as smartphones or edge computing devices, without the need to share

the data with a central server [90–94]. This approach aims to preserve the privacy of the data

and avoid the risks associated with data leakage, while still allowing the model to learn from a

large and diverse dataset. FL can be seen as an extension of traditional ML techniques, which

rely on the centralisation of data in a single location for training. However, in many cases, it

is not possible or desirable to centralise the data due to privacy concerns or the difficulty of

collecting and storing large amounts of data from multiple sources. FL addresses this issue by

allowing the training to be performed on the devices themselves without the need to transmit

the data to a central server. The main idea behind FL is to train a model on multiple devices

using their local data and then aggregate the model updates from each device to improve the

overall model performance. This is done through a process known as FedAvg [93], where the

model updates from each device are averaged together to create a global model. In FedAvg, the

global model takes the average of gradients from local models, i.e. w 0 = ÂN
i

1
N wi, where w 0 and

wi are the gradients of global model and the ith local model, and N is the total number of clients.

13

2. Background

The method is evaluated on the MNIST benchmark and demonstrates its feasibility on the

classic image classification task using CNNs as the learning model. Although the experimental

results show that FedAvg is suitable for both Independent and Identically Distributed (IID) and

Non-IID data, it is still a statistical challenge of FL when a local model is trained on large-scale

Non-IID data. In Chapter 4.3, our experimental results also support such an argument, where

the prediction accuracy and convergence rate drop significantly with large-scale Non-IID data

on FedAvg. FL has been applied to a variety of tasks, including NLP, image classification, and

recommendation systems. It has also been used in healthcare applications, such as predicting

patient outcomes or identifying early signs of disease. One of the key challenges in FL is

the limited availability of data on each device, which can lead to poor model performance.

To address this issue, researchers have proposed various approaches, such as transfer learn-

ing [95–97] and data augmentation [98–100], to improve the performance of the model. Another

challenge is the variability in the data distribution across devices, which can lead to uneven

model performance. To address this issue, researchers have proposed methods such as federated

transfer learning [101–103], where a pre-trained model is fine-tuned on each device using

its local data, and federated meta-learning [104–106], where the model is trained to adapt to

different data distributions. FL has the potential to revolutionise how ML is performed by

enabling the training of models on decentralised data without the need for data centralisation. It

can potentially enable the development of personalised and privacy-preserving ML applications

and democratise access to ML by allowing individuals and organisations to contribute their

data to the training process. However, FL also brings new challenges and research directions,

such as optimising communication and computation resources, developing robust and efficient

aggregation algorithms, and designing privacy-preserving protocols. Overall, FL represents a

promising approach to enable the training of ML models on decentralised data, while preserving

the privacy of the data and avoiding the risks associated with data leakage. It can potentially en-

able the development of personalised and privacy-preserving ML applications and democratise

access to ML by allowing individuals and organisations to contribute their data to the training

process.

2.3.1 Horizontal, Vertical and Transfer Federated Learning

There are three main types of FL: horizontal FL, vertical FL, and transfer FL. Horizontal FL

involves training a ML model using data from a federation of distributed devices or silos, where

each device or silo holds a distinct and non-overlapping subset of the data. For example, a

14

2.4. Private Issues

hospital network may have data from multiple hospitals, each with its own electronic medical

record system. In horizontal FL, a model is trained using data from all the hospitals without cen-

tralising the data. This can be useful in situations where data is distributed across organisations,

and there are privacy or regulatory concerns around centralising the data.

Vertical FL is a technique for training ML models on decentralised data, where each

participating node has a different feature space. An example of this might be training a model to

predict patient outcomes, where each node has patient data from a different hospital, and each

hospital has collected different types of data (e.g. one hospital has collected genetic data, while

another has collected imaging data). In vertical FL, the goal is to train a model that can use the

participating nodes’ diverse feature spaces, without exchanging raw data between the nodes.

Vertical FL has the potential to improve the accuracy and performance of machine learning

models. By training models using data from multiple sources, organisations can gain access to

a wider range of data and more diverse training examples. This can lead to more robust and

accurate models that can better generalise to new data.

Transfer FL offers a solution to this problem by allowing multiple parties to contribute their

data to the training process without actually sharing the data itself. This is achieved through the

use of a central server, which coordinates the training process and manages the model updates.

Each party, or client, sends their data to the server, which uses it to update the model. The

updated model is then sent back to the client, who can use it to make predictions on their own

data. There are several benefits to using transfer FL. First, it allows multiple parties to contribute

to the training process without compromising their data privacy. This can lead to more accurate

and robust models, as they can access a wider range of data. Additionally, transfer FL can

reduce the need for data storage and processing resources, as the data remains on the client’s

systems and is only used to update the model. One of the critical challenges in implementing

transfer FL is ensuring that the model updates are consistent across all clients. Achieving this

can be difficult, as each client may have different data distributions and patterns. To address this

issue, transfer FL relies on techniques such as federated averaging and federated optimisation to

ensure that the model updates are consistent and accurately reflect the combined data from all

clients.

2.4 Private Issues

In the context of FL, private issues refer to concerns related to the privacy of the data used

in the training process. Specifically, one of the major challenges in FL is the risk of gradient

15

2. Background

leakage, which occurs when the gradients transmitted between the parameter server and clients

contain sensitive information about the local data of the participants. Gradient leakage refers

to the unintentional exposure of a model’s training data during the model’s training process.

When training on sensitive data, gradient leakage can result in privacy violations and the

disclosure of private information. Several privacy-preserving techniques, including DP, MPC,

and HE, have been proposed to address this issue. However, these techniques can introduce

additional computational and communication overhead, which can hinder the performance of

FL. Therefore, finding a balance between privacy and efficiency remains a significant challenge

in the field of FL, particularly when dealing with sensitive data.

2.4.1 Secure Multi-Party Computation

FL for privacy-preserving ML is proposed for training a model across multiple decentralised

edge devices or clients holding local data samples. More specifically, the FL framework keeps

the raw data to the owners and trains the model locally at client nodes individually. In contrast,

the gradients of those models are exchanged and aggregated instead of data. Other than FL,

MPC [107, 108] is another distributed training method that ensures a high level of security at

the price of expensive cryptography operations. MPC is a sub-field of cryptography that deals

with the design and implementation of protocols that allow multiple parties to jointly compute a

function on their private inputs without revealing those inputs to each other. MPC protocols can

be used to solve many problems, including secure computation of arbitrary functions, secure

data sharing, voting, auctions, and more. One of the main motivations for MPC is to enable

secure collaboration between parties who may not fully trust each other. For example, consider

a group of companies that want to jointly compute the average price of a product across all their

stores without revealing the prices at individual stores. MPC protocols can be used to compute

the average securely, without any party learning the prices at other stores [107]. MPC protocols

can be broadly classified into two categories: interactive protocols [109,110] and non-interactive

protocols [111, 112]. Interactive protocols require the parties to communicate with each other in

order to compute the function. Non-interactive protocols do not require any communication

between the parties and can be implemented using only publicly available information. MPC

is an active research topic. FALCON [113] is a 3-party protocol for efficient private training

and inference of large ML models, offering high expressiveness, batch normalisation support,

security guarantees, and new theoretical insights for better efficiency. Compared to existing

solutions, FALCON is significantly faster and more communication efficient. In order to promote

16

2.4. Private Issues

the adoption of MPC in the realm of ML, CRYPTEN [114] is proposed, a software framework

that offers widely-used MPC primitives through familiar abstractions found in contemporary

machine learning frameworks. These include tensor operations, automatic differentiation, and

modular neural networks. Yong et al. [115] proposed a new privacy-preserving FL framework

called chain-PPFL, which uses a chained MPC technique. This framework employs two

mechanisms: 1) single-masking to protect information exchange between participants, and

2) chained-communication to transfer masked information in a serial chain. They tested the

framework using two public datasets and compared training accuracy and leak defence with

other methods.

MPC is a powerful tool for enabling secure collaboration between parties who may not

fully trust each other. There are challenges and limitations to MPC, for example efficiency,

security and performance trade-offs, complexity. MPC protocols typically introduce significant

computational and communication overhead compared to non-secure methods, which can make

them unsuitable for large-scale, real-time, or resource-constrained applications. Achieving

stronger security guarantees often comes at the cost of reduced performance, forcing practition-

ers to balance between the two based on their specific use case. It is generally more complex

than traditional cryptographic techniques, which can lead to increased development time and

potential security vulnerabilities. In conclusion, while MPC provides a powerful framework for

privacy-preserving computation, it comes with several limitations that need to be considered in

the design and implementation of MPC protocols for various applications.

2.4.2 Homomorphic Encryption and Differential Privacy

Since there is no explicit data exchange, FL does not require adding noises to the data as

DP [116–120], nor encrypting data into homomorphic phase to fit a homomorphic operation

as HE [121–124]. DP is a framework for analysing the privacy guarantees of algorithms that

process data with sensitive information. It provides a way to quantitatively measure the amount

of privacy that is preserved in the data after the algorithm has been applied. The main idea behind

DP is to add randomness to the data in a way that preserves the privacy of individual records

while still allowing the data to be useful for statistical analysis. This is done by introducing

"noise" into the data, which makes it difficult for an attacker to determine the value of any

individual record with high confidence. There are several key components to DP:

• The privacy budget: This is a measure of the amount of noise that is added to the data.

The larger the privacy budget, the more noise is added and the greater the protection of

17

2. Background

individual privacy.

• The sensitivity of the query: Different queries have different levels of sensitivity, which

determines the amount of noise that needs to be added. For example, a query that asks for

the average income of a group of individuals is less sensitive than a query that asks for

the income of a specific individual.

• The composition property: This property states that the privacy guarantees of multiple

differentially private algorithms can be "composed" to create an overall privacy guarantee

for a larger system.

There are several techniques for adding noise to data in order to achieve DP. One common

approach is the use of the Laplace mechanism [125], which adds noise drawn from a Laplace

distribution to the output of a query. Another approach is using the Exponential mechanism [126],

which adds noise drawn from an exponential distribution to the output of a query.

HE is a form of encryption that allows mathematical operations to be performed on encrypted

data, without the need to decrypt the data first [121, 127]. This property enables a number

of exciting and valuable applications, such as MPC, secure outsourcing of computation, and

privacy-preserving data analysis. At a high level, HE works by encrypting data so that specific

mathematical operations can be applied to the encrypted data. The result of these operations

will be the same as if they were applied to the original, unencrypted data. For example, if having

two numbers, 3 and 4, and we want to add them together, the result would be 7. If we instead

encrypt these numbers using a HE scheme and then apply the addition operation to the encrypted

numbers, the result will also be 7, even though the actual values of the numbers are hidden

from view. There are two main types of HE: partially HE and fully HE. Partially HE [127]

schemes only allow a single type of mathematical operation to be performed on the encrypted

data, such as addition or multiplication. These schemes are relatively simple to construct, but

their limited functionality makes them less useful in practice. Fully HE [128] schemes, on the

other hand, allow arbitrary mathematical operations to be performed on the encrypted data.

These schemes are significantly more complex and computationally intensive, but they have a

much wider range of possible applications. One of the critical challenges in designing a HE

scheme is finding a way to encrypt the data in such a way that the mathematical operations can

be applied directly to the encrypted data, without the need to decrypt it first. This requires the

use of advanced mathematical techniques, such as lattices and modular arithmetic. Despite its

many potential uses, HE is still an active area of research, and many challenges remain in terms

18

2.4. Private Issues

of efficiency, security, and usability. As such, HE is not yet widely used in practice, but it is

an exciting area of research that has the potential to revolutionise the way we think about data

privacy and security.

2.4.3 Gradient Leakage

FL is designed for privacy-protected training as the data is kept and processed locally. However,

it has been highlighted in multiple studies, e.g. [129–131], FL suffers from the so-called

gradient leakage problem that is the private training data can be recovered from the publicly

shared gradients with significantly high success rate. The gradient leakage attack is a way of

revealing unauthorised private training data based on the leaked gradient. This is one of the

most critical privacy-preserving threats in centralised and collaborative DL systems. One of

the common ways of exposing private training data in a centralised DL system is membership

inference [132–136]. Gradient leakage refers to the phenomenon in which the gradients used

to update the weights of a neural network model are influenced by input data from outside the

current training batch or input sequence. This can occur in various ways, such as through the

use of shared memory or other types of shared resources between multiple parallel or sequential

processing units. One common scenario in which gradient leakage can occur is when using

mini-batch gradient descent for training a neural network in FL. In this case, the model’s

gradients are updated based on a small subset of the training data (the mini-batch) at each

training iteration. If the mini-batch size is small enough, the attacker can reconstruct the current

mini-batch, leading to gradient leakage.

Given a trained victim model and a target label, Hitaj et al. [129] proposed a GAN-based

data recovery method that can generate a set of new data having close distribution to the training

dataset. The method explores the potential for information leakage in collaborative DL scenarios,

where multiple parties contribute data to train a shared DL model. In particular, the paper focuses

on the use of GANs in collaborative DL and examines the potential for information leakage

through the generator network of the GAN. The authors propose a method to mitigate this

information leakage and evaluate its effectiveness through experiments on several datasets. First,

each participant trains a local model on its own dataset for several iterations to achieve an

accuracy above the pre-set threshold, which is used as a discriminator in the next stage. To train

the generator, the weights of the discriminator are first fixed. Then, given a specified class, the

generator is learned by producing an image that maximises the classification confidence of the

discriminator. The generated image has no explicit correspondence to the training data, and the

19

2. Background

method is sensitive to the variance of training data [137]. Zhu et al. [130] formulated the data

recovery task as a gradient regression problem. In DLG, the input image pixel values are treated

as random variables optimised using back-propagation. At the same time, the shared model

parameters are fixed. The object function measures the Euclidean distance between the shared

gradient in FL and the gradient given by the random image input, which is minimised during

the training phase. They hypothesised that the optimised input when the model converges is

similar to the original training image stored on the local client alone. The experimental results

on public benchmark datasets prove the hypothesis is valid, indicating that gradient sharing

could lead to privacy data leakage. Zhao et al. [138] introduced Improved DLG (iDLG) that

addresses the divergence and inconsistent label inference issues of DLG. They found that the

derivative value corresponding to the ground-truth label drops in the range of [-1, 0], and other

cases lie in the range of [0, 1]. It is then feasible to identify the correct label in such a naïve way.

In addition to the low accuracy of label inference, DLG based methods often fail to recover the

image from the gradient when the variance of the data is large, which is very common for the

dataset with a large number of classes. Inverting Gradient (IG) [139] improved the stability of

DLG and iDLG by introducing magnitude-invariant cosine similarity measurement for the loss

function, namely Cosine Distance (CD). It aims to find images that pursue similar prediction

changes from the classification model rather than those that can generate close values with

the shared gradient. It shows recognisable results of recovering high-resolution images (i.e.

224*224) with a large number of training batches (i.e. #Batch = 100). Similar to [139], Jeon

et al. [140] claimed that only gradient information is not sufficient to reveal private training

data. Hence, they introduced GIAS, which applies a pre-trained data-revealing model. Yin et

al. [141] reported that in an image classification mission, the ground-truth label could be easily

revealed from the gradient in the last fully-connected layer, and BN statistics can impressively

improve the gradient leakage attack and reveal high-resolution private training images. The

generative model-based method is another way of gradient leakage attack. In the work of

Generative Gradient Leakage (GGL) [142], they also utilise a GAN to generate the fake data.

The weights of GAN are pre-trained and fixed. The trainable parameters in GGL are the input

sequence of GAN. The label inference part references from iDLG, so the batch size has to

be 1. Unlike others, they use Covariance Matrix Adaptation Evolution Strategy (CMA-ES) as

the optimiser to bring less variety to the generated data. The data successfully generated from

GGL is not precisely true data, but some similar ones, which benefits GGL strong robustness

making it capable of overcoming many defence strategies, such as gradient noising, clipping, or

20

2.4. Private Issues

compression.

Other than gradient leakage attack, neural network poisoning is another common way of

model attack. They are two distinct methods of compromising the integrity and performance

of ML models, particularly neural networks. Gradient leakage attacks exploit the information

shared during the collaborative training process, such as in FL, by maliciously manipulating

gradients or extracting sensitive information from the gradient updates. These attacks can lead

to privacy exposure problem. On the other hand, neural network poisoning involves injecting

carefully crafted malicious data points into the training dataset, which can cause the model to

learn incorrect or harmful behaviours. This is typically performed by an adversary with the intent

to degrade the model’s performance or induce specific vulnerabilities. While both attacks aim

to compromise ML models, gradient leakage primarily targets the collaborative training process

and focuses on exploiting shared information, whereas neural network poisoning undermines

the integrity of the training data directly to influence the model’s learning outcomes.

There are several ways to mitigate the effects of gradient leakage, including using larger

mini-batch sizes, using techniques such as batch normalisation to reduce the sensitivity of

the gradients to the input data, and using techniques such as weight regularisation. Overall,

gradient leakage is an important consideration in the design and training of neural network

models and understanding its effects and how to mitigate them can be critical for achieving

good performance in a wide range of ML tasks.

2.4.4 Gradient Leakage Defence

Gradient leakage defence refers to techniques that aim to prevent the leakage of sensitive

information through the gradients of a ML model during training. This is particularly important

in scenarios where the model is trained on sensitive data, such as personal or financial data, as the

gradients of the model may contain information about the training data that an adversary could

exploit. There are several ways in which gradient leakage can occur, which we have discussed

above. To defend against gradient leakage, a number of approaches have been proposed. One

approach is to use DP optimisation algorithms, which aim to ensure that the gradients of the

model do not contain any sensitive information. Another approach is to use perturbation-based

defences, which add noise to the gradients of the model to obscure any sensitive information

that may be contained within them. Other approaches to gradient leakage defence include

the use of MPC algorithms, which allow multiple parties to jointly compute gradients without

revealing sensitive information to each other, and the use of HE, which allows computation to

21

2. Background

be performed on encrypted data without the need to decrypt it. Many efforts have been made

to protect private information from the gradient. Most methods, such as gradient perturbation,

data obfuscating or sanitising, DP, HE and MPC [115] achieve the protection on the private

training data or public shared gradient transmitted between the client and server. Zhu et al. [130]

experimented with two kinds of noise types, Gaussian and Laplacian, and reported that only

the magnitude of distribution variance matters, rather than the noise type. The leakage attack

fails when the variance is more significant than 10�2, while the model’s performance degrades

dramatically at this level of variance. Chamikara et al. [143] proposed a data perturbation

method reporting that the technique does not degrade the model performance whilst preserving

the privacy of the training data. The input dataset is considered a data matrix and subjected to a

new feature space by a multidimensional transformation. They perturbed the input data with

various scales of transformation to ensure a sufficient level of perturbation. However, the method

relies on a centralised server that controls the generation of global perturbation parameters. Most

importantly, the perturbation method may corrupt the architectural information of image-based

data. Wei et al. [144] utilised DP to add noise to each client’s training dataset and propose

a per-example-based DP approach for the client, called Fed-CDP. To enhance the inference

performance and level of defence for gradient leakage. However, the experimental results show

that although the method prevents the training data from being reconstructed from the gradient,

the inference accuracy degrades significantly. On the other hand, the computational cost is

expensive since the DP is performed on each training sample. When computing the gradient,

both Privacy Enhancing Module (PRECODE) [145] and our proposed FedKL expect to prevent

the input information from passing throughout the model. The PRECODE inserts a module

ahead of the output layer to translate the latent representation of features by a probabilistic

encoder-decoder. The encoder-decoder consists of two fully-connected layers. The first encodes

the input features into a sequence and then normalises the sequence based on mean and standard

deviation values. The mean value is calculated from the first half of the sequence, while

the standard deviation is obtained from the remaining half. At last, the decoder translates

the normalised sequence into a latent representation that serves as input to a dynamic decay

noise injection method proposed for the output layer. The normalisation process between the

encoder and decoder prevents the input information from passing through the gradient. Hence,

PRECODE can prevent input information from leaking out from the gradient. Compared to

our FedKL, PRECODE inserts two fully-connected layers in front of the outer, which leads

to a huge computational cost. That is why only three very shallow DNNs were used for the

22

2.5. Summary

experiments in their paper.

Gradient leakage defence is an important issue in the field of ML, and a variety of approaches

have been proposed to address it. However, it is still an active area of research, and there is

ongoing work to develop more effective and efficient ways of preventing the leakage of sensitive

information through gradients.

2.5 Summary

This chapter discusses the background information for the approaches presented in the following

chapters. The chapter starts by describing the foundation knowledge of FL, which includes

an overview of the classic FedAvg algorithm. This is followed by gradient leakage, which is

a security vulnerability in FL systems where the gradients of model updates shared among

participating devices are leaked, potentially exposing sensitive data. This can occur when

devices have insufficient privacy protection measures or when there are malicious participants in

the network. In this chapter, several methods are introduced on the gradient leakage, including

DLG, iDLG, IG, GGL, etc. Then I discussed gradient leakage defence. To defend against

gradient leakage, several measures can be taken, including the use of MPC algorithms to encrypt

and protect the gradients during transmission, the use of DP techniques to add noise to the

gradients, and the use of FL algorithms that are specifically designed to prevent gradient leakage.

In the rest of this thesis, I will first introduce one gradient leakage attack method, GRNN,

which utilises two branches of generators from GAN to generate fake images and corresponding

labels. The method reaches a significant improvement to the DLG and IG. After this, we

investigate how to utilise DP and HE to defend the attack. At the same time, we proposed

FedBoosting to solve the converge bias problem when deploying FedAvg. In the end, FedKL

is introduced for the gradient leakage. We developed a new perspective on the problem, that a

key-lock module is inserted into the network to protect private information from being recovered

from the leaked gradient.

23

Chapter 3

Generative Data Leakage Attack

3.1 Introduction

More often than not, the success of DL [39, 81] relies on the availability of a large quantity

of data. A centralised learning scheme with a cloud-based distributed computing system is

commonly used to speed up the training and scale up to larger datasets [146–150]. However, due

to data protection and privacy requirements, such systems are generally infeasible as they require

centralised data for training. For instance, data owners (e.g. hospital, finance company, or

government agent) are not willing or not able to share private data with algorithm and computing

platform providers, which causes the so-called “Data Islands” issue. Therefore, decentralised

training approaches with data privacy protection are more attractive.

FL [90] was proposed to jointly train a model without directly accessing the private training

data. Instead of sharing data, the aggregation server shares a global model and requires the

individual data owners to expose the gradient information computed privately only. The gradient

is generally considered to be secure to share. However, recent studies found that the gradient-

sharing scheme is in fact not privacy-preserved [129,132,137,151]. For example, the presence of

a specific property of the training dataset can be identified given the gradient information [137].

Hitaj et al. [129] showed the feasibility of generating images that are similar to training images

using GAN given any known class label [1]. DLG based models [130, 138] were proposed to

approximate the leaked gradient via learning the input while fixing the model weights. However,

they are usually unstable and sensitive to the size of the training batch and the resolution of

the input image. Furthermore, Geiping et al. [139] discussed the theoretical aspect of inverting

gradient to its corresponding training data and used magnitude-invariant cosine similarity loss

25

3. Generative Data Leakage Attack

function in proposed IG, which is capable of recovering high-resolution images (i.e. 224*224)

with a large number of training batch (i.e. #Batch = 100). However, we find that the success

rate is relatively low.

GAN is a generative model proposed by Goodfellow et al. [1] for image generation. Inspired

by the GAN and DLG model, we introduce a gradient-guided image generation strategy that

properly addresses the stability and data quality issues of DLG based methods. The proposed

GRNN, a novel data leakage attack method is capable of recovering private training images

up to a resolution of 256*256 and a batch size of 256. The method is particularly suitable for

FL as the local gradient and global model are readily available in the system setting. GRNN

consists of two branches for generating fake training data and corresponding labels. It is trained

in an end-to-end fashion by approximating the fake gradient that is calculated by the generated

data and label to the true gradient given the global model. MSE, WD and TVLoss are used

jointly to evaluate the divergence between true and fake gradients. We empirically evaluate the

performance of our method on several image classification tasks and comprehensively compared

against the state-of-the-art. The experimental results confirm that the proposed method is much

more stable and capable of producing images with better quality when a large batch size and

resolution are used. The contributions of this work are four-fold:

• We propose a novel method of data leakage attack for FL, which is capable of recovering

private training images up to a resolution of 256*256, a batch size of 256 as well as the

corresponding labels from the shared gradient. The implementation of the method is

publicly available to ensure its reproducibility.

• We conduct a comprehensive evaluation, where both qualitative and quantitative results

are presented to prove the effectiveness of GRNN. We also compare the proposed method

against the state-of-the-art, which shows that GRNN is superior in terms of the success

rate of attack, the fidelity of recovered data and the accuracy of label inference. In

addition, our method is much more stable than others with respect to the size of the

training batch and input resolution.

• We conduct a face re-identification experiment that shows using the image generated by

the proposed GRNN can achieve higher Top-1, Top-3 and Top-5 accuracies compared to

the state-of-the-art.

• We discuss the potential defence strategies and quantitatively evaluate the effectiveness of

our method against noise addition defence strategy.

26

3.2. Proposed Method

The rest of the chapter is organised as follows: The proposed method is described in

Section 3.2. The details of experimental results, discussions, and potential defence strategies

are provided in Section 3.3. Section 3.4 concludes this chapter.

3.2 Proposed Method

There are three major challenges that have not been well addressed by existing data recovery

methods as follows: model stability, the feasibility of recovering data from large batch size, and

fidelity with high resolution. Both [130, 138, 139] treat the data recovery as a high-dimensional

fitting problem driven by the gradient regression objective. The state-of-the-art models are

fairly sensitive to the data initialisation, easily fail to capture the individual image characteristic

when a large number of gradients are aggregated (i.e. FedAvg), and hardly maintain the natural

image structures in detail when resolution is increased. In this chapter, we propose the GRNN

model which formulates the data recovery task as a data generation problem that is guided by

the gradient information. We introduce a GAN model as the image data generator and a simply

Fully-Connected (FC) layer as a label data generator, where the so-called fake gradient can

then be computed given the shared global model. By jointly optimising both two generators to

approximate the true gradient, GRNN can well align the latent space of GAN with the gradient

space of the shared global model, furthermore, generate the training data with high fidelity

stably. Therefore, GRNN is able to recover the data from the local gradient shared between the

client and server in a FL setting, which can also be used for malicious purposes, such as stealing

private data from a client. In this section, we will first introduce a neural network model based

FL system in Section 3.2.1, then present the proposed GRNN method in Section 3.2.2.

3.2.1 Federated Learning

FL is a distributed collaborative training scheme that consists of multiple clients and one

parameter server. The gradients calculated restrictively on client nodes are aggregated on the

server node using fusion functions [90, 152]. We use the classic FedAvg method to train DNN

over multiple parties, which runs a number of steps of Stochastic Gradient Descent (SGD) in

parallel on the client node and then averages the resulting model updates via a central server

periodically. The global model is merged by taking the average of gradients from local models

according to w 0= ÂN
i

1
N wi, where w 0 and wi are the gradients of global model and the ith local

model, and N is the total number of the clients.

27

3. Generative Data Leakage Attack

Figure 3.1: Illustration of how GRNN as a malicious server is deployed in a FL system.

We learn a CNN based image classification model, whereas FedAvg is applicable to any

finite-sum objective. Formally, at iteration t, the ith (i 2 {1,2, ...,C}) client computes the

CNN model qt and the local gradient gi
t based on its local training data (xi

t ,yi
t) (see Equ. 3.1).

F (•), qt and L (•) are the global learning model, network parameters at iteration t and loss

function respectively. The local gradient gi
t is calculated using typical SGD at the client node

independently. The server aggregates the local gradient gi
t and then updates the global model

weights qt+1, as shown in Equ. 3.2 where C is the number of clients.

gi
t =

∂L (F (< xi
t ,yi

t >,qt))

∂qt
(3.1)

qt+1 = qt �
1
C

C

Â
i=1

gi (3.2)

3.2.2 GRNN: Data Leakage Attack

The proposed GRNN is deployed at the central server as illustrated in Fig. 3.1. The GRNN

has access to the neural network architecture and parameters of the global model. The only

information that can be obtained between the server and the client is the gradient calculated

based on the current global model. To compute the gradient of the model, the private data,

corresponding label, and the global model at the current iteration are required at the local client.

We hypothesise that the shared gradient contains the information on private data distribution

28

3.2. Proposed Method

Figure 3.2: Details of the proposed GRNN where the top branch is for generating the fake image and the
bottom branch is for inferring the label. “FC LAYER” is the fully-connected layer. “FS CONV LAYER”
is the fractionally-strided convolutional layer. For details of upsampling block, please refer to Table 3.1.

and space partitioning given the global model. The architecture of GRNN, shown in Fig. 3.2,

has two branches with the same input that is sampled from a common latent space. We consider

that each point within this latent space represents a pair of image data and its corresponding

label. The objective of the GRNN is to separate this tied representation in the latent space and

recover the local image data and corresponding label by approximating the shared gradient that

is accessible at the server node.

The top branch is used to recover image data, namely the fake-data generator, which

consists of a generative network model. We followed the design principle of iWGAN [153]

where the image is generated from a coarse scale to a fine scale gradually. The concept is

consistent with a reasonable intuition, where the image is drawn from sketch then the details are

gradually added. The input random vector is first fed into a fractionally-strided convolutional

layer [154, 155] to produce a set of feature maps with a resolution of 4*4, which then goes

through several upsampling blocks that gradually increase the spatial resolution. The number of

the upsampling blocks is determined by the resolution of the target image. For example, if the

target image resolution is 32*32, then 3 upsampling blocks (4! 8! 16! 32) are used. We

also investigate the large resolution of the input image in Section 3.3.2. In upsampling block,

nearest-neighbour interpolation is used to recover the spatial resolution of feature maps from

the previous layer. It then passes through a standard convolutional sub-block for rectifying the

detail feature representation, which contains a convolutional layer, a BN layer, and a Gated

29

3. Generative Data Leakage Attack

Table 3.1: Construction of upsampling block.

Layer Name Setting

Upsampling Layer scale factor: 2
mode: nearest

Convolutional Layer
kernel size: 3
stride: 1
padding: 1

Batch Normalisation Layer -
Gated Liner Unit -

Linear Unit (GLU) [156] activation layer. Empirically, we found GLU is far more stable than

ReLU and can learn faster than Sigmoid. Therefore, we adopted GLU as the activation function

for our model while the learning strategy using GAN driven by a regression objective is the

key novelty. The proposed method also works with other activation functions, such as ReLU.

The details of the upsampling block are listed in Table 3.1. At the end of the top branch, a data

sample that has the same dimension as the training input of the FL system is generated.

The bottom branch is used to recover label data, namely the fake-label generator, which

contains a FC layer followed by a softmax layer for classification. It takes a randomly sampled

vector from latent space as input and outputs its corresponding fake label. We assume the

elements in the input vector are independent of each other and subject to a standard Gaussian

distribution. The label set in GRNN is identical to the one used in the FL system. Formally, the

fake image (x̂ j
t and fake label ŷ j

t) data generation can be formulated as in Equ. 3.3, where q̂ and

vt are trainable parameters of GRNN and input random vector is sampled from a unit Gaussian

distribution.

(x̂ j
t , ŷ

j
t) = G (vt |q̂t) (3.3)

Given a pair of fake images and labels that are generated as described above, a fake gradient

on the current global model can be obtained by feeding them as training input and performing

one iteration of SGD according to Equ. 3.1. The objective of GRNN is to approximate the true

gradient, therefore, the whole model can be trained by minimising the distance between the fake

gradient ĝ j
t and shared true gradient g j

t , i.e. the most commonly used loss MSE is adopted here:

argmin
q̂

||g j
t � ĝ j

t ||2 =) argmin
q̂

||∂L (F (< x j
t ,y

j
t >,qt))

∂qt
� ∂L (F (< x̂ j

t , ŷ
j
t >,qt))

∂qt
||2

30

3.2. Proposed Method

Note that the gradient of the model is a vector, the length of which is equal to the number

of trainable parameters. In addition to measuring the discrepancy between the true and fake

gradients based on Euclidean distance, we also introduce the WD [76] loss to minimise the

geometric difference between two gradient vectors and TVLoss [157] to impose the smoothness

constrain on generated fake image data. WD, also known as the Earth Mover’s Distance (EMD),

is a mathematical metric used to measure the dissimilarity between two probability distributions.

It measures the minimum amount of work needed to transform one distribution into another,

treating the distributions as masses distributed across space. TVLoss is a regularisation technique

to reduce noise and preserve the smoothness of an image. It quantifies the smoothness or

variation in an image by calculating the sum of the absolute differences between adjacent pixel

values. Therefore, the loss function for GRNN, namely L̂ (•) is formulated as:

L̂ (g, ĝ, x̂) = MSE(g, ĝ)+WD(g, ĝ)+a ·TV Loss(x̂) (3.4)

where we weight the MSE loss and WD equally and a is the weighting parameter for smoothness

regularisation. Both branches of the proposed GRNN are parameterised using a neural network

that is completely differentiable and can be jointly trained in an end-to-end fashion. The

complete training procedure for GRNN is described in Algorithm 1.

Algorithm 1: GRNN: Data Leakage Attack

1: g j
t ∂L (F (< x j

t ,y
j
t >,qt))/∂qt ; # Produce true gradient on local client.

2: vt Sampling from N (0,1); # initialise random vector inputs for GRNN.
3: for each iteration i 2 [1,2, ..., I] do
4: (x̂ j

t,i, ŷ
j
t,i) G (vt |q̂i); # Generate fake images and labels.

5: ĝ j
t,i ∂L (F (< x̂ j

t,i, ŷ
j
t,i >,qt))/∂qt ; # Calculate fake gradient on shared global

model.
6: Di L̂ (g j

t , ĝ
j
t,i, x̂

j
t,i); # Calculate GRNN loss between true gradient and fake

gradient.
7: q̂i+1 q̂i�h(∂Di/∂ q̂i); # Update GRNN model.
8: end for
9: return (x̂ j

t,I, ŷ
j
t,I); Return generated fake images and labels.

31

3. Generative Data Leakage Attack

3.3 Experiment and Discussion

3.3.1 Dataset and Experimental Setting

A number of experiments on typical computer vision tasks including digit recognition, image

classification, and face recognition were conducted to evaluate our proposed method. We

used four public benchmarks, MNIST [158], CIFAR-100 [159], Labelled Faces in the Wild

(LFW) [160] and VGG-Face [161] for those tasks. There are 7000 grey-scale handwritten digit

images of 28*28 resolution in the MNIST dataset. CIFAR-100 consists of 60000 colour images

of size 32*32 with 100 categories. LFW is a human face dataset that has 13233 images from

5749 different people. We treated each individual as one class, hence, there are 5749 classes in

total. VGG-Face consists of over 2.6 million human face images and 2622 identities.

LeNet [162] and ResNet-18 [39] are used as the backbone networks for training image

classifiers in FL system. All neural network models are implemented using PyTorch [163]

framework and the source code has been made publicly available1 for reproducing the results.

We replace all ReLU functions with Sigmoid function in order to ensure the model is second-

order differentiable, which is the same as DLG and iDLG in order to intractably compute the

MSE loss. Our method is also applicable to the network with ReLU function where a second-

order differentiable approximation to the ReLU function can be used while the computation

is intractable compared to using Sigmoid function. The batch size varies across different

experiments, and a comprehensive comparison study was carried out. RMSprop optimiser with

a learning rate of 0.0001 and a momentum of 0.99 is used for GRNN. Regarding the loss

function of GRNN, we set the weights of TVLoss to 1e�3 and 1e�6 for LeNet and ResNet-18,

respectively.

3.3.2 Image Recovery

We first trained three CNN based image classifiers over one iteration on MNIST, CIFAR-100,

and LFW datasets separately, and then used the proposed GRNN to conduct data leakage attack

on those models. In order to demonstrate that our method has no requirement on the convergence

of the shared global model and deployment flexibility, we conducted two sets of experiments

of the data leakage attack using GRNN. One attack was carried out after the first iteration

(non-converged state) and another one was carried out after the change of the loss of shared

global model is sufficiently small dG 1e�4 (converged state).

1https://github.com/Rand2AI/GRNN

32

https://github.com/Rand2AI/GRNN

3.3. Experiment and Discussion

Table 3.2: Examples of data leakage attack using the proposed GRNN on the global model trained over
one iteration.

Dataset Generated Data True Data

MNIST

CIFAR-100

LFW

Some qualitative results are presented in Table 3.2, where the middle column shows the

image data recovered from the true gradient. The images are recovered gradually with the

number of iterations for training GRNN increases, while the true gradient is obtained only at the

first iteration of the global FL model, which indicates the gradient can lead to data leakage in FL

regardless the convergence of shared global model. Table 3.3 shows that image data generated

from a converged global model performs worse than that from a non-converged global model.

We argue that the reason for lower performance is caused by a large proportion of zero gradients

produced by the converged model. We also quantify the quality of generated image using Peak

Signal-to-Noise Ratio (PSNR) score, an objective standard for image evaluation which is defined

as the logarithm of the ratio of the squared maximum value of RGB image fluctuation over MSE

between two images. The formal definition is given as such: PSNR= 10 · lg(2552

MSE(img1,img2)). The

higher PSNR score, the higher the similarity between two images. Table 3.4 gives the average

33

3. Generative Data Leakage Attack

Table 3.3: Examples of data leakage attack using the proposed GRNN on converged global model.

Dataset Generated Data True Data

MNIST

CIFAR-100

LFW

PSNR scores achieved by DLG and GRNN with the batch size of 1 using a non-converged and a

converged global model. Overall, the non-converged model performs better than the converged

model, except using ResNet-18 on the MNIST dataset, which achieves 1.40 dB less than the

converged model (37.27 dB VS. 38.67 dB). DLG failed to recover the training image on MNIST

and LFW datasets, as there is no visually recognisable image generated.

To quantitatively evaluate the similarity of recovered images and true images, three metrics,

namely Mean Square Error (MSE), Wasserstein Distance (WD) and Peak Signal-to-Noise Ratio

(PSNR) [164] are computed. Fig. 3.3 shows the MSE and WD between recovered images and

true images with respect to the training iteration of the attacking model. LeNet model as the

global FL model was used in this experiment. The dash lines and the solid lines correspond to

the results of DLG and GRNN, respectively. Although GRNN achieves slightly higher scores in

MSE and WD when the batch size of 1 is used, our method is much more stable and significantly

34

3.3. Experiment and Discussion

Table 3.4: Average PSNR scores achieved by DLG and GRNN with the batch size of 1 using the
non-converged and converged global model. “-" represents that there is no understandable visual image
generated.

Method Model Dataset Non-Converged Converged

DLG LeNet
MNIST 53.67 -

CIFAR-100 49.05 33.81
LFW 41.97 -

Ours

LeNet
MNIST 56.61 30.81

CIFAR-100 47.03 28.75
LFW 43.01 28.21

ResNet-18
MNIST 37.27 38.67

CIFAR-100 29.57 27.93
LFW 31.07 27.91

better when a larger batch size is used. When the batch size increases to 4 and 8, DLG only

works on MNIST but fails on both CIFAR-100 and LFW, therefore, the corresponding similarity

measurements can not converge (see the green and purple dashed lines in Figs. 3.3 (c) (d), (e)

and (f)). DLG fails on all datasets with batch size of 16 while GRNN is able to recover the image

data consistently (see Figs. 3.3 (g) and (h)). We also notice that DLG can well approximate the

shared true gradient while generating a poor image. Fig.3.4 shows that DLG achieves smaller

MSE loss (Euclidean distance between true gradient and fake gradient) compared to our method,

while it fails to recover the image data.

In Fig. 3.4, MSE and WD results from GRNN are slightly higher than those from DLG

with a batch size of 1, however, the difference between these two generated set of images

at this batch size is hardly discernible. Hence, we further calculated PSNR to compare the

pixel-wise similarity of the recovered images. Table 3.4 shows GRNN achieves higher PSNR

on MNIST and LFW datasets (+2.94 dB and +1.04 dB respectively) and lower on CIFAR-100

dataset (-2.01 dB) using the non-converged global model. Furthermore, our method achieved

reasonable PSNR score on attacking ResNet-18 model while DLG always fails. Table 3.5 shows

some qualitative comparison of recovered images using both methods over different numbers of

iterations. We can observe that DLG recover the image pixel by pixel greedily, whereas GRNN

also ensures the appearance distribution to be consistent with the true image in a coarser scale,

and object details are then gradually filled at a finer scale.

35

3. Generative Data Leakage Attack

(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 3.3: Distances between true and generated images with respect to training iteration for DLG and
GRNN on three datasets. The horizontal axis corresponds to the number of training iterations of two
attacking models and the vertical axis corresponds to the similarity metrics.

36

3.3. Experiment and Discussion

Figure 3.4: MSE loss visualisation for DLG and GRNN with batch size 32.

Table 3.5: Comparison of image recovery using DLG and GRNN over different numbers of iterations.

True Data DLG GRNN

37

3. Generative Data Leakage Attack

3.3.2.1 Study on Batch Size

A comparison study between the proposed GRNN and DLG was carried out using the same

setting as described above, while we varied the training batch size for the FL model to evaluate

the feasibility of data leakage attack. It is reasonable to consider that the data recovery is

more challenging when the training batch size is increasing as the shared gradient is averaged

over all image data in the batch, where information of an individual image is obscurely mixed.

Table 3.6 lists the success and failure of attack for both two methods. We follow the same

principle defined in DLG, where a successful attack refers to recovering an image that is visually

recognisable. On the MNIST dataset, DLG attack starts to fail when the size of the training

batch is larger than 8 and the LeNet is used in FL, whilst our method is able to recover the

image data even with a batch size of 256. On CIFAR-100 and LFW datasets, DLG attack only

works with a training batch size of 1, however, our method can still successfully perform the

attack with a large batch size of up to 64 and 128 respectively. Some failure examples of our

method when a large training batch size is used can be found in Table 3.7. Although some

failure examples show the consistency of colour distribution and geometric similarity of objects,

the appearance details are largely inconsistent or hard to match the original ones. We also show

that the proposed GRNN can successfully attack complex and large models, such as ResNet-18.

Regarding the order of the reconstructed images, when the batch size is 1, it is simple to pair the

reconstructed data with the true data. Table 3.2 and Table 3.3 display examples from a batch

size of 1. However, when the batch size increases beyond 1, the order of the reconstructed

images does not correspond to that of the true images. The gradient is averaged over all images

in a batch. GRNN reconstructs the data by matching the averaged local gradient, and the image

order does not affect the average gradient’s value.

3.3.2.2 Study on Success Rate

To quantitatively evaluate the success rate of leakage attack, we conducted a comparison

experiment on the testing set of CIFAR-100 using both GRNN and DLG. When the number of

batch size is larger than 1, we treat the matching problems between ground-truth images and

leaked images as a classic assignment problem given the similarity metrics, such as MSE and

PSNR. In addition, Structural Similarity (SSIM) was also introduced to evaluate the structural

discrepancy between the two images. Fig. 3.5 shows the success rates of both methods with

different numbers of batch sizes against the similarity threshold for the so-called “successful

attack”. The lower MSE score indicates the better match, whereas, the higher PSNR and SSIM

38

3.3. Experiment and Discussion

Table 3.6: Data leakage attack with different training batch sizes for FL model, where “X” refers to a
success and “⇥” refers to a failure.

Method Model Dataset
#Batch 1 4 8 16 32 64 128 256

DLG LeNet
MNIST X X X ⇥ ⇥ ⇥ ⇥ ⇥

CIFAR-100 X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥
LFW X ⇥ ⇥ ⇥ ⇥ ⇥ ⇥ ⇥

Ours

LeNet
MNIST X X X X X X X X

CIFAR-100 X X X X X X X ⇥
LFW X X X X X X ⇥ ⇥

ResNet-18
MNIST X X X X ⇥ - - -

CIFAR-100 X X ⇥ ⇥ ⇥ - - -
LFW X ⇥ ⇥ ⇥ ⇥ - - -

Table 3.7: Examples of failed data leakage attack using the proposed GRNN on LeNet with batch sizes
of 128 and 256. The top row shows the fake images recovered from the shared gradient and the bottom
row shows corresponding true images in the private datasets.

Dataset CIFAR-100 LFW

Samples

imply the better match. Fig. 3.5 shows that given the same success rate, GRNN achieves

significantly lower MSE scores and higher PSNR and SSIM apart from the batch size of 1. For

example, with a success rate of 0.6, the MSE threshold is around 0.05 for GRNN and 0.17 for

DLG. Similarly, given the same threshold ratio, our method achieves a higher success rate. For

instance, when a SSIM threshold of 0.2 is used, most success rates of DLG are dropped down to

0 apart from DLG with a batch size of 1 that achieves around 0.7. However, the worst success

rate for GRNN is above 0.77. This experiment can further approve that the proposed method

outperforms DLG by a significant margin. More qualitative comparisons that were randomly

selected from the generated images are illustrated in Table 3.8.

3.3.2.3 Study on Image Resolution

As aforementioned in Section 3.2.2, GRNN is capable of handling different resolutions of

images, due to the flexible number of upsampling blocks. We evaluate the recovery performance

39

3. Generative Data Leakage Attack

Table 3.8: Some randomly selected ground truth (GT) images and corresponding recovered images from
GRNN and DLG with different batch sizes using LeNet.

Method #Batch & Images
1 4

GT

GRNN

DLG

8 16

GT

GRNN

DLG

32 64

GT

GRNN

DLG

128 256

GT

GRNN

DLG

40

3.3. Experiment and Discussion

(a) MSE (b) PSNR

(c) SSIM

Figure 3.5: Successful attack rate for different batch sizes over normalised threshold ratio on MSE, PSNR
and SSIM similarity metrics. The dashed line refers to the results from DLG, and the solid line is from
the proposed GRNN

41

3. Generative Data Leakage Attack

Table 3.9: Data leakage attack using GRNN with different image resolutions and sizes of training batch
for FL model, where “X” refers to a success and “⇥” refers to a failure. The network is ResNet-18, and
the dataset is CIFAR-100.

Resolution
#Batch 1 4 8 16 32

32*32 X X X X X
64*64 X X X ⇥ ⇥

128*128 X ⇥ ⇥ ⇥ ⇥
256*256 X ⇥ ⇥ ⇥ ⇥

of larger resolutions than 32*32 using ResNet-18 as the local model and the dataset is CIFAR-

100. Table 3.9 shows the performance with different image resolutions and batch sizes. First,

we upsample the original image from 32 to 64, the results show that even with the batch size of

8, GRNN is capable of recovering images from the shared gradient. Then we further explore

the resolutions of 128*128 and 256*256, both experiments success with a batch size of 1. Some

qualitative results in resolutions are shown in Table 3.10. Table 3.11 shows the comparison

results of GRNN and IG using a resolution of 256*256, the similarity between the recovered

images and original images calculated with MSE, PSNR and SSIM are also given. GRNN

outperforms IG by a significant margin for all samples when the SSIM metric is used. It is

noticeable that our method is better than IG virtually. Based on this study, we can conclude

that our method is also capable of recovering the global structure and colour appearance in the

image when a large batch is used, while IG likely produces virtually unrecognisable images.

3.3.2.4 Study on Loss Function

MSE loss is widely used in regression tasks, however, it can be easily biased to the outlier or

noisy data point at a pixel-wise level. We believe that the distribution information embedded in

the gradient vectors indicates the global structure of the image data. Therefore, we introduced

WD distance to measure the geometric discrepancy between the fake gradient and true gradient

and guide the image generation process. In addition, we carried out comparison experiments

to evaluate different combinations of loss functions including MSE, WD, TVLoss and CD.

The results can be found in Table 3.12. The experimental results show that the proposed loss

objective combining MSE, WD and TVLoss achieves the best performance. It is noteworthy

mentioning that the colour distortion and artefact can be suppressed by using TVLoss and WD

jointly as they can effectively penalise the spurious noises locally and globally.

42

3.3. Experiment and Discussion

Table 3.10: Recovered images with different resolutions using GRNN. The network is non-converged
ResNet-18, batch size is 1 and dataset is CIFAR-100.

Resolution Recovered Images Ground Truth

32*32

64*64

128*128

256*256

3.3.3 Label Inference

In addition to image data recovery, we also investigated the performance of label inference in

those experiments. Table 3.13 provides the comparative results of label inference accuracy (%)

for DLG and GRNN, where each experiment was repeated 10 times, and the mean and standard

deviation were reported. We can observe that the label inference accuracy decreases while the

size of the training batch increases for both DLG and GRNN. However, our method outperforms

DLG in all experiments except the one on MNIST with a batch size of 8. Furthermore, GRNN

is significantly better than DLG when a large batch size is used. For example, GRNN achieves

99.84% on LFW using LeNet and a batch size of 256, whereas DLG only obtains 79.69% using

the same setting. Note that having a correct label prediction does not necessarily indicate the

corresponding image data can be recovered successfully (see Table 3.6). We can conclude

43

3. Generative Data Leakage Attack

Table 3.11: Randomly selected images recovered by GRNN and IG. The network is non-converged
ResNet-18, resolution is 256*256, and dataset is CIFAR-100.

Method #Batch & Images
1

GT
����

GRNN | IG
����

MSE 4107.90 3656.38 45.75 53.21 | 2272.82 4853.13 94.19 1729.50
PSNR 11.99 12.50 31.52 30.87 | 14.57 11.27 28.39 15.75
SSIM 0.49 0.90 0.95 0.98 | 0.31 0.26 0.85 0.55

4

GT
����

GRNN | IG
����

MSE 1482.89 5996.54 1391.17 1799.29 | 2261.19 4481.52 716.74 2147.60
PSNR 16.42 10.35 16.70 15.58 | 14.59 11.62 19.58 14.81
SSIM 0.90 0.61 0.75 0.86 | 0.39 0.34 0.56 0.40

8

GT
����

GRNN | IG
����

MSE 4874.68 1280.33 1441.29 3380.90 | 4836.14 3309.53 2693.98 3059.81
PSNR 11.25 17.06 16.54 12.84 | 11.29 12.93 13.83 13.27
SSIM 0.54 0.59 0.70 0.54 | 0.24 0.28 0.35 0.33

44

3.3. Experiment and Discussion

Table 3.12: Comparison of image recovery using different loss functions on MNIST dataset. MSE is
Mean Square Error. WD refers to Wasserstein Distance. CD indicates Cosine Distance. And TVLoss is
Total Variation Loss

Loss Function Recovered Images Ground Truth

MSE

WD

CD

MSE & WD

MSE & CD

MSE & CD & TVLoss

MSE & WD & TVLoss

45

3. Generative Data Leakage Attack

Table 3.13: Comparison of label inference accuracy (%) using DLG and GRNN, where L. and R. refer to
LeNet and ResNet-18 respectively.

#Batch 1 4 8 16 32 64 128 256 Avg

DLG L.

MNIST 100.0± 97.50± 100.0± 94.38± 90.62± 90.31± 91.41± 92.42± 94.23±
0.0 0.0750 0.0 0.0337 0.0242 0.0260 0.0152 0.0181 0.0254

CIFAR 100.0± 97.50± 98.75± 97.50± 92.50± 89.84± 86.33± 85.70± 93.51±
0.0 0.0750 0.0375 0.0306 0.0287 0.0329 0.0295 0.0289 0.0329

LFW 100.0± 80.00± 90.00± 85.00± 88.44± 70.62± 89.53± 79.69± 85.41±
0.0 0.3317 0.1561 0.2358 0.1683 0.3924 0.2985 0.3985 0.2477

Ours

L.

MNIST 100.0± 100.0± 97.50± 97.50± 97.50± 96.25± 96.25± 96.37± 97.73±
0.0 0.0 0.0500 0.0415 0.0187 0.0188 0.0171 0.0165 0.0203

CIFAR 100.0± 100.0± 100.0± 99.38± 99.69± 98.91± 98.75± 96.80± 99.19±
0.0 0.0 0.0 0.0188 0.0094 0.0122 0.0080 0.0108 0.0074

LFW 100.0± 97.50± 98.75± 100.0± 100.0± 99.69± 99.69± 99.84± 99.43±
0.0 0.0750 0.0375 0.0 0.0 0.0062 0.0071 0.0019 0.0160

R.

MNIST 100.0± 100.0± 100.0± 100.0± 100.0± - - - 100.0±
0.0 0.0 0.0 0.0 0.0 - - - 0.0

CIFAR 100.0± 100.0± 100.0± 100.0± 100.0± - - - 100.0±
0.0 0.0 0.0 0.0 0.0 - - - 0.0

LFW 100.0± 100.0± 100.0± 100.0± 94.06± - - - 98.81±
0.0 0.0 0.0 0.0 0.0452 - - - 0.0090

that recovering image information is much more challenging than recovering labels as the

distribution of image data is in a much higher dimension than its corresponding label. The

accuracy of label inference on ResNet-18 achieves 100% in almost all experiments except the

one on LFW with a batch size of 32 (94.06%), which is higher and more stable than LeNet.

ResNet-18 has much more trainable parameters than LeNet, therefore, the gradient with a

larger number of elements is much more informative for finding decision boundaries for the

classification task.

We also noticed that the number of label classes has an impact on its inference performance.

In our experiment, MNIST, CIFAR-100, and LFW have 10 classes, 100 classes, and 5749

classes, respectively. The average accuracy of DLG is 94.23% on MNIST while decreasing

to 93.51% and 85.41% on CIFAR-100 and LFW, respectively. In contrast, GRNN achieves

higher accuracy on LFW compared to the other two datasets. In DLG, the label is obtained

via updating the image input and label input jointly during the backward pass phase in SGD,

whereas in GRNN, the label is calculated by the fake label generator in the forward pass phase.

We believe that by adding the image data and label generators, GRNN can better capture the

correspondence between image data and its label in the joint latent space and, furthermore, can

generate more individualised images with respect to different classes.

46

3.3. Experiment and Discussion

Table 3.14: The re-identification results of true images and their corresponding generated fake images.

Ground Truth
Label #42 #26 #69

True Input
Image

Top-3
Labels #42 | #97 | #94 #26 | #22 | #64 #22 | #64 | #23

Top-3
Images
Top-3

Confidences 40.70% | 10.84% | 4.08% 90.34% | 4.04% | 1.75% 66.10% | 5.02% | 4.71%

Generated Input
Image

Top-3
Labels #42 | #4 | #22 #57 | #31 | #75 #69 | #76 | #88

Top-3
Images
Top-3

Confidences 11.89% | 7.58% | 7.46% 73.10% | 7.88% | 3.91% 59.52% | 7.96% | 3.29%

3.3.4 Face Re-Identification

As shown in Table 3.5, recovered images look almost the same as their corresponding true

images, and there are still slight deviations that may produce classification misleading results

if we use generated data to replace the original ones. This behaviour of DL methods is well

documented in the literature, e.g. [165–167]. Taking face recognition as an example, the

recovered face image may look identical to its original image visually, however, it cannot

produce correct prediction by the face recognition model to identify the person, see Table 3.14.

Therefore, we applied the face re-identification experiment to evaluate the feasibility of the

data leakage attack using GRNN. We first used the GRNN to recover the face image data

from the FL system during the training stage. Then, the fake image was passed to the face

recognition model as input to predict the identity label. The success of re-identification was

counted if the prediction label matched the true label. The VGG-Face dataset was used in

this experiment which contains 2622 identities. We used the top 100 identities that have the

most image samples for training. We selected the successfully recovered images data from the

47

3. Generative Data Leakage Attack

Table 3.15: Performances of different network architectures, where training accuracy refers to predicted
results of true images and relevant ground truth labels. Re-identification accuracy is from predicted results
of fake images and relevant ground truth labels. DLG and GRNN both use LeNet as backbone. Training
and testing samples are from the VGG-Face dataset. Res18 represents to ResNet-18 and Dense121 is
DenseNet-121.

Method Network Train Acc #B Re-identification Accuracy Sample No.Top-1 Top-3 Top-5

DLG Res18 97.27% 1 25.14% 45.57% 51.86% 700
Dense121 97.11% 1 15.57% 33.57% 42.14% 700

GRNN

Res18 97.27%

1 30.66% 74.79% 88.40% 700
4 17.45% 24.64% 31.11% 1112
8 6.14% 13.58% 22.13% 2224

16 2.90% 10.43% 22.08% 4352

Dense121 97.11%

1 11.46% 43.12% 63.03% 700
4 9.53% 19.87% 26.80% 1112
8 3.06% 10.25% 19.83% 2224

16 1.52% 8.23% 19.12% 4352

output of GRNN which ended up with 700 fake face images in total when batch size is 1, and

1112 images, 2224 images, and 4352 images for batch size 4, 8, and 16 respectively. In the

meantime, we trained two face recognition models using ResNet-18 and DenseNet-121 using the

same training set. Table 3.15 reports the top-1, top-3 and top-5 accuracies of re-identification

of those fake face images. Although the top-1 accuracy on ResNet-18 and DenseNet-121 are

30.66% and 11.46% when batch size is 1, they are significantly better than random prediction

(1%). The re-identification accuracy increases dramatically when we consider using top-3 and

top-5 metrics. The recovery performance becomes worse with the increasing batch size, so the

accuracy decreases as well. We say that the face recognition deep models are sensitive to the

minor perturbation that is produced during the image recovery process. The images generated

using GRNN achieve significantly higher accuracies compared to DLG, i.e. +5.52%, +29.22%

and +36.54% can be achieved in Top-1, Top-3 and Top-5 accuracies using ResNet-18.

3.3.5 Defence Strategy

The most relevant defence approach for GRNN is noise addition, where, in our scenario, the

clients can add a level of Gaussian or Laplacian noise onto the shared gradient. When the

gradient is perturbed in this manner, it can mislead the generators into producing poor results

since the GRNN relies on matching the gradient to reconstruct accurate data. Essentially,

introducing noise into the true gradient can cause the generators to be fooled. We empirically

48

3.3. Experiment and Discussion

Figure 3.6: MSE distances between true images and generated fake images during training and illustration
of generated fake images from GRNN with different noise types and scales on three datasets. (a) - (d)
are the results of adding Gaussian noise, and (e) - (h) are the results of adding Laplacian noise. The
horizontal axis is the number of iterations for training the attack model.

49

3. Generative Data Leakage Attack

Table 3.16: Average PSNR scores with different noise types and scales. “⇥” means the method fails the
experiment, whereas PSNR score is given only if it succeed. DLG failed completely, as it had no visible
success among all the experiments.

Method Dataset Type
Scale #Batch 1e-1 1e-2 1e-3 1e-4

DLG

MNIST
Gaussian 1 ⇥ ⇥ ⇥ ⇥

4 ⇥ ⇥ ⇥ ⇥

Laplacian 1 ⇥ ⇥ ⇥ ⇥
4 ⇥ ⇥ ⇥ ⇥

CIFAR-100
Gaussian 1 ⇥ ⇥ ⇥ ⇥

4 ⇥ ⇥ ⇥ ⇥

Laplacian 1 ⇥ ⇥ ⇥ ⇥
4 ⇥ ⇥ ⇥ ⇥

LFW
Gaussian 1 ⇥ ⇥ ⇥ ⇥

4 ⇥ ⇥ ⇥ ⇥

Laplacian 1 ⇥ ⇥ ⇥ ⇥
4 ⇥ ⇥ ⇥ ⇥

Ours

MNIST

Gaussian

1 31.33 31.33 46.27 56.89
4 ⇥ 31.19 31.21 40.73
8 ⇥ 32.07 31.17 33.29

16 ⇥ ⇥ 31.33 31.43

Laplacian

1 31.25 30.97 42.03 55.47
4 ⇥ 31.21 31.53 42.65
8 ⇥ ⇥ 31.19 33.91

16 ⇥ ⇥ 31.11 31.87

CIFAR-100

Gaussian

1 ⇥ 28.23 35.43 43.37
4 ⇥ ⇥ 28.45 33.15
8 ⇥ ⇥ 28.23 30.39

16 ⇥ ⇥ ⇥ 29.17

Laplacian

1 ⇥ 28.13 32.21 44.27
4 ⇥ ⇥ 28.15 32.51
8 ⇥ ⇥ 28.03 30.15

16 ⇥ ⇥ ⇥ ⇥

LFW

Gaussian

1 ⇥ 28.17 35.31 44.39
4 ⇥ ⇥ 28.37 33.05
8 ⇥ ⇥ ⇥ ⇥

16 ⇥ ⇥ ⇥ ⇥

Laplacian

1 ⇥ 28.05 33.79 44.05
4 ⇥ ⇥ 28.25 32.39
8 ⇥ ⇥ ⇥ ⇥

16 ⇥ ⇥ ⇥ ⇥

evaluated the effectiveness of GRNN when the noise addition defence strategy was used. In

this study, the LeNet was used as the global FL model with different batch sizes. As for the

Laplacian mechanism, it adds Laplacian-distributed noise to function f . In this chapter, we set

50

3.4. Summary

the l1-sensitivity D f to be 1 and varied e , which can be defined as: l = D f
e 2 [1e�1,1e�4].

As for the Gaussian mechanism, it also adds randomness with a normal distribution. Technically,

the Gaussian mechanism uses l2-sensitivity and parameter d is counted on. We simplify the

Gaussian mechanism to add the noise whose distribution has 0 mean and only ranges standard

deviation from 1e-1 to 1e-4. Fig. 3.6 shows the MSE distance between the recovered image and

the true image when different levels and types of noises are added. GRNN fails to recover the

image when a high level of noise is added to the gradient (see Figs. 3.6 (a) and (e)), however, this

usually leads to poor performance on the global FL model as the noisy gradients are aggregated.

We observed that GRNN is able to recover the image data successfully and obtains reasonable

results when the scale of noise is reduced to 0.01 (see Figs. 3.6 (b) and (f)). The average PSNR

scores are presented in Table 3.16. Compared to the no-defence approach shown in Table 3.4,

the noise added to the gradient can result in decreasing of PSNR of the generated images, which

indicates the effectiveness of the noise addition strategy. However, the proposed GRNN is still

capable of recovering image data when a high level of noise is added to the gradient, i.e. 1e-2.

The PSNR scores with a Gaussian noise scale of 1e-4 on the MNIST dataset are even larger than

that without noise (56.89 dB VS. 56.61 dB), as well on LFW dataset (44.39 dB VS. 43.01 dB).

On the other hand, we found that even if the image recovery fails, the label can still be inferred

correctly using our GRNN. However, DLG totally fails to recover images and inference labels

in all of our experiments.

3.4 Summary

In this chapter, we present a data leakage attack method, namely GRNN, for FL system which

is capable of recovering both data and its corresponding label. Compared to the state-of-the-art

methods, the proposed method is much more stable when a large resolution and batch size are

used. It also outperforms the state-of-the-art in terms of fidelity of recovered data and accuracy

of label inference. Meanwhile, the experimental results on the face re-identification task suggest

that GRNN outperforms DLG by a margin in terms of Top-1, Top-3 and Top-5 accuracies. We

also discussed the potential defence strategies and empirically evaluated the performance of

GRNN when noise addition defence is applied. We conclude that our method can successfully

and consistently recover the data in FL when a high level of noise is added to the gradient. The

implementation of our method is publicly available to ensure its reproducibility. In the rest of

the thesis, we will talk about two ways of gradient leakage defence.

51

Chapter 4

Protected Gradient Boosting

4.1 Introduction

Personal data protection and privacy-preserved issues have particularly attracted researchers’

attention [122,168–173]. Typical ML approaches that require centralised data for model training

may not be possible as restrictions on data sharing are in place. Therefore, decentralised data-

training approaches are more attractive since they offer desired benefits in privacy preservation

and data security protection. FL [90, 92] was proposed to address such concerns that allows

individual data providers to collaboratively train a shared global model without aggregating the

data centrally. McMahan et al. [90] presented a practical decentralised training method for deep

networks based on averaging aggregation. Experimental studies were carried out on various

datasets and architectures, which demonstrated the robustness of FL on unbalanced and IID

data. Frequent updating approach can generally lead to higher prediction performance whereas

the communication cost increases sharply, especially for the large datasets [90, 91, 174–176].

Konečnỳ et al. [91] focused on addressing the efficiency issue and proposed two weight

updating methods, namely structured updates and sketched updates approaches based on FedAvg

to reduce the up-link communication costs of transmitting the gradients from the local machine

to the centralised server.

Prediction performance and data privacy are two major challenges in FL research. On one

hand, the accuracy of FL reduces significantly on Non-IID data [177]. Zhao et al. [177] showed

the weight divergence can be measured quantitatively using EMD between the distributions

over classes on each local machine and the global population distribution. Hence, they proposed

to share a small subset of data among all the edge devices to improve model generalisation on

53

4. Protected Gradient Boosting

Non-IID data. However, such a strategy is infeasible when restrictions on data sharing are in

place which usually leads to privacy breaching. Li et al. [178] studied the convergence properties

of FedAvg and concluded a trade-off between its communication efficiency and convergence

rate existed. They argued that the model converges slowly on heterogeneous datasets. Based

on our empirical study in this chapter, we confirm that given Non-IID datasets, the training

needs far more iterations to reach an optimal solution and often fails to converge, especially

when the local models are trained on large-scale datasets with a small number of batch size or

the global model are aggregated after a large number of epochs. On the other hand, the model

gradient is generally considered to be safe to share in the FL system for model aggregation.

However, some studies have shown that it is feasible to recover training data information from

model gradients. For example, Fredrikson et al. [151] and Melis et al. [137] reported two

methods that can identify a sample with certain properties is in the training batch. Hitaj et

al. [129] proposed a GANs model as an adversarial client to estimate the distribution of the data

from the output of other clients without knowing their training data. Zhu et al. [130] and Zhao

et al. [138] demonstrated data recovery can be formulated as a gradient regression problem

assuming the gradient from a targeted client is available, which is a largely valid assumption in

most FL systems. Furthermore, GRNN proposed by Ren et al. [131] consists of two branches

of generative models, one is based on GAN for generating fake training data and the other one

is based on the fully-connected layer for generating corresponding labels. The training data is

revealed by regressing the true gradient and the fake gradient generated by the fake data and

relevant label.

In this chapter, we propose the FedBoosting method to address the weight divergence and

gradient leakage issues in the general FL framework. Instead of treating individual local models

equally when the global model is aggregated, we consider the data diversity of local clients in

terms of the status of convergence and the ability of generalisation. To address the potential

risk of data leakage via shared gradients, a DP based linear aggregation method is proposed

using HE [2] to encrypt the gradients, which provides two layers of protection. The proposed

encryption scheme only leads to a negligible increase in computational cost.

The proposed method is evaluated using a text recognition task on public benchmarks, as

well as a binary classification task on two datasets, which demonstrates its superiority in terms

of convergence speed, prediction accuracy and security. The performance reduction due to

encryption is also evaluated. Our contributions are three-fold:

• We propose a novel aggregation strategy namely FedBoosting for FL to address the weight

54

4.2. Proposed Method

divergence and gradient leakage issues. We empirically demonstrate that FedBoosting

converges significantly faster than FedAvg while the communication cost is identical to

traditional approaches. Especially when the local models are trained with a small batch

size and the global model are aggregated after a large number of epochs, our approach

can still converge to a reasonable optimum whereas FedAvg often fails in such case. Our

implementation of proposed FedBoosting is publicly available to ensure reproducibility.

It can also be run in a distributed multiple GPUs setup. 1

• We introduce a dual layer protection scheme using HE and DP to encrypt gradients

flowing between server and clients, which protect the data privacy from gradient leakage

attack.

• We show the feasibility of our method on two datasets by evaluating the decision bound-

aries visually. Furthermore, we also demonstrate its superior performance in a visual text

recognition task on multiple large-scale Non-IID datasets compared to the centralised

approach and FedAvg. The experimental results confirm that our approach outperforms

FedAvg in terms of convergence speed and prediction accuracy. It suggests FedBoosting

strategy can be integrated with other DL models in the privacy-preserving scenarios.

The rest of the chapter is organised as follows: The proposed method FedBoosting and

relevant encryption method are described in Section 4.2 and evaluated on a text recognition task

and a binary classification task. The details of experiments and discussions on the results, as

well as a performance comparison, are provided in Section 4.3, followed by the conclusions in

Section 4.4.

4.2 Proposed Method

4.2.1 FedBoosting Framework

FedAvg [90] produces a new model by averaging the gradients from local clients. However,

on the Non-IID data, the weights of local models may converge in different directions due

to inconsistency of data distribution. Therefore, a simple averaging scheme performs poorly,

especially when strong bias and extreme outlier exist [177–179]. Boosting is a powerful

ensemble learning technique used to improve the performance of ML algorithms. It involves

1https://github.com/Rand2AI/FedBoosting

55

https://github.com/Rand2AI/FedBoosting

4. Protected Gradient Boosting

Figure 4.1: The schematic diagram of proposed FedBoosting and encryption protocol. There are two
clients used for demonstration purposes, whereas the proposed method can work with an arbitrary number
of local clients.

training a sequence of weak learners. The idea is to combine these weak learners to create a

strong, more accurate model. This process continues for multiple rounds, with the final model

being a combination of the weak learners’ predictions. Adaptive Boosting (AdaBoost) [180]

focuses on re-weighting misclassified data points in each iteration to prioritise them in the next

round of training. Gradient Boosting Machines (GBM) [181] focuses on minimising the residual

errors by training weak learners on the negative gradient of the loss function. eXtreme Gradient

Boosting (XGBoost) [182] is an optimised and parallelised implementation of gradient boosting

that offers several advantages, such as regularisation, improved scalability, and handling of

missing data.

We propose using boosting scheme, namely FedBoosting, to adaptively merge local models

according to the generalisation performance on different local validation datasets. Meanwhile,

in order to preserve data privacy, information exchanges among decentralised clients and server

are prohibited. Hence, instead of exchanging data between clients, encrypted local models are

exchanged via the centralised server and validated on each client independently. More details

56

4.2. Proposed Method

are shown in Figure 4.1.

In contrast to FedAvg, the proposed FedBoosting takes the fitness and generalisation perfor-

mance of each client model into account and adaptively merges the global model using different

weights on all client models. To achieve this, three different pieces of information are generated

from each client, local gradients Gi
r, training loss T i

r and validation loss V i,i
r , where Gi

r and T i
r

are local gradients and training loss from the i-th local model in training round r and V i,i
r refers

to validation loss from the i-th local model on the i-th local validation dataset in training round

r. The local gradients Gi
r are then distributed to all the other clients via a centralised server. The

cross-validated loss V i, j
r , where i 6= j, can be gained on each client. Training and validation

losses are two measurements used to evaluate the predictive performance of the models. It is

a valid assumption that a model with relatively large training loss indicates poor convergence

and poor generalisation ability. However, it also suggests the model gradient contains sufficient

information for training. Similarly, a model with low training loss does not guarantee the model

having good generalisation ability (over-fitting) with less training information. Hence, we take

validation loss into consideration. Those two losses jointly determine the aggregation weight of

a local model contributing to the global model as shown in Eqn. (4.2). Then on the server, all

the validation results of the i-th model are added together denoted as V i
r representing the i-th

model’s generalisation ability. Considering the convergence, a softmax layer is deployed, whose

input is Tr. The outputs together with V i
r are used for calculating the aggregation weight pi

r. In

the current round of aggregation, the new global gradients Gr can be computed by merging all

the local gradients Gi
r with respect to its weight pi

r as such:

Gr =
N

Â
i

pi
rG

i
r;8pi

r 2 [0,1], (4.1)

pr = so f tmax(so f tmax(Tr) ·
N

Â
j

V j
r), (4.2)

V i, j
r =

0

BBBBB@

V 1,1
r V 1,2

r · · · V 1, j
r

V 2,1
r V 2,2

r · · · V 2, j
r

...
...

. . .
...

V i,1
r V i,2

r · · · V i, j
r

1

CCCCCA
(4.3)

where T i
r and pi

r are training loss and mixture coefficient for the i-th local model.

In addition, the proposed FedBoosting scheme is resilient to some malicious attacks, such

as data poisoning. For instance, when a malicious client injects poisoned data into the training

set and the contaminated local model is aggregated with the same weight as other clean models,

57

4. Protected Gradient Boosting

our method can mitigate as the validation scores of the toxic model on other clients will be

significantly lower, which in turn leads to a significantly lower aggregation weight.

Algorithm 2: FedBoosting with HE and DP: Server
1: build model and initialise weights w0;
2: for each round r = 1,2, ...,R do
3: for each client i 2CN do
4: if r == 1 then
5: g⇤ir ,T i

r Train(r, i,w0) via Algorithm 1.a;
6: else
7: g⇤ir ,T i

r Train(r, i,G⇤r�1) via Algorithm 1.a;
8: end if
9: end for

10: for each client i 2CN do
11: generate Ĝ⇤ir via Eqn. (4.5);
12: V i

r ÂN
j Evaluate(j, Ĝ⇤ir) via Algorithm 1.b;

13: end for
14: generate pi

r via Eqn. (4.2&4.3);
15: generate G⇤r via Eqn. (4.4);
16: if r == R then
17: wr Decrypt(G⇤r) via Algorithm 1.c
18: end if
19: end for

4.2.2 HE Aggregation with Quantized Gradient

HE ensures that the computation can be carried out on the encrypted data as Enc(A)•Enc(B) =

Enc(A⇤B), where “•" stands for operation on encrypted data and “⇤" is an operation on plain

data. Since the FedBoosting involves computing the global model based on local gradient,

the HE is used in our method to ensure the aggregation and gradient exchange among clients

and server are secure. In FedBoosting, local models are trained on each client and then local

gradients are transmitted to the server, where all local gradients are integrated to build global

gradients in every round of aggregation. To preserve gradient information, FedBoosting utilises

the HE method, Paillier [2]. Once the training starts, a pair of HE keys are shared among clients,

but keep secured to the parameter server. The public key is used to encrypt gradients and the

secret key is for decryption. After a round of local training, local gradients can be calculated by

Gi
r = w i

r�wr�1, where wr�1 is the global weight from the last round and w i
r is the weight after

training at current round.

58

4.2. Proposed Method

Algorithm 3: FedBoosting with HE and DP: Client
1 a. Train(r, i,wr�1 || G⇤r�1):

1: if i == 1 then
2: generate key pair and sent to other clients
3: else
4: wait for key pair from C1
5: end if
6: if r == 1 then
7: load TrnDi,ValDi

8: else
9: decrypt G⇤r�1 to Gr�1 by secret keys

10: wr�1 = wr�2 +Gr�1
11: end if
12: for each epoch e = 1,2, ...,E do
13: for each batch b = 1,2, ...,B do
14: wr wr�1�h l(TrnDi,b,wr�1)
15: end for
16: end for
17: Gi

r = wr�wr�1
18: gi

r = b(Gi
r ⇤1e32)/Pe and generate g⇤ir by public keys

19: T i
r f (TrnDi|wr)

20: return g⇤ir ,T i
r to server

b. Evaluate(j, Ĝ⇤ir):
1: decrypt Ĝ⇤ir to Ĝi

r by secret keys
2: ŵ i

r = wr�1 + Ĝi
r

3: V i, j
r f (ValD j|ŵ i

r))
4: return V i, j

r to server
c. Decrypt(G⇤r):

1: decrypt G⇤r to Gr by secret keys
2: wr = wr�1 +Gr
3: return wr to server

It is infeasible to encrypt Gi
r and to transmit it to the server directly, as Paillier can only

process integer values. To address this issue, we propose to convert Gi
r into scaled integer

form, denoted as G
0i
r by multiplying with 1e32. As the weighting scheme at the server side will

break the integer-only constrain for homomorphic computation, to ensure the correctness of

aggregation, we divide G
0i
r into P pieces and then round to an integer according to gi

r = bG
0i
r /Pe.

There is a negligible precision loss as only the last few bits are dropped. For example, in the case

of P = 10, the value loss is only at the 32-th bit, similarly, for P = 100, the loss is at the 31-th

59

4. Protected Gradient Boosting

and 32-th bits. Finally, gi
r is encrypted using Paillier and the encrypted g⇤ir is transmitted to the

server. On the contrary, the client weight pr is converted to an integer by multiplying P followed

by a rounding operation. In FedBoosting, the aggregation weight is computed with respect

to Eqn. (4.2 & 4.3). The final encrypted global gradients G⇤r can be computed by merging

all gradients from clients (see Eqn. (4.4)). The final encrypted global gradients G⇤r are then

transmitted back to each client to be decrypted and generate global weights by wr = wr�1 +Gr,

where Gr is decrypted from G⇤r . The proposed secure aggregation approach using HE with

quantized gradient is generalised that can also be used for FedAvg.

G⇤r =
N

Â
i
bpi

r ·Pe ·g⇤ir ;8pi
r 2 [0,1] (4.4)

4.2.3 DP Fusion for Local Model Protection

The local gradient between client and server is protected by HE as aforementioned. While

in our proposed FedBoosting mechanism, local models are shared with all the other clients

for cross-validation, and all clients have the same key pair. FedAvg shows that the uniformly

combined global model is capable of performing similarly as any local model. Therefore,

to protect gradient privacy among clients, inspired by DP, we propose to perturb individual

local models using a linear combination of HE-encrypted local models, where the target model

takes the dominant proposition giving the highest weight. Only the perturbed local models

are shared among clients for cross-validation. Empirically, the reconstructed model performs

similarly to the local model. Once the server receives all the encrypted local gradients piece

g⇤ir ,8i = 1,2, ...,N, the server randomly generates N sets of private fusing weights within which

the corresponding local model always takes the largest proposition. Then, the server computes

N reconstructed local model using the HE according to the N sets of weights (see Eqn. (4.5)).

Ĝ⇤ir = b p̂ ·Pe ·g⇤ir +
N

Â
j: j 6=i
b(1� p̂) ·P

N�1
e ·g⇤ j

r (4.5)

where Ĝ⇤ir is the i-th dual-encrypted whole gradient in round r. Finally, the server distributes

the reconstructed local models to all clients for cross-validation. As HE is used on the server for

linear combination, the model is restrictively protected during the exchange process between

the server and clients. The accuracy might drop due to precision loss using quantized HE and

reconstructed local model for cross-validation. However, in Figure 4.5, our experimental results

show that there is no significant (within 0.5%) loss in testing accuracy.

60

4.3. Experiment and Discussion

4.3 Experiment and Discussion

4.3.1 Decision Boundary Comparison using Synthetic Dataset

We first conducted the evaluations using two datasets to compare the decision boundary between

FedAvg and FedBoosting. The task is a binary classification problem with the 2D feature

in order to provide a visible visualisation for the decision boundary. We assume the data is

subjected to a 2D Gaussian distribution and two datasets were randomly sampled with different

mean centres and stand deviations in order to simulate the Non-IID scenario. The individual

dataset was used for training on a client and the global model was aggregated using FedAvg

and proposed FedBoosting, where each of them contains 40000 samples and was split into a

training set and a testing set by a proportion of 9:1. Figure 4.2 (d), (e), and (f) show those two

training datasets and the combined testing dataset respectively. A simple neural network was

adopted that contains 2 fully-connected layers followed by a Sigmoid activation layer and a

Softmax layer respectively. The first fully-connected layer has 8 hidden nodes and the second

one has 2 hidden nodes. The optimiser is Adam whose learning rate is 0.003. All the models

trained by FedBoosting outperform those trained by FedAvg with a batch size of 8 and epoch

of 1. Figure 4.2 (a) and (b) present the visualisations of decision boundary of global models

trained using FedAvg, FedBoosting and a centralised training scheme respectively. It can be

concluded that the proposed FedBoosting can form a significantly smoother decision boundary

compared to the FedAvg approach. In addition, the decision boundary of our method is much

closer to the model that was trained using a centralised scheme, where both two datasets are

used together. This study shows that our method is more generalised in principle.

4.3.2 Evaluation on Text Recognition Task

We adopt Convolutional Recurrent Neural Network (CRNN) [183] as the local neural network

model for the text recognition mission. CRNN uses VGGNet [37] as the backbone network

for feature extraction, where the fully-connected layers are removed and the feature maps

are unrolled along the horizontal axis. To model the sequential representation, a multi-layer

Bidirectional Long-Short Term Memory (BiLSTM) network [184] is placed on the top of the

convolutional layers that take the unrolled visual features as input and models the long-term

dependencies within the sequence in both directions. The outputs of BiLSTM are fed into a

Softmax layer, and each element unrolled sequence is projected to the probability distribution of

possible characters. The character with the highest Softmax score is treated as an intermediate

61

4. Protected Gradient Boosting

(a) FedAvg Model (b) FedBoosting Model (c) Centralised Model

(d) Training Dataset One (e) Training Dataset Two (f) Testing Dataset

Figure 4.2: The figures (a), (b) and (c) in the first row show the decision boundaries of global models
trained using FedAvg, FedBoosting and non FL method (centralised training scheme). Figures (d), (e)
and (f) in the second row show two training datasets for two clients in a FL setting and the testing dataset.
The model obtained in figure (c) is trained using all datasets, including (d) and (e).

prediction. Connectionist Temporal Classification (CTC) [185] decoder is utilised to merge

intermediate prediction to produce the final output text. For more details of CRNN model, the

reader can refer to its original publication [183].

Figure 4.3: Visual example of training images taken from Synth90K (top two rows) and SynthText (bottom
two rows) datasets.

62

4.3. Experiment and Discussion

Table 4.1: Recognition accuracies (%) on four testing datasets. “90K" and “ST" stand for Synth90K
and SynthText datasets respectively. The results of the first row (CRNN*) and the second row (CRNN)
are produced by the normal CRNN model without using FL framework, where CRNN* corresponds to
accuracies reported in [183] and CRNN corresponds to the results reproduced using our implementation.

Method Dataset #Batch #Epoch IIIT5K SVT SCUT IC15
CRNN* 90K - - 81.20 82.70 - -

CRNN

ST 512 - 76.07 77.60 89.38 55.92
ST 800 - 73.69 78.00 86.94 58.88

90K 512 - 80.95 86.40 87.49 67.43
90K 800 - 80.71 83.60 87.80 62.50

ST & 90K 512 - 83.81 90.40 93.08 71.71
ST & 90K 800 - 85.48 88.00 93.78 72.70

FedAvg

ST & 90K 256 1 - - - -
ST & 90K 256 3 - - - -
ST & 90K 512 1 85.48 87.60 93.31 73.36
ST & 90K 512 3 80.83 87.60 91.11 64.80
ST & 90K 800 1 86.67 89.60 94.49 72.37
ST & 90K 800 3 81.82 88.00 93.47 70.07

Ours

ST & 90K 256 1 85.83 89.2 94.26 72.37
ST & 90K 256 3 84.88 91.20 94.65 70.07
ST & 90K 512 1 85.12 88.00 93.39 74.34
ST & 90K 512 3 87.38 90.80 93.86 70.39
ST & 90K 800 1 87.62 89.20 94.18 75.99
ST & 90K 800 3 85.60 91.60 94.65 70.72

4.3.2.1 Experimental Setting

The proposed model is trained on two large-scale synthetic datasets, Synthetic Text 90k and

Synthetic Text, without fine-tuning on other datasets. Models are tested on other four standard

datasets to evaluate their general recognition performances. For all experiments, the prediction

performance is measured using word-level accuracy.

Synthetic Text 90k [186] (Synth90K) is one of two training datasets for all the experiments

in this chapter. The dataset contains about 7.2 million images and their corresponding ground

truth words. We split the images into two sets for FedBoosting, the first one containing 6.5

million images is for training, and the rest is for validation which contains 0.7 million images.

Synthetic Text [186] (SynthText) is the second training dataset we used. The dataset has

about 85K natural images containing many synthetic texts. We cropped all the texts via labelled

text bounding boxes to build a new dataset of 5.3 million text images. We split it into a training

dataset of 4.8 million images and a validation dataset of 0.5 million images for FedBoosting.

IIIT 5K-Words [187] (IIIT5K) is collected from the internet containing 3000 cropped word

63

4. Protected Gradient Boosting

Table 4.2: Visual example of testing results using FedAvg and FedBoosting models with a batch size
of 512 and epochs of 3. Incorrectly predicted characters are highlighted in red, and green characters in
brackets are the ones missing from the predictions.

Samples FedAvg FedBoosting

MOUNTRIN MOUNTAIN

STATIONNN STATION

PLAZZA PIAZZA

VIRG(I)N VIRGIN

MAXIVUS MAXIMUS

UGREENN GREEN

JECOIL ECOIL

DIR(E)CION DIRECTORY

CENIRAL CENTRAL

CANSY CANDY

ABARTMENTS APARTMENTS

WORKSHOPH(E) WORKSHOPE

TISC TSC

CRIAVEN CRAVEN

20MBIES ZOMBIES

344 844

17040 1040

1800GOGEICO 1800G0GE1CO

64

4.3. Experiment and Discussion

images in its testing set. Each image contains a ground truth word.

Street View Text [188] (SVT) is collected from the Google Street View, consists of 647

word images in its testing set. Many images are severely corrupted by noise and blur, or have

very low resolutions.

SCUT-FORU [189] (SCUT) consists of 813 training images and 349 testing images. The

background and illumination vary on large scales in the dataset.

ICDAR 2015 [190] (IC15) contains 2077 cropped images with relatively low resolutions and

multi-oriented texts. For a fair comparison, we discard the images that contain non-alphanumeric

characters, which results in 1811 images.

Figure 4.3 shows some visual examples from Synth90K and SynthText, where large variations

of backgrounds and texts can be observed in the images between two datasets. Therefore, we

can conclude that two datasets are of Non-IID. All the training and validation images are scaled

to the size of 100*32 in order to fit the model using a mini-batch and accelerate the training

process. Testing images in Table 4.1 and 4.3 are scaled proportionally to match the height of

32 pixels. While in Figure 4.4, 4.5 and 4.6, testing images are processed in the same way as

what training and validation images do aforementioned. The testing images whose label lengths

are less than 3 or more than 25 characters are dropped out due to the limitation of CTC. We

deploy Synth90K and SynthText datasets on two separate clients. On the local training nodes,

AdaDelta is used for back-propagation optimisation and the initial learning rate is set to 0.05.

Regarding HE we set 128 as the key size in bits. The whole gradient is split into 100 pieces

and p̂ = 0.9. Our method is implemented using Keras and Tensorflow, and the source code is

publicly available to ensure reproducibility, which can be run in a distributed multiple GPUs

setup.

4.3.2.2 Result and Discussion

Table 4.1 shows the comparison results on testing datasets with different training hyper-

parameters including batch size, and the number of epochs. The results of the first row (CRNN*)

and the second row (CRNN) are produced by the original CRNN model without using FL frame-

work, where CRNN* corresponds to accuracies reported by its authors in [183] and CRNN

corresponds to the results reproduced by us. Compared to the original CRNN model, FedAvg

shows a decent amount of improvement. For example, the FedAvg model with a batch size

of 800 and epoch of 1 reports 86.67% on IIIT5k dataset, where an improvement of 1.19% is

achieved compared to CRNN that is of 85.48% using the same setting. An improvement of

65

4. Protected Gradient Boosting

(a) IIIT5K (b) SCUT (c) ICDAR2015

(d) IIIT5K (e) SCUT (f) ICDAR2015

Figure 4.4: Testing accuracy of FedAvg (first row) and FedBoosting (second row) models over rounds
with datasets of IIIT5K, SCUT and IC15. “1E800B" means the model is trained on the client with 800
batch size and 1 epoch. All samples in these testing parts are resized to 100*32, which is different from
the processing in Table 4.1.

1.65% of FedAvg with the batch size of 512 and epoch of 1 can be observed on IC15 dataset.

More importantly, the proposed FedBoosting achieves the highest accuracy across all the four

testing datasets, where 87.62%, 91.60%, 94.65% and 75.99% are reported on IIIT5k, SVT, SCUT

and IC15 respectively. In addition, our method outperforms both FedAvg and non-FL methods

by significant margins. More qualitative results are shown in Table 4.2.

It can be observed that the FedAvg models with the bigger batch size and smaller epoch

have better performance. In other words, the models perform better when model integration

occurs more frequently, which however will increase the communication cost. In Table 4.1, the

model with 256 batch size and 1 epoch even produces no result due to model divergence after a

few rounds of integration. The potential reason could be the extreme differences in parameters

that are learned on each local machine. Figure 4.4 shows the comparison of convergence curves

between FedAvg and proposed FedBoosting. The convergence curves of FedAvg model with

smaller batch size or larger epoch are always lower than the curves of larger batch size or smaller

number of epochs. For example, by the strategy of FedAvg, the model with a batch size of 800

and epoch of 1 (iterated 6,689 and 9,030 times per epoch on SynthText and Synth90K datasets

66

4.3. Experiment and Discussion

respectively) performs significantly better than the model with a batch size of 512 and epoch of

3 (iterated 10,452 and 14,110 times per epoch on SynthText and Synth90K datasets respectively)

on IIIT5K testing dataset. On the other hand, the accuracy curves of FedBoosting models (see

Figure 4.4 second row), do not have such an issue. Therefore, we can conclude that the boosting

strategy we propose can overcome the model collapse issue of FedAvg to a great extent.

(a) IIIT5K (b) SVT (c) ICDAR2015

(d) IIIT5K (e) SVT (f) ICDAR2015

Figure 4.5: Testing accuracy of FedAvg (first row) and FedBoosting (second row) models with and
without using encryption protocol over training rounds on IIIT5K, SVT and IC15 datasets.

Table 4.3: Recognition accuracies (%) on three testing datasets. All experiments are using a batch size of
800 and epoch of 1.

Method Encryption IIIT5K SVT IC15

FedAvg N/A 86.67 89.60 72.37
HE 86.40 88.00 73.00

FedBoosting
N/A 87.62 89.20 75.99
HE 85.12 88.40 72.70

HE+DP 85.00 88.80 72.37

Table 4.3 provides the comparison results on three testing datasets (IIIT5K, SVT and IC15)

with different FL gradients merging methods and encryption modes under the hyper-parameters

of 800 batch size and 1 epoch. The results of FedAvg illustrate that by using HE, although it has

slight precision loss in the processing of dividing the whole gradient into many pieces, accuracy

67

4. Protected Gradient Boosting

has nearly no reduction on testing datasets. Even it has accuracy raising on IC15 dataset from

72.37% to 73.00%. On the other two testing datasets, the losses of accuracy are 0.27% and

1.6% separately. Same for FedBoosting models, testing results show a slight accuracy reduction

which can be tolerant when only using HE. While adding DP into FedBoosting with HE, it

has nearly no affection on accuracy. As DP encryption is only used to encrypt local gradients

between clients for evaluation and get the results on all clients’ validation datasets, DP has

little impact on global gradients generating. However, testing results have a fall down between

common FedBoosting and encrypted FedBoosting models, e.g. accuracy reduced from 87.62%

to about 85% on IIIT5K and also have an approximately 3% on IC15. We think that is normal

fluctuation for training DL models. Although all three testing accuracies have different degrees

of reduction, from the curve lines in Figure 4.5, the accuracy climbing trend presents the

differential under different encryption modes. It can be observed that differentials on most

testing datasets are rather small. Please note that all samples in Figure 4.5’s testing parts are

resized to 100*32, which is different from the processing in Table 4.3 where the samples are

scaled proportionally to match with the height of 32 pixels.

4.3.2.3 Performance Comparison

We further consider that the reason for the divergence issue is the quality of datasets, see

Figure 4.3. That is to say, each local model trained on different private datasets has surely

different generalisation abilities. In our experiments, aggregating the global model crudely

by averaging all the weights of local models may cause a decrease in generalisation ability,

especially when the local updating iteration number is large (i.e. small batch size or large epoch

number). So the proposed FedBoosting prefers to give a more fair weight instead of a mean

value by trading off the training and validation performance of a local model. Following this

thought FedBoosting first considers each model’s validation results on every client’s validation

dataset, then collaborates with training results to compute the weights of local models. The

reason we think over training results is that usually, a local model trained on a high-quality

dataset has a nice fitness, while it may perform badly on poor-quality validation datasets. It

is unfair to say this model has a poor generalisation ability only considering its validation

performance on different quality datasets. Inversely, a model that is trained on a poor-quality

dataset may perform very well on a high-quality validation dataset as well, but we do not want

this kind of local model to occupy too much of the global model. To this end, to leverage the

performance of a local model, we first sum the validation results as a reference representing

68

4.3. Experiment and Discussion

the local model’s generalisation ability. Furthermore, training results are taken into account

to rectify the reference to obtain the final weights for each local model. It is observed in our

experiments that the weights are about 55% for the local model trained on Synth90K dataset and

45% on SynthText dataset, which is reasonable cause we can see the accuracy results in Table 4.1

that CRNN models trained on Synth90K dataset always obtain better performance comparing

with whose trained on SynthText dataset. While if we get rid of training results, the weight for

the local model trained on Synth90K dataset would be smaller than which on SynthText dataset.

(a) 256 batch size and 1 epoch

(b) 800 batch size and 1 epoch

Figure 4.6: Performance comparison on how the training results affect the model performance. Solid
lines refer to global models aggregated with training and validation results, while dash lines refer to
global models aggregated only with validation results.

To prove the above idea in FedBoosting, a performance comparison is given here. It is

commonly accepted that generalisation ability is a good metric for judging a model’s perfor-

69

4. Protected Gradient Boosting

mance, whereas only considering generalisation ability is not feasible for our proposed method

FedBoosting. Otherwise, it is impossible as well to deploy our method only considering training

results and get rid of validation results, which may lead to an extremely unfair situation in that

the local model trained on Synth90K may take a weight up to about 80% for the global model.

So the following content is mainly talking about how training results work in FedBoosting.

We trained a global model with 256 batch size and 1 epoch under the strategy of FedBoosting

without considering training results. As described above, the reason for thinking over training

results is to rectify the weight for the local model. From Figure 4.6 (a), we can see that the global

model without taking training results gains a delay convergence at round 24. While in other

experiments, models all converge quickly and properly under the supervision of training results.

In the meantime, the performance of the global model with training results is always better than

that without training results. As a supplement, we visualise the global testing accuracy of two

models with 800 batch size and 1 epoch in Figure 4.6 (b), one uses training results and the other

one does not. Two models converge normally in this case, but the model performance of using

training results outperforms all the time. From all the above, we consider that using training

results to supervise the local weight is essential in our scenario. To clarify, all testing images

during training are resized to 100*32, which is different to individual testing experiments where

testing images are resized to W*32, where W is proportionally scaled with heights, but at least

100 pixels. That is why accuracies in Figure 4.6 are lower than those in Table 4.1. Please refer

to our codes for more details.

4.4 Summary

In this chapter, we proposed FedBoosting a boosting scheme for FL framework to overcome the

limitation of FedAvg on Non-IID dataset. To protect against gradient leakage attack, a gradient

sharing protocol was introduced using HE and DP. A comprehensive comparison study has

been carried out using a synthetic dataset and public text recognition benchmark, which shows

superior performance over the traditional FedAvg scheme on the Non-IID dataset. In addition

to this, we acknowledge the limitations inherent in our FedBoosting, particularly in relation to

the dual-layer encryption component. This limitation arises from the substantial assumption

necessitated by the protocol, which presupposes that no client will engage in a conspiracy

with the server to disclose the private key. Such an assumption, while theoretically possible,

represents a point of vulnerability, as it does not account for the potential threats posed by rogue

clients or server. Thus, the reliability of the FedBoosting’s encryption layers fundamentally

70

4.4. Summary

depends on this strong assumption, underscoring the need for further investigation into more

robust, adversarial-resilient encryption methods within the context of Federated Learning. Our

implementation is publicly available to ensure reproducibility, and it can be run in a distributed

multiple GPUs setup. Theoretical study on model convergence from multi-parties computing,

privacy leakage from gradients, and more efficient quantization methods for gradients are three

potential directions worthy of further investigation.

71

Chapter 5

Leakage Defence with Key-Lock

5.1 Introduction

DNNs marks the start of the fourth paradigm for data-intensive scientific discovery that has

achieved numerous world-renowned successes on computer vision, NLP and classic artificial

intelligence problems, which greatly improves human’s daily life and speeds up industrial

innovation. DNNs are data hungry, where increasingly public concerns on data privacy and

personal information have been raised in recent years and attracted researchers’ great attention.

FL, a decentralised framework for collaborative privacy-preserving model training was proposed

[91–93,191], where it consists of a number of training clients and a central server that aggregates

locally computed model gradient from individual clients. The sensitive data is only visible to

its data owner. However, recent research works have demonstrated that the gradient-sharing

scheme is no longer secure in protecting sensitive and private data. Zhu et al. [130] proposed

DLG, a method to recover the original training data by updating a randomly initialised input

image and its associated label to approximate the true gradient. When the training converges,

the updated input image is expected to be closer to the true image. DLG is often criticised for

being unstable and sensitive to the size of the training batch and image resolution. Zhao et

al. [138] showed that the ground-truth label can be computed analytically from the gradient

of the loss with respect to its Softmax layer. Furthermore, Geiping et al. [139] proposed IG to

improve the stability of DLG using magnitude-invariant cosine similarity measurement as the

loss function. It is capable of recovering images up to a resolution of 224⇥224 and a training

batch size of 100 with an acceptable success rate. Our previous work [131] showed the superior

performance of GRNN in recovering training data from the globally shared gradient. It consists

73

5. Leakage Defence with Key-Lock

Figure 5.1: Illustration of FedKL: 1� Clients feed private training data into the model and generate the
true gradient; 2� The attacker reconstructs private images from the shared gradient; 3� Clients feed
private training data into the model with key-lock module. The attacker can not reveal true images from
the locked gradient; 4� A private key sequence is fed into the lock layer for proper inference progression.

of two branches of generative models, one uses a GAN architecture for generating fake training

data, and the other one uses a fully-connected architecture for generating corresponding labels.

The training data is recovered by a training target of regressing the true and fake gradient that is

computed from the generated data pairs. Recently, Li et al. [142] proposed GGL that generates

similar fake data from a pre-trained GAN. It is derived from the idea of iDLG which is to infer

the true label and then update the input sequence of GAN by matching the gradient. Finally, the

well-trained input sequence is fed into the GAN model to generate a number of fake images that

are similar to the true image. To be noted that GGL only generates similar data given a label, it

does not aim to recover the original training data.

The progress of the deep leakage attack leads us to question to what extent can FL system

protect data privacy. Recently, there are a number of strategies proposed to protect against

such leakage attack, e.g. gradient perturbation [130, 131, 192–194], data obfuscation or san-

itization [143, 145, 195–198], and mixture methods [115, 144, 199–201]. However, in most

cases, trade-offs have to be made between privacy and performance. Particularly, for classic

encryption-based approaches, the high computational complexity inherent in cryptographic

operators requires an excessive amount of computational resources. Further investigation on the

ablation experiment of gradient leakage was carried out by Wei et al. [202], where the work

quantitatively characterised the correlations of DNN architecture design and federated learning

74

5.1. Introduction

setting, including batch size, image resolution, activation function and the number of local

iterations before gradient exchanging. The findings are directly or indirectly supported by many

other works. For example, DLG claims that the activation function must be twice-differentiable;

IG can generate images with up to 224⇥224 resolution; GRNN is capable of recovering the

data from a batch size of 256 with a resolution of 256⇥256 image. It also evaluates the impact

of leakage performance by varying the number of local training iterations on the client side.

In this chapter, we first theoretically prove that the feature maps computed from the fully-

connected layer, convolutional layer and BN layer contain the private information of input

data, where such information also co-exists in the gradient at the backward passing stage. We

hypothesise that the gradient leakage attack is possible only when the gradient spaces between

the fake model and local model are well aligned. Therefore, we propose FedKL, a key-lock

module which is capable of differentiating, misaligning and locking the gradient spaces with a

private key, meanwhile keeping the federated aggregation the same as the typical FL framework.

In summary, we reformulate the scale and shift processes in the normalisation layer. A private

key, i.e., randomly generated sequence, is fed into two fully-connected layers, and the outputs

are the privately owned coefficients for the scale and shift processes. Both theoretical analysis

and experimental results show that the proposed key-lock module is feasible and effective in

defending against the gradient leakage attack as the consistency of private information in the

gradient is obfuscated so that the malicious attacker cannot formula the forward-backwards

propagation without the private key and the gradient of the lock layer. Therefore, it is no longer

feasible to reconstruct local training data by approximating the shared gradient in the FL system.

Our theoretical and experimental results suggest that the FedKL brings the benefits in four

aspects:

• Safe - a strong protection strategy against the gradient leakage attack;

• Accurate - negligible degradation of inference performance compared to the model

without the key-lock module;

• Efficient - additional computational cost on key-lock module is also negligible;

• Flexible - applicability to arbitrary network architecture.

The rest of this chapter is organised as follows: In Section 5.2, the proposed gradient leakage

defence method and private key-lock module are described in detail; Then we will talk about the

experimental results in Section 5.3 and discuss the comparison between state-of-the-art attack

75

5. Leakage Defence with Key-Lock

methods using our proposed FedKL; The last Section 5.4 reports the conclusion and our future

work.

5.2 Proposed Method

In this section, we first prove that the gradient information of a DNN at the back-propagation

stage is highly correlated to the input data and its corresponding label in a supervised learning

scenario. Then, we theoretically show that by shifting the latent space, the private data cannot

be recovered from the gradient without aligning the latent spaces. Therefore, based on these two

theoretical findings, the key-lock module is proposed to protect the local gradient from leakage

attack. Finally, the novel FL framework with the key-lock module, namely FedKL, is presented,

which shows how the proposed method protects the collaborative learning system from gradient

leakage attack.

5.2.1 Theoretical Analysis on Gradient Leakage

Recently, there have been a number of works showing that the input data information embedded

in the gradient enables leakage attack. Geiping et al. [139] proved that for any of the fully-

connected layers in a neural network, the derivative of loss value with respect to the layer’s

output contains the information of input data. By referring to the Chain Rule, the input of the

fully-connected layer can be computed independently by the gradients of the other layers. In

this section, taking typical supervised learning, i.e., image classification, as an example, we first

extend this theory to the convolutional layer and BN layer.

Definition 1 Gradient: suppose in a vector or matrix space, a function f : Rn! Rm that maps

a vector of length n to a vector with length m: f(x) = y, x 2 Rn; y 2 Rm. The gradient is the

derivative of a function f with respect to input x, and can be presented by the Jacobian Matrix:

∂ f
∂x

=

0

BB@

∂ f1
∂x1

· · · ∂ f1
∂xn

...
. . .

...
∂ fm
∂x1

· · · ∂ fm
∂xn

1

CCA (5.1)

Definition 2 Chain Rule: concerning the derivative of a function of a function, e.g. g(f(x)).
With continuity and derivability of the function, the outer function is derivable with respect to

the inner function as an independent variable. Then, the inner function is derivable with respect

to its independent variable x. According to the Chain Rule, the derivative of g with respect to x

76

5.2. Proposed Method

is:

∂g
∂x

=
∂g
∂ f

∂ f
∂x

(5.2)

Claim 1 The gradient of the linear neural network is highly related to the input data and

ground-truth label.

Proof. Assuming a simple linear regression example, the model is f (x) : ŷ = qx, the loss

function is MSE: L (x,y) = 1
N Â(ŷ� y)2 = 1

N Â(qx� y)2, where N is the number of sample, y

is the ground-truth. The derivative of loss function L with respect to the weight q on a batch of

N samples is:

∂L

∂q
=

∂
∂q

1
N Â

i
(xi ·q � yi)

2 (5.3)

=
1
N Â

i

∂
∂q

(xi ·q � yi)
2

=
1
N Â

i
2 · (xi ·q � yi) ·

∂ (xi ·q � yi)

∂q

=
1
N Â

i
2 · xi · (ŷ� yi)

In this case, the gradient of the model is positively related to the input to the function and the

difference between the predicted label and the ground-truth label.

Claim 2 The gradient in a non-linear neural network is highly related to the input data and

ground-truth label.

Proof. For a classification task, suppose the model consists of two fully-connected layers, a

Rectified Linear Unit (ReLU) activation layer, a Softmax layer, and Cross Entropy (CE) loss

function. Then the forward process of the model is:

x = input

u = q · x+b1

a = ReLU(u)

z = l ·a+b2

ŷ = so f tmax(z)

L =CE(y, ŷ)

77

5. Leakage Defence with Key-Lock

where x 2 RDx⇥1, q 2 RDo⇥Dx , b1 2 RDo⇥1, l 2 RNc⇥Do , b2 2 RNc⇥1, Dx is the dimension of

input space, Do is the number of hidden nodes in the first fully-connected layer, and Nc is the

number of class. ReLU is the most commonly used activation function in DL. The derivative of

layer ReLU with respect to its input is given by:

∂ReLU(x)
∂x

=

(
1 if x > 0

0 if otherwise
= sgn(ReLU(x)) (5.4)

The function of Sigmoid is s(x) = 1
1+e�x . And the derivative of it with respect to its input is:

∂s(x)
∂x

= s(x)(1�s(x)) (5.5)

The derivative of loss function L with respect to the input of Softmax z is (ŷ� y)T . Then the

gradient of the output layer is:

∂L

∂l
=

∂L

∂ z
∂ z
∂l

= (ŷ� y)T ·a (5.6)

∂L

∂b2
=

∂L

∂ z
∂ z

∂b2
= (ŷ� y)T (5.7)

This approves that the gradient of the output layer contains the information on the ground-truth

label, which is consistent with the point in paper [138, 141]. In Equ. 5.6, ŷ is the predicted

probability distribution, and y is the one-hot distribution of the ground-truth label. Thus only

the correct label produces a negative result of (ŷ� y)T . In addition, a, a.k.a. feature map as the

output of the activation layer, passes the information of input data to the gradient of the output

layer. As the value of q and b1 are known in typical FL system, the input data can be calculated

based on Equ. 5.6, 5.7 and 5.8:

a =

(
q · x+b1 if q · x+b1 > 0

0 if otherwise
(5.8)

Next, the gradient for the first fully-connected layer:

∂L

∂q
=

∂L

∂ z
∂ z
∂a

∂a
∂u

∂u
∂q

(5.9)

= (ŷ� y)T ·l � sgn(a) · x

=

(
(ŷ� y)T ·l · x if a > 0

0 if otherwise

78

5.2. Proposed Method

∂L

∂b1
=

∂L

∂ z
∂ z
∂a

∂a
∂u

∂u
∂b1

(5.10)

= (ŷ� y)T ·l � sgn(a) ·1

=

(
(ŷ� y)T ·l if a > 0

0 if otherwise

Weight l = l 0 �h(ŷ�y)T a, where l 0 is the last iteration’s weight and h is the learning rate. In

ReLU layer, certain information is suppressed (setting to 0), see Equ. 5.9. It is worth noting that

the non-zero gradients consist of three parts: 1) the difference between the predicted probability

distribution and one-hot ground-truth label; 2) the weights of the next fully-connected layer l ;

and 3) the input of the current layer, input data and feature maps. Given the gradient of each

layer, each component in Equ. 5.9 & 5.10 is known, therefore the input data x can be recovered.

It can conclude that the gradient in a non-linear neural network is highly correlated to the input

data and ground-truth label. According to the Chain Rule, the input information is also passed

through the whole network.

Claim 3 The gradient in the CNN is highly correlated to the input data and ground-truth label.

Proof. Consider a classification CNN consisting of a convolutional layer, a ReLU activation

layer, a fully-connected layer, a Softmax layer, and CE loss function. The forward process of

the model is as follows:

x = input

u = q ⇤ x+b1

a = ReLU(u)

a0 = f latten(a)

z = l ·a0+b2

ŷ = so f tmax(z)

L =CE(y, ŷ)

The derivatives of L with respect to l and b2 are the same in Claim 2. So we mainly concentrate

on the gradient of the convolutional layer:

∂L

∂q
=

∂L

∂u
∂u
∂q

(5.11)

79

5. Leakage Defence with Key-Lock

∂L
∂u is known in Equ. 5.9 & 5.10. According to the convolutional function, we have:

u(i, j,d) = Â
h

Â
w

Â
c

q(d,h,w,c) · x(i+h, j+w,c) +b1d (5.12)

where i and j are the coordinates of the output feature map, d is the index of the convolutional

kernel, h and w are the coordinates of the kernel and c is the index of the input channel. Then,

the derivative of one pixel of the output feature map against any one specific parameter is:

∂u(i, j,d)
∂q(d,h0,w0,c0)

=
∂ (Âh Âw Âc q(d,h,w,c) · x(i+h, j+w,c) +b1d)

∂q(d,h0,w0,c0)
(5.13)

=
∂q(d,h0,w0,c0) · x(i+h0, j+w0,c0)

∂q(d,h0,w0,c0)

= x(i+h0, j+w0,c0)

All parameters are involved in the computing process of the final output of the model. Therefore,

the Equ. 5.11 can be transformed into the derivative of the loss function with respect to any of

the parameters in the convolutional layer (see Equ. 5.14). Note that one convolutional kernel is

associated with only one output channel, For example, the first kernel with the input generates

the first channel of the output, the second kernel with the input results in the second channel of

the output, and so on.

∂L

∂q(d,h0,w0,c0)
=

∂L

∂u(i, j,d)

∂u(i, j,d)
∂q(d,h0,w0,c0)

(5.14)

=
∂L

∂u(i, j,d)
· x(i+h0, j+w0,c0)

Regarding the derivative of the loss function with respect to the bias b1d , we have:

∂u(i, j,d)
∂b1d

= 1 (5.15)

∂L

∂b1d
= Â

i
Â

j

∂L

∂u(i, j,d)
(5.16)

In the end, as the same as Claim 1 and Claim 2, referring to Equ. 5.6, 5.7, 5.9 & 5.10, the

gradient in the CNN is also highly correlated to the input data and ground-truth label. And in

our previous work [131], we have demonstrated that higher label inference accuracy always

leads to better reconstruction performance of the input data. The idea is also presented in

papers [138, 141], whereas the fundamental rationale of such phenomena was not explored.

80

5.2. Proposed Method

We have proved that the gradients in both convolutional and fully-connected layers contain

sufficient information on the input data and their associated ground-truth labels to reconstruct

them. The objective of the following is to prove the gradient in BN layer also contains informa-

tion on input data and the ground-truth label.

Definition 3 BN Layer: For each hidden neuron in a DNN, to avoid the vanishing gradient

problem caused by input values falling into the limit saturation zone of the non-linear function,

BN layer pulls the values back to a standard normal distribution. So that the input values of the

non-linear transformation function fall into a region that is more sensitive to the input.

Suppose there is a mini-batch of input data: B = {u1...uN}, where N is the batch size. The

BN function can be defined as:

µB =
1
N Â

n
un (5.17)

s2
B =

1
N Â

n
(un�µB)2 (5.18)

û =
u�µBq
s2

B + e
(5.19)

s = g · û+b (5.20)

Claim 4 The gradient in BN layer contains the input data and label information.

Proof. We modify the network in Claim 3 by adding a BN layer after the convolutional layer:

x = input

u = q ⇤ x+b1

s = BNg,b (u)

a = ReLU(s)

a0 = f latten(a)

z = l ·a0+b2

ŷ = so f tmax(z)

L =CE(y, ŷ)

where g and b are parameters in BN layer. The derivative of the loss function with respect to g

81

5. Leakage Defence with Key-Lock

and b are:

∂L

∂g
=

∂L

∂ s
∂ s
∂g

=
∂L

∂ s
· û (5.21)

= (ŷ� y) ·l � sgn(a) · û

∂L

∂b
=

∂L

∂ s
∂ s
∂b

=
∂L

∂ s
(5.22)

= (ŷ� y) ·l � sgn(a)

Same with Claim 1, 2 and 3, the gradient of BN layer is correlated to the input data and

ground-truth label as well. However, based on the Chain Rule, to calculate the gradient of the

network properly, the derivative of the loss function against the input of the BN layer should be

computed. It is non-trivial to calculate ∂L
∂u directly. We know that the normalised û, variance

value s2
B and mean value µB are all related to the input u. So we first compute the derivative of

∂L
∂ û , ∂L

∂s2
B

and ∂L
∂ µB

:

∂L

∂ û
=

∂L

∂ s
∂ s
∂ û

=
∂L

∂ s
· g (5.23)

= (ŷ� y) ·l � sgn(a) · g

∂L

∂s2
B

=
∂L

∂ s
∂ s
∂ û

∂ û
∂s2

B

(5.24)

=�1
2

∂L

∂ û
· (u�µB) · (s2

B + e)�
3
2

∂L

∂ µB
=

∂L

∂ û
∂ û

∂ µB
+

∂L

∂s2
B

∂s2
B

∂ µB
(5.25)

=
∂L

∂ û
· �1q

s2
B + e

+
∂L

∂s2
B

· �2(u�µB)

N

Then we have:

∂L

∂u
=

∂L

∂ û
∂ û
∂u

+
∂L

∂s2
B

∂s2
B

∂u
+

∂L

∂ µB

∂ µB

∂u
(5.26)

=
∂L

∂ û
· 1q

s2
B + e

+
∂L

∂s2
B

· 2(u�µB)

N
+

∂L

∂ µB
· 1

N

82

5.2. Proposed Method

As in the typical FL, each layer’s gradient is known to a malicious server. Therefore, every

variable in the above equations can be calculated. According to Equ. 5.14 & 5.21, the gradient

contains rich information of input data in not only shallow but also deep layers. On the other

hand, in Equ. 5.23 & 5.21, g is a trainable parameter which is highly related to the input feature

map û. And this can also be observed in Equ. 5.24 & 5.25 as well. As a result, in Equ. 5.26, for

the derivative of the loss function with respect to the output of convolutional layer u, the input

data information is sufficiently rich, which enables deep leakage attack.

In this section, we discovered that the private input data or feature maps can be inferred from

the gradient, using the previous layers’ gradient and the current layer’s weight. This discovery

offers the essential understanding of how gradient leakage works by matching with the true

gradients. Referring to all the reasoning processes above, we can conclude that for any arbitrary

CNN:

Proposition 1 For an image classification task, the gradient of the fully-connected layer,

convolutional layer and BN layer contain sufficient private information, so the attacker is

capable of reconstructing the input data and ground-truth label by regressing the gradient.

5.2.2 Theoretical Analysis on Leakage Defence

Proposition 2 For a CNN, embedding a key-lock module into the model can prevent the

inheritance of the private input information throughout the gradient, where it makes the gradient

drop the information of input data.

Proof. We theoretically analysed how the proposed key-lock module prevents the information

from inheriting throughout the gradient. Instead of treating l and b as trainable parameters in

BN layer, the key-lock module makes them the output of two fully-connected layers, namely

lock, given a private input sequence, namely key. The new trainable parameters are w , f , and

two biases b2, b3. The network is defined as follows:

x = input

k = key

u = q ⇤ x+b1

g = w · k+b2

b = f · k+b3

83

5. Leakage Defence with Key-Lock

s = BNg,b (u)

a = ReLU(s)

a0 = f latten(a)

z = l ·a0+b4

ŷ = so f tmax(z)

L =CE(y, ŷ)

The derivative of the loss function with respect to w and f are:

∂L

∂w
=

∂L

∂ s
∂ s
∂w

=
∂L

∂ s
· k · û (5.27)

= (ŷ� y) ·l � sgn(a) · k · û

∂L

∂f
=

∂L

∂ s
∂ s
∂f

=
∂L

∂ s
· k (5.28)

= (ŷ� y) ·l � sgn(a) · k

The gradient in the lock layer contains the information on the key sequence and feature map.

Given the key, the gradient of the lock layer can be inferred, where the input data can be leaked.

Therefore, we proposed to retain both the key sequence and the weight of the lock layer privately

in our proposed FedKL. Once embedding the key-lock module, then Equ. 5.23 can be rewritten:

∂L

∂ û
=

∂L

∂ s
∂ s
∂ û

(5.29)

=
∂L

∂ s
· (w · k+b2)

= (ŷ� y) ·l � sgn(a) · (w · k+b2)

The key sequence k, lock layer’s weight w , and bias b2 are all confidential. Unlike the case in

Section 5.2.1 Claim 4, the components in Equ. 5.24, 5.25 & 5.26 can not be calculated due to

unknown g and b . Similarly, in Equ. 5.21 û can be calculated, however, s can not be calculated

in Equ. 5.20. Therefore, it is incapable of inferring the input information from the feature map s.

The proposed key-lock module prevents the feature map from inheriting the input information

and carrying it throughout the gradient when the private key and parameter of the lock module

are unknown to the attacker.

84

5.2. Proposed Method

Figure 5.2: The top is the illustration of the general convolution-normalisation block, while the bottom
indicates a key-lock module embedded in the block for generating the parameters, g and b .

5.2.3 Key-Lock Module

We start with a review of the general BN layer. It usually follows a convolutional layer and

consists of two processing steps: normalisation, then scale and shift. The coefficients for scale

and shift are two trainable parameters updated by back-propagation. Our goal is to prevent

the input data information from being passed between gradients. Inspired by the work of

DeepIP [203], we propose a key-lock module for FL, namely FedKL, that can be embedded

after the convolution-normalisation block, where the scale factor g 2 RO and the shift bias

b 2 RO are no longer two trainable parameters, but the outputs of the key-lock module. O

denotes the number of output channels of the convolutional layer. Xconv 2 RB⇥C⇥W⇥H is the

input of the convolutional layer, where B is the batch size, C is the number of channels, W

and H are the width and height of input image, respectively. Wconv 2 RC⇥O⇥K⇥K represents the

weight in the convolutional layer, where K is the kernel size. We define Xkey 2 RS as the input

key with a length of S, and Wlock 2 RS⇥O as the weight of the key-lock module. b is the bias.

Therefore, we can formulate the embedding transformation F () as:

F (Xconv,Xkey) = g · (Xconv ⇤Wconv)+b

85

5. Leakage Defence with Key-Lock

g = Xkey ·Wlock�g +block�g

b = Xkey ·Wlock�b +block�b

where ⇤ denotes convolution operation, · is the inner product. Note that, g and b in the general

normalisation layer are two trainable parameters, while in our proposed method, they are the

outputs of the lock layer given the private key sequence. Figure 5.2 gives the illustration of the

general convolution-normalisation block and our proposed key-lock module.

5.2.4 FL with Key-Lock Module

Figure 5.3: FL system with the key-lock module.

In the FL system, the global model is first initialised on the server and then distributed to

each client for secured local training. Local gradients from the clients are aggregated to the

server to merge into a new global model for the next round of local training. To deploy the

key-lock module in the system, the server needs to initialise the model with the key-lock module

and then distribute the model to each client. Each client needs to generate its own private key

sequence for local training. After local training, the gradient of the model without the lock layer

is transferred to the server to generate the new global model. In the whole process, both the

86

5.3. Experiment and Discussion

key sequence and lock layer are private and secure locally. The global model does not have

information about the key-lock module, so the global model on the server end cannot be used

for data reconstruction attack. In the next round of local training, each client will first integrate

its own lock layer into the new global model. Figure 5.3 shows the detail of a FL system with

the key-lock module. In the next section, we experimentally show that while having the ability

of private information protection, the proposed key-lock module has very limited influence on

inference performance.

5.3 Experiment and Discussion

In this section, we first introduce the datasets and metrics that are used for benchmark evaluation.

Then, we present three sets of experiments to evaluate: 1) the impact of prediction accuracy

of DNN with the proposed key-lock module; 2) the efficacy of defending state-of-the-art

gradient leakage attacks including DLG, GRNN and GGL; 3) the ablation study of various key

hyper-parameters of DNN and training setting.

5.3.1 Benchmarks and Metrics

Four popular public benchmarks used in our experiments are MNIST [158], CIFAR-10 [159],

CIFAR-100 [159] and ILSVRC2012 [89]. Four evaluation metrics are used to quantify the

quality of the generated image, including MSE, PSNR, Learned Perceptual Image Patch Sim-

ilarity (LPIPS) [204] and SSIM [205]. As the batch size is set to 1 in order to achieve the

highest success rate and the best image quality of gradient leakage attack, the reconstructed

image and the true image can be matched directly. MSE measures the pixel-wised L2 differ-

ence between the reconstructed image and the true image. Formally, MSE is formulated as

MSE(X , X̂) = ||X � X̂ ||2, where X indicates the true image and X̂ is the reconstructed image.

PSNR is an objective standard for image quality evaluation which is defined as the logarithm

of the ratio of the squared maximum value of RGB image fluctuation over MSE between two

images. The definition is given as: PSNR(X , X̂) = 10 · lg(2552

MSE(X ,X̂)
). The higher the PSNR

score, the higher the similarity between the two images. LPIPS essentially computes the sim-

ilarity between two image patches by means of some pre-defined networks. We used two

neural networks, VGGNet [37] and AlexNet [36] to perceptually evaluate the similarity of two

images. This method is approved to be compatible with human perception. A lower LPIPS

score indicates the two images are perceptually more similar. SSIM senses the proximity

87

5. Leakage Defence with Key-Lock

of image distortion by detecting whether structural information has been changed. A higher

SSIM score implies a better match. The proposed key-lock module is only embedded in the

first convolution-normalisation block across all experiments in this chapter. The length of the

randomly generated key sequence is 1024. The framework we used to implement the neural

network models is PyTorch [163]. Our implementation of proposed FedKL is publicly available
1.

5.3.2 Accuracy Impact

Table 5.1: Testing accuracy(%) from models trained at different settings. The red ones are the highest
accuracy and the blue ones are the next highest. C-10 represents CIFAR-10 and C-100 is CIFAR-100. KL
means key-lock module. The accuracy results in the Reference row are taken from the relevant papers.
“Cen.” is the abbreviation of Centralised

Model LeNet
(32*32)

ResNet-20
(32*32)

ResNet-32
(32*32)

ResNet-18
(224*224)

ResNet-34
(224*224)

VGG-16
(224*224)

Dataset MNIST C-10 C-100 C-10 C-100 C-10 C-100 C-10 C-100 C-10 C-100

Cen. w/o KL 98.09 91.63 67.59 92.34 70.35 91.62 72.15 92.20 73.21 89.13 63.23
w/ KL 98.07 90.58 67.49 91.05 69.89 93.12 75.90 94.68 78.22 93.84 74.86

FL FedAvg 98.14 91.20 58.58 91.37 61.91 89.50 68.59 89.27 68.30 88.13 61.91
FedKL 97.45 88.45 61.97 89.29 64.17 91.66 74.19 93.27 76.61 93.54 73.06

Reference 99.05
[162]

91.25
[39] - 92.49

[39] - - - - - - -

To evaluate the performance impact, we established two strategies: a) centralised training

with/without key-lock module; b) collaborative training in FedAvg system with/without key-

lock module. LeNet [162] VGGNet [37] and ResNet [39] are used as the backbone networks

for training image classifiers. In Table 5.1, we carried out eleven different settings for the two

training strategies and trained forty-four models in total. In general, the best results can be

found when the centralised training is used, such as LeNet on MNIST has the best performance

of 99.05% accuracy from paper [162], ResNet-20 achieves the highest accuracy of 91.63% on

CIFAR-10 and 67.59% on CIFAR-100. By adding the key-lock module, there is no significant

drop in terms of model inference performance. In some cases, models with the key-lock module

perform even better than the ones without the key-lock module. For example, ResNet-20 on

CIFAR-100 obtains a testing accuracy of 61.97% with FedKL framework, which is 5.79%

higher than classic FedAvg model that achieves 58.58%. The highest performance boost can

be observed at VGG-16 on CIFAR-100, where the model from FedKL gains an accuracy of
1https://github.com/Rand2AI/FedKL

88

https://github.com/Rand2AI/FedKL

5.3. Experiment and Discussion

73.06%, which is 18.43% higher than 61.69% achieved using FedAvg. On the other hand,

for the experiments using images with a resolution of 32⇥ 32, the best models are all from

centralised settings without the key-lock module. When up-scaling the resolution to 224⇥224,

the best models change to the centralised setup with our proposed key-lock module. Besides, the

results from ResNet-18, ResNet-34, and VGG-16 show that models with the key-lock module

perform better than those without the key-lock module.

In Table 5.2, we visualised testing accuracies and losses over epochs using different networks

trained on CIFAR-10 and CIFAR-100 datasets. The models are all trained in the centralised

mode. The performance gap between the models with and without the key-lock module is small.

In particular, two kinds of models have the same convergence trend for many cases, such as

ResNet-20 and ResNet-32 trained on CIFAR-100 and ResNet-18 trained on CIFAR-10. The

superiority of the model with the key-lock module usually happens when using high-resolution

images. That is because the key-lock module has two additional fully-connected layers, which

bring more trainable parameters compared to the original normalisation layer. Higher image

resolution has a more complex feature space, so more trainable parameters lead to better

convergence to the model.

In Table 5.1, accuracies from FedKL are the averaged values over all local clients. That is

because the gradient of the lock layer is not shared from local clients to the parameter server,

and each client holds a different private key sequence. To further illustrate how the key-lock

module influences model performance, we experimented with evaluating the global model by

inputting a randomly generated key sequence and using the initial weights in the lock layer

on the server at each training round. The results are shown in Table 5.3. The accuracy of

each client is obtained using their own private input key sequence and well-trained lock layer’s

parameter. Average accuracy is the best performance of the three clients in a round. The results

in the “Random” row are from the models with the highest average accuracy by inputting a

randomly generated key sequence and using the initial lock layer’s weights. In Table 5.3, the

performance gap is greater for light networks than for heavy networks. We empirically analysed

the relationship between the number of parameters in the lock layer and the total number of

parameters in the model. And found a positive relationship between the performance gap and

the weight proportion. The performance gap becomes smaller as the proportion of parameters

in the lock layer becomes smaller. For example, the simplest network LeNet gains the highest

parameter proportion of 22.43% and the largest performance gap of 87.00% on the model with

the best average performance of 97.45%. The parameter proportion of ResNet-20 is higher

89

5. Leakage Defence with Key-Lock

Table
5.2:Testing

accuracies
and

losses
overepochs

on
C

IFA
R

10
and

C
IFA

R
100

datasets
using

differentnetw
orks.The

m
odels

are
alltrained

in
centralised

m
ode.The

red
solid

linesare
the

resultsfrom
m

odelsw
ith

the
key-lock

m
odule

and
the

blue
dashed

linesare
those

from
m

odelsw
ithoutthe

key-lock
m

odule.

ResN
et-20

ResN
et-32

ResN
et-18

ResN
et-34

VG
G

-16

CIFAR10
AccuracyLoss

CIFAR100
AccuracyLoss

90

5.3. Experiment and Discussion

Table 5.3: Accuracy (%) of models trained by FedKL with different input key sequences. The parameter
proportion means the ratio of the parameter number in the lock layer over the total parameter number in
the model.

Model Key Source MNIST Parameter
ProportionAccuracy Gap

LeNet
(32*32)

Client 0 97.88 87.43

22.43%
Client 1 97.90 87.45
Client 2 97.66 87.21
Average 97.45 87.00
Random 10.45 0

Model Key Source C-10 C-100 Parameter
ProportionAccuracy Gap Accuracy Gap

ResNet-20
(32*32)

Client 0 88.59 9.42 62.17 33.66

10.49%
Client 1 87.88 8.71 61.84 33.33
Client 2 88.63 9.46 61.99 33.48
Average 88.45 9.28 61.97 33.46
Random 79.17 0 28.51 0

ResNet-32
(32*32)

Client 0 89.26 13.35 63.92 18.78

6.46%
Client 1 89.42 13.51 64.28 19.14
Client 2 88.83 12.92 64.17 19.03
Average 89.29 13.38 64.17 19.03
Random 75.91 0 45.14 0

ResNet-18
(224*224)

Client 0 90.23 0.82 74.30 12.70

1.15%
Client 1 91.78 2.37 74.17 12.57
Client 2 89.63 0.22 74.28 12.68
Average 91.66 2.25 74.19 12.59
Random 89.41 0 61.60 0

ResNet-34
(224*224)

Client 0 93.40 1.63 76.74 6.98

0.61%
Client 1 92.76 0.99 76.25 6.49
Client 2 93.28 1.51 76.57 6.81
Average 93.27 1.50 76.61 6.85
Random 91.77 0 69.76 0

VGG-16
(224*224)

Client 0 93.58 0.36 72.67 1.07

0.097%
Client 1 93.40 0.18 73.17 1.57
Client 2 93.59 0.37 72.76 1.16
Average 93.54 0.32 73.06 1.46
Random 93.22 0 71.60 0

than ResNet-32. So ResNet-20 performs better than ResNet-32 with a 33.46% accuracy gap

against 19.03% on CIFAR-100. However, the performance gap from ResNet-20 is smaller

91

5. Leakage Defence with Key-Lock

than ResNet-32 (9.28% VS. 13.38%) on CIFAR-10. The accuracy gap from ResNet-18 is

larger than those from ResNet-34 (2.25% VS. 1.50% on CIFAR-10 and 12.59% VS. 6.85%

on CIFAR-100). VGG-16 with the lowest parameter proportion of 0.097% has the smallest

performance gaps of 0.32% and 1.46% on CIFAR-10 and CIFAR-100, respectively. Apart from

the network architecture, the dataset also has a non-negligible effect, i.e., dataset CIFAR-100

with more classes always obtains a larger accuracy gap than CIFAR-10 with fewer classes. This

phenomenon occurs in all our experiments.

5.3.3 Defence Performance

To evaluate the defence efficacy against gradient leakage attacks, we re-implemented three

state-of-the-art attack methods, DLG [130], GRNN [131] and GGL [142]. The batch size of 1

and resolution of 32⇥32 for MNIST, CIFAR-10 and CIFAR-100 were used. The resolution

of 256⇥ 256 was used for ILSVRC2012 instead of 224⇥ 224 as GRNN can only generate

images with a resolution of the exponential of 2. The original images with lower resolution are

upsampled using linear interpolation.

In Table 5.4, selected qualitative results are presented to show the comparative performance

of defence efficacy against targeted leakage attacks, including DLG and GRNN with different

backbone networks and benchmark datasets. DLG consistently fails using ResNet-20 and ResNet-

18, therefore, no result is presented. In the case of using LeNet, once the key-lock module is

embedded into the network, the reconstructed image is completely perturbed. We found that

when BN layer or key-lock module was added into LeNet, DLG failed to reconstruct true images

in all our experiments sinceDLG directly regresses the image pixels by approximating the

gradient. In other words, DLG can only reconstruct the true image from gradient with explicit

input data information (see Section 5.2.1 Claim 1: Equ. 5.3, Claim 2: Equ. 5.9 & Claim 3:

Equ. 5.14). But both BN layer and key-lock module re-normalise the feature maps, which

leads to misalignment of latent space, furthermore, the ambiguity of input data information in

the gradient (See Section 5.2.1 Claim 4: Equ. 5.26 & Proposition 2 Equ. 5.29). According to

the quantitative results on gradient leakage attack in Table 5.6, GRNN is more powerful than

DLG. However, the proposed key-lock module can still successfully prevent the true image

leakage from reconstruction based on the gradient. When employing GRNN on ResNet-18 with

the image resolution of 256⇥256, the reconstructed image is also not humanly recognisable

for private data identification, although the reconstructed image contains visible but very little

information of the true image.

92

5.3. Experiment and Discussion

Table 5.4: Comparison of image reconstruction using DLG and GRNN with key-lock module. In this
case, the malicious server has no knowledge of the private key sequence and gradient of the lock layer.

Model Dataset DLG GRNN
True w/o KL w/ KL True w/o KL w/ KL

LeNet
(32*32)

MNIST

C-10

C-100

ResNet-20
(32*32)

MNIST - - -

C-10 - - -

C-100 - - -

ResNet-18
(256*256)

C-10 - - -

C-100 - - -

ILSVRC - - -

We found that images generated by GGL are based on two aspects: 1) use the inferred

ground-truth label to specify the image classification; 2) finetune the image based on the gradient

information to make it as similar as possible to the true image. In Table 5.5, the model with the

key-lock module generates samples with the same classification of true images. However, the

colour and spatial distribution are entirely different from the true image. That is to say that the

key-lock module prevents the GGL from inheriting the semantic and structural information of

the true image. For example, in the first row of the table, the samples generated from the GGL

model without the key-lock module have similar black grouse with the same green background

93

5. Leakage Defence with Key-Lock

Table 5.5: Experiments performed on GGL. The backbone network is ResNet-18 and the dataset is
ILSVRC2012 with a resolution of 256⇤256.

True w/o KL w/ KL

bl
ac

k
gr

ou
se

tig
er

be
et

le
cl

iff
dw

el
lin

g
ba

ss
et

ho
un

d
sw

ea
ts

hi
rt

94

5.3. Experiment and Discussion

colour and orientation as the true input image. When we embed the key-lock module into the

model, GGL can still generate images related to black grouse because the label is constrained by

prior knowledge, but the colour distribution and the orientation of the object are very different

from the true image. Another one is the sweatshirt example, the model with the key-lock

model produced four different colours of sweatshirts. In terms of spatial information, with the

exception of the black grouse example, the model with the key-lock module generated three

close-up images in the basset hound example, four long-distance images in the pig example,

and four images of Bedlington terriers in different poses compared to the images generated

by standard GGL. The generated images’ characteristics from the model with the key-lock

module are very different from the true image as the latent presentation changes, proving that

the information of the true image is adequately protected in the gradient.

Table 5.6: Quantitative comparison of DLG, GRNN and GGL with/without key-lock module. The results
are computed from the generated images and their associated true images.

Method Model Dataset MSE# PSNR" LPIPS-V# LPIPS-A# SSIM"

w/o w/ w/o w/ w/o w/ w/o w/ w/o w/

DLG LeNet
(32*32)

MNIST 49.97 140.87 32.71 26.64 0.27 0.70 0.13 0.56 0.724 -0.003
C-10 29.62 98.76 41.14 28.20 0.13 0.48 0.08 0.32 0.724 0.006
C-100 25.30 101.44 39.85 28.09 0.08 0.49 0.04 0.33 0.859 0.009

GRNN

LeNet
(32*32)

MNIST 0.35 103.46 52.78 28.00 0.00 0.69 0.00 0.45 1.000 0.108
C-10 0.78 92.12 49.29 28.52 0.00 0.49 0.00 0.26 1.000 0.101
C-100 1.05 100.82 48.65 28.18 0.00 0.49 0.00 0.28 0.999 0.085

ResNet-20
(32*32)

MNIST 1.62 101.28 47.82 28.14 0.04 0.64 0.00 0.36 0.998 0.010
C-10 9.12 86.42 40.86 28.85 0.00 0.43 0.00 0.24 0.984 0.051
C-100 20.79 99.25 38.09 28.28 0.00 0.45 0.00 0.25 0.963 0.032

ResNet-18
(256*256)

C-10 15.59 72.55 38.41 29.56 0.01 0.46 0.01 0.54 0.965 0.153
C-100 34.63 85.33 34.13 28.97 0.03 0.48 0.02 0.55 0.917 0.159

ILSVRC 13.26 62.87 38.36 30.22 0.04 0.40 0.03 0.48 0.932 0.273

GGL ResNet-18
(256*256) ILSVRC 63.59 87.22 30.22 28.79 0.40 0.47 0.39 0.46 0.231 0.180

In order to quantitatively compare the performance of state-of-the-art gradient leakage

methods with or without the proposed key-lock module, we applied four evaluation metrics

to three methods. The metrics we used are MSE, PSNR, LPIPS with VGGNet, LPIPS with

AlexNet and SSIM. In Table 5.6, the results are calculated from the generated images and their

associated true images. All methods with the key-lock module were evaluated as worse than

those without the key-lock module. For example, DLG with LeNet on MNIST has a MSE

score of 49.97, while the one with the key-lock module gains 140.87 which is an increase of

95

5. Leakage Defence with Key-Lock

Table
5.7:C

om
parison

ofim
age

reconstruction
using

D
LG

,G
R

N
N

and
G

G
L

w
ith

key-lock
m

odule.The
firstcase

is
to

share
only

the
private

key
sequence

w
ith

the
server.Then

“Lock”
m

eans
notsharing

the
key

sequence,butsharing
the

gradientofthe
lock

layer.“B
oth”

is
to

share
both

the
key

sequence
and

gradientofthe
lock

layer.

M
odel

LeN
et

(32*32)
ResN

et-20
(32*32)

ResN
et-18

(256*256)
M

ethod
G

R
N

N
G

R
N

N
G

R
N

N
G

G
L

M
N

IST
C

-10
C

-100
M

N
IST

C
-10

C
-100

C
-10

C
-100

ILSV
R

C
ILSV

R
C

Shared
Info.

K
ey

Lock

Both

True

96

5.3. Experiment and Discussion

181.91%. When embedded key-lock module, GRNN with LeNet even gains an increase of

29460% in MSE score on the MNIST dataset. As for the PSNR, most of the models without the

key-lock module scored between 35 and 50. However, when the key-lock module is embedded

in the model, the PSNR score is approximately 28. In terms of LPIPS and SSIM, the former

focuses on the semantic similarity between two images, while the latter focuses on the structural

information. The results from both DLG and GRNN perform significantly badly by embedding

the key-lock module into the model. Furthermore, unlike DLG and GRNN which generate

original true images from gradient directly, the image generated by GGL is similar to the true

image in terms of semantics and structure as shown in Table 5.5. We found that GGL with

the key-lock module can still generate images with rich semantic and structural information.

Nevertheless, the key-lock module reduces the reconstruction capability of GGL by preventing

the true image’s information from going through the gradient. So the results from GGL without

key-lock module obtain 0.40 and 0.39 on LPIPS using VGGNet and AlexNet, respectively.

When using the key-lock module, the results increase to 0.47 and 0.46, respectively. Although

the SSIM score is only 0.231 for normal GGL, it is reduced to 0.180 by embedding the key-lock

module into the model. In the end, all the quantitative results in Table 5.6 present that the

proposed key-lock module is capable of protecting the private information being leaked in the

gradient.

5.3.4 Comparison within Different Sharing Strategies

Our proposed module consists of two components to defend against gradient leakage in the

gradient-sharing-based training system, i.e., FL. We theoretically demonstrated that the key-lock

module can effectively prevent the inheritance of input data information from embedding into

the gradient of the model in Section 5.2.1. In this section, we will experimentally evaluate

the influence of the key sequence and lock layer for gradient leakage defence separately. We

use three information-sharing strategies for GRNN and GGL with different backbones trained

on different datasets. DLG failed to recover any true images across all scenarios, where the

possible reason have already been discussed in Section 5.3.3. Therefore, no example from DLG

is presented in Table 5.7. We claim that both the key and lock components have the ability

to gradient protection, but there exist other reasons that affect the defence performance. For

example, network complexity and image resolution. The private key can be used to calculate

the gradient of the lock layer, but not vice versa (see Equ. 5.27 & 5.28). Therefore, the gradient

in Equ. 5.29 can be inferred theoretically. When the image resolution is fixed at 32⇥32, the

97

5. Leakage Defence with Key-Lock

GRNN can successfully perform gradient leakage attack by providing a private key only, while

it failed to recover any meaningful visual content by providing parameters of key-lock module

only. The image quality can further improve by providing both the private key sequence and

parameters of the key-lock module. We can observe a similar case when the ResNet-18 with

a resolution of 256⇥256 is used. We can conclude that even though the key and parameters

of the key-lock module both contribute to the gradient protection, the private key information

plays a more significant role in defending against gradient leakage attack.

5.4 Summary

In this chapter, we proposed a gradient leakage defence method, named FedKL, for the FL

system. The proposed key-lock module prevents the input data information from leaking

throughout the gradient at the training stage. At first, we theoretically proved the efficacy

of the key-lock module in defending against gradient leakage attack. Then, the empirical

studies were carried out with three state-of-the-art attack methods. All the quantitative and

qualitative comparison results show that by embedding the key-lock module into the model, it is

no longer possible to reconstruct input images from the publicly shared gradient. Meanwhile, we

discussed the influence of the key-lock module on the model in terms of classification accuracy.

The implementation of our proposed FedKL is made publicly available to ensure consistent

replication and further comparison for researchers in relevant areas.

98

Chapter 6

Conclusions and Future Work

In this chapter, we first conclude the main contributions we achieved during my Ph.D studies

and provide an overview of our work. Then a discussion on the possible extensions of our work

is presented.

6.1 Conclusions

In this thesis, we first proposed a state-of-the-art gradient leakage method, GRNN, which utilises

GAN to generate fake images and labels, respectively. More specifically, the proposed method

is particularly suitable for FL as the local gradient and global model are readily available in the

system setting. It consists of two branches for generating fake training data and corresponding

labels. It is trained in an end-to-end fashion by approximating the fake gradient that is calculated

by the generated data and label to the true gradient given the global model. MSE, WD and

TVLoss are used jointly to evaluate the divergence between true and fake gradients. We

empirically evaluate the performance of our method on several image classification tasks and

comprehensively compared against the state-of-the-art. The experimental results confirm that

the proposed method is much more stable and capable of producing images with better quality

when a large batch size and resolution are used. To address the gradient leakage problem, we

then investigate the gradient aggregation aspect and propose a gradient aggregation protocol in

that a DP based linear aggregation method is designed using HE to encrypt the gradients which

provides two layers of protection. The proposed encryption protocol only leads to a negligible

increase in computational cost. At the same time, instead of treating individual local models

equally when the global model is aggregated, we consider the data diversity of local clients

99

6. Conclusions and Future Work

in terms of the status of convergence and the ability of generalisation. Hence, the different

client is given a different aggregating percentage instead of averaging the gradients from those

clients. At last, we proposed to solve the gradient leakage issue from a new perspective way that

by embedding a key-lock module into attribute CNN to break the inheritance of private input

information throughout the gradient. Only the locked gradient is transferred to the parameter

server for aggregating the global model. The proposed FedKL is robust against gradient leakage

attacks.

• We propose a novel data leakage attack method that is capable of recovering private

training images up to a resolution of 256*256 and a batch size of 256. The method is

particularly suitable for FL as the local gradient and global model are readily available in

the system setting. GRNN consists of two branches for generating fake training data and

corresponding labels. It is trained in an end-to-end fashion by approximating the fake

gradient that is calculated by the generated data and label to the true gradient given the

global model. MSE, WD and TVLoss are used jointly to evaluate the divergence between

true and fake gradients. We empirically evaluate the performance of our method on several

image classification tasks and comprehensively compared against the state-of-the-art. The

experimental results confirm that the proposed method is much more stable and capable

of producing images with better quality when a large batch size and resolution are used.

• We propose a novel aggregation strategy namely FedBoosting for FL to address the weight

divergence and gradient leakage issues. We empirically demonstrate that FedBoosting

converges significantly faster than FedAvg while the communication cost is identical to

traditional approaches. Especially when the local models are trained with a small batch

size and the global model are aggregated after a large number of epochs, our approach

can still converge to a reasonable optimum whereas FedAvg often fails in such case. We

show the feasibility of our method on two datasets by evaluating the decision boundaries

visually. Furthermore, we also demonstrate its superior performance in a visual text

recognition task on multiple large-scale Non-IID datasets compared to the centralised

approach and FedAvg. The experimental results confirm that our approach outperforms

FedAvg in terms of convergence speed and prediction accuracy. It suggests FedBoosting

strategy can be integrated with other DL models in the privacy-preserving scenarios.

• We introduce a dual layer protection scheme using HE and DP to encrypt gradients

flowing between server and clients, which protect the data privacy from gradient leakage

100

6.2. Future Work

attack. A DP based linear aggregation method is proposed using HE [2] to encrypt the

gradients which provides two layers of protection. The proposed encryption scheme only

leads to a negligible increase in computational cost.

• We theoretically prove that the feature maps computed from the fully-connected layer,

convolutional layer and BN layer contain the private information of input data, where

such information also co-exists in the gradient at the backward passing stage. By referring

to the Chain Rule, the input of the fully-connected layer can be computed independently

by the gradients of the other layers. Taking typical supervised learning, i.e., image

classification, as an example, we first extend this theory to the convolutional layer and

BN layer.

• We hypothesise that the gradient leakage attack is possible only when the gradient spaces

between the global model and local models are well aligned. Therefore, we propose

FedKL, a key-lock module which is capable of differentiating, misaligning and locking

the gradient spaces with a private key meanwhile keeping the federated aggregation the

same as the typical FL framework. we reformulate the scale and shift processes in the

normalisation layer. A private key, i.e., randomly generated sequence, is fed into two

fully-connected layers, and the outputs are the privately owned coefficients for the scale

and shift processes. Both theoretical analysis and experimental results show that the

proposed key-lock module is feasible and effective in defending against the gradient

leakage attack as the consistency of private information in the gradient is obfuscated, so

that the malicious attacker cannot formula the forward-backwards propagation without

the private key and the gradient of the lock layer. Therefore, it is no longer feasible to

reconstruct local training data by approximating the shared gradient in the FL system.

6.2 Future Work

In this thesis, our work is on a line of gradient leakage and gradient leakage defence on FL. We

have worked out one way of gradient leakage and two methods of gradient leakage defence.

There are three more ideas that we believe can be possible extensions to the work in this thesis:

1. Gradient Leakage to NLP

Same to computer vision, gradient leakage can also take place on NLP when training

a DL model under FL. In NLP, Recurrent Neural Network (RNN) is most commonly

101

6. Conclusions and Future Work

used, which is a type of neural network that is well-suited for processing sequential data,

such as text. However, RNN suffer from the vanishing and exploding gradient problem

as well, which causes the gradient to either disappear or grow excessively large as they

are passed through the network. In this thesis, we have given the reasoning process of

fully-connected layer, convolutional layer and BN layer. Hence, to prove the relationship

between the input private information with the gradient of RNN can be the future work.

On the other hand, it is important to carefully design the generative model architecture

and choose the appropriate loss function for the gradient leakage to NLP.

2. An Adaptive Gradient Aggregation Method

Although in Chapter 4, we have proposed a method that can adaptively generate gradient

aggregation proportion for each client, the communication and computation costings

are still expensive. We are thinking of referring Adam [54] to generate the proportion

adaptively. Adam is an adaptive algorithm, meaning that it can adjust the learning rates

of individual parameters in a model based on historical gradient information. This is in

contrast to traditional gradient descent, which has a fixed learning rate for all parameters.

Adam works by keeping track of two moving averages of the parameters: the first moment,

or the mean, and the second moment, or the variance. It uses these moments to adapt

the learning rate of each parameter. The learning rate is adjusted based on the ratio of

the first and second moments, with a larger ratio indicating a larger learning rate and

vice versa. It requires relatively little tuning of hyperparameters, as it includes default

values for the learning rate and other parameters that work well in many cases. It is also

computationally efficient and easy to implement.

3. Partial Gradient Leakage

During conducting the experiments for Chapter 5, we found a phenomenon that both DLG

and GRNN are capable of reconstructing input images using a partial gradient, which

inspired us to explore the latent relationship between the private input information with

the gradient. However, we believe that there is still valuable work to be mined along

the partial gradient leakage direction. For example, can we infer the gradient of the

whole model by giving the structure and partial gradient of the neural network? In our

hypothesis, the answer is "YES" because of the experimental results we get that partial

gradient leakage is feasible. Inferring the whole gradient from the partial gradient can

102

6.3. The End

help us better understand the latent relationship of gradient within different layers. It can

also help us to dig out other reasons for gradient leakage.

6.3 The End

The advent of large language models (e.g. ChatGPT) in the AI Generated Content (AIGC) era

has raised several ethical concerns related to monopoly, especially when few giant organisations

have the resources and expertise to develop and maintain such models. A primary concern

is the concentration of power and control over these AI systems, which could potentially be

used to shape public opinion, manipulate information, or stifle competition. This monopolistic

situation could lead to a lack of transparency, accountability, and accessibility for the broader

public. Moreover, the influence of these organisations on the development of AI regulations and

policy could further enhance their dominance in the market, exacerbating existing inequalities

and stifling innovation from smaller players. FL offers a promising approach to address some

of these ethical concerns by enabling a more decentralised and collaborative model of AI

development. With FL, data remains on users’ devices, and only updates to the model are

shared, thus preserving privacy and potentially reducing the influence of any single organisation.

This approach could foster a more diverse ecosystem of AI developers, researchers, and users,

which would in turn increase accountability and transparency. By encouraging collaboration

and promoting the exchange of ideas, FL can help to create a more equitable AI landscape

that benefits a wider range of stakeholders and mitigates the risks associated with large model

monopolies.

103

Bibliography

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Neural Information Pro-

cessing Systems, 2014, pp. 2672–2680.

[2] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in

Information and Communication Technology Academy of Tamil Nadu. Springer, 1999,

pp. 223–238.

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner,

M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al., “An image is worth 16x16 words:

Transformers for image recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[4] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures for

scalable image recognition,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2018, pp. 8697–8710.

[5] D. Wang, X. Wang, and S. Lv, “An overview of end-to-end automatic speech recognition,”

Symmetry, vol. 11, no. 8, p. 1018, 2019.

[6] J. Li, L. Deng, R. Haeb-Umbach, and Y. Gong, “Robust automatic speech recognition: a

bridge to practical applications,” Academic Press, 2015.

[7] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio, “Attention-based

models for speech recognition,” Advances in neural information processing systems,

vol. 28, 2015.

[8] B. Alshemali and J. Kalita, “Improving the reliability of deep neural networks in nlp: A

review,” Knowledge-Based Systems, vol. 191, p. 105210, 2020.

105

Bibliography

[9] K. Chowdhary, “Natural language processing,” Fundamentals of artificial intelligence,

pp. 603–649, 2020.

[10] J. Hirschberg and C. D. Manning, “Advances in natural language processing,” Science,

vol. 349, no. 6245, pp. 261–266, 2015.

[11] Y. Goldberg, “A primer on neural network models for natural language processing,”

Journal of Artificial Intelligence Research, vol. 57, pp. 345–420, 2016.

[12] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,

R. Louf, M. Funtowicz et al., “Transformers: State-of-the-art natural language process-

ing,” in Proceedings of the 2020 conference on empirical methods in natural language

processing: system demonstrations, 2020, pp. 38–45.

[13] D. He, Y. Xia, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y. Ma, “Dual learning for

machine translation,” Advances in neural information processing systems, vol. 29, 2016.

[14] J. Zhang, C. Zong et al., “Deep neural networks in machine translation: An overview.”

IEEE Intelligent Systems, vol. 30, no. 5, pp. 16–25, 2015.

[15] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao,

Q. Gao, K. Macherey et al., “Google’s neural machine translation system: Bridging the

gap between human and machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[16] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation of rare words with

subword units,” arXiv preprint arXiv:1508.07909, 2015.

[17] M. Ott, M. Auli, D. Grangier, and M. Ranzato, “Analyzing uncertainty in neural machine

translation,” in International Conference on Machine Learning. Proceedings of Machine

Learning Research, 2018, pp. 3956–3965.

[18] H. Kaur and V. Kumari, “Predictive modelling and analytics for diabetes using a machine

learning approach,” Applied computing and informatics, 2020.

[19] T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins, and N. Khovanova, “Machine

learning for predictive modelling based on small data in biomedical engineering,” IFAC-

PapersOnLine, vol. 48, no. 20, pp. 469–474, 2015.

106

Bibliography

[20] V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo, and M. Chica-Rivas, “Ma-

chine learning predictive models for mineral prospectivity: An evaluation of neural

networks, random forest, regression trees and support vector machines,” Ore Geology

Reviews, vol. 71, pp. 804–818, 2015.

[21] J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare, “Credit card fraud detection

using machine learning techniques: A comparative analysis,” in 2017 international

conference on computing networking and informatics (ICCNI). IEEE, 2017, pp. 1–9.

[22] J. Perols, “Financial statement fraud detection: An analysis of statistical and machine

learning algorithms,” Auditing: A Journal of Practice & Theory, vol. 30, no. 2, pp. 19–50,

2011.

[23] A. Mehbodniya, I. Alam, S. Pande, R. Neware, K. P. Rane, M. Shabaz, and M. V.

Madhavan, “Financial fraud detection in healthcare using machine learning and deep

learning techniques,” Security and Communication Networks, vol. 2021, 2021.

[24] S. S. Khanal, P. Prasad, A. Alsadoon, and A. Maag, “A systematic review: machine

learning based recommendation systems for e-learning,” Education and Information

Technologies, vol. 25, no. 4, pp. 2635–2664, 2020.

[25] S. B. Aher and L. Lobo, “Combination of machine learning algorithms for recommenda-

tion of courses in e-learning system based on historical data,” Knowledge-Based Systems,

vol. 51, pp. 1–14, 2013.

[26] S. K. Thangavel, P. D. Bkaratki, and A. Sankar, “Student placement analyzer: A recom-

mendation system using machine learning,” in 2017 4th International Conference on

Advanced Computing and Communication Systems (ICACCS). IEEE, 2017, pp. 1–5.

[27] D. Ravì, C. Wong, F. Deligianni, M. Berthelot, J. Andreu-Perez, B. Lo, and G.-Z. Yang,

“Deep learning for health informatics,” IEEE journal of biomedical and health informatics,

vol. 21, no. 1, pp. 4–21, 2016.

[28] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui,

G. Corrado, S. Thrun, and J. Dean, “A guide to deep learning in healthcare,” Nature

medicine, vol. 25, no. 1, pp. 24–29, 2019.

107

Bibliography

[29] I. Castiglioni, L. Rundo, M. Codari, G. Di Leo, C. Salvatore, M. Interlenghi, F. Galli-

vanone, A. Cozzi, N. C. D’Amico, and F. Sardanelli, “Ai applications to medical images:

From machine learning to deep learning,” Physica Medica, vol. 83, pp. 9–24, 2021.

[30] A. M. Ozbayoglu, M. U. Gudelek, and O. B. Sezer, “Deep learning for financial applica-

tions: A survey,” Applied Soft Computing, vol. 93, p. 106384, 2020.

[31] R. Culkin and S. R. Das, “Machine learning in finance: the case of deep learning for

option pricing,” Journal of Investment Management, vol. 15, no. 4, pp. 92–100, 2017.

[32] J. B. Heaton, N. G. Polson, and J. H. Witte, “Deep learning for finance: deep portfolios,”

Applied Stochastic Models in Business and Industry, vol. 33, no. 1, pp. 3–12, 2017.

[33] H. Nguyen, L.-M. Kieu, T. Wen, and C. Cai, “Deep learning methods in transportation

domain: a review,” IET Intelligent Transport Systems, vol. 12, no. 9, pp. 998–1004, 2018.

[34] S.-H. Fang, Y.-X. Fei, Z. Xu, and Y. Tsao, “Learning transportation modes from smart-

phone sensors based on deep neural network,” IEEE Sensors Journal, vol. 17, no. 18, pp.

6111–6118, 2017.

[35] A. K. Haghighat, V. Ravichandra-Mouli, P. Chakraborty, Y. Esfandiari, S. Arabi, and

A. Sharma, “Applications of deep learning in intelligent transportation systems,” Journal

of Big Data Analytics in Transportation, vol. 2, no. 2, pp. 115–145, 2020.

[36] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convo-

lutional neural networks,” Advances in neural information processing systems, vol. 25,

2012.

[37] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image

recognition,” arXiv preprint arXiv:1409.1556, 2014.

[38] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,

and A. Rabinovich, “Going deeper with convolutions,” in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2015, pp. 1–9.

[39] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[40] W. Rawat and Z. Wang, “Deep convolutional neural networks for image classification: A

comprehensive review,” Neural computation, vol. 29, no. 9, pp. 2352–2449, 2017.

108

Bibliography

[41] F. Wang, M. Jiang, C. Qian, S. Yang, C. Li, H. Zhang, X. Wang, and X. Tang, “Residual

attention network for image classification,” in Proceedings of the IEEE conference on

computer vision and pattern recognition, 2017, pp. 3156–3164.

[42] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks for image

classification with convolutional neural networks,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2019, pp. 558–567.

[43] E. Maggiori, Y. Tarabalka, G. Charpiat, and P. Alliez, “Convolutional neural networks

for large-scale remote-sensing image classification,” IEEE Transactions on geoscience

and remote sensing, vol. 55, no. 2, pp. 645–657, 2016.

[44] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, “Swin transformer:

Hierarchical vision transformer using shifted windows,” in Proceedings of the IEEE/CVF

International Conference on Computer Vision, 2021, pp. 10 012–10 022.

[45] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning: A

review,” IEEE transactions on neural networks and learning systems, vol. 30, no. 11, pp.

3212–3232, 2019.

[46] H. Hu, J. Gu, Z. Zhang, J. Dai, and Y. Wei, “Relation networks for object detection,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,

pp. 3588–3597.

[47] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object detection,” in

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,

2020, pp. 10 781–10 790.

[48] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection

with region proposal networks,” Advances in neural information processing systems,

vol. 28, 2015.

[49] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 779–788.

[50] H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai, Y. Xu, C. Liao, and H. Ling,

“Lasot: A high-quality benchmark for large-scale single object tracking,” in Proceedings

109

Bibliography

of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.

5374–5383.

[51] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A mobile deep learning

framework for edge video analytics,” in International Conference on Computer Com-

munications 2018-IEEE Conference on Computer Communications. IEEE, 2018, pp.

1421–1429.

[52] M. Zolfaghari, K. Singh, and T. Brox, “Eco: Efficient convolutional network for online

video understanding,” in Proceedings of the European conference on computer vision

(ECCV), 2018, pp. 695–712.

[53] C. F. Higham, R. Murray-Smith, M. J. Padgett, and M. P. Edgar, “Deep learning for

real-time single-pixel video,” Scientific reports, vol. 8, no. 1, pp. 1–9, 2018.

[54] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[55] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv preprint

arXiv:1701.00160, 2016.

[56] J. F. Nash Jr, “Equilibrium points in n-person games,” Proceedings of the national

academy of sciences, vol. 36, no. 1, pp. 48–49, 1950.

[57] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Improved

techniques for training gans,” Advances in neural information processing systems, vol. 29,

2016.

[58] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity

natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018.

[59] F. Zhan, H. Zhu, and S. Lu, “Spatial fusion gan for image synthesis,” in Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, 2019, pp.

3653–3662.

[60] M. Zhu, P. Pan, W. Chen, and Y. Yang, “Dm-gan: Dynamic memory generative adversarial

networks for text-to-image synthesis,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2019, pp. 5802–5810.

110

Bibliography

[61] E. R. Chan, M. Monteiro, P. Kellnhofer, J. Wu, and G. Wetzstein, “pi-gan: Periodic

implicit generative adversarial networks for 3d-aware image synthesis,” in Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition, 2021, pp.

5799–5809.

[62] Y. Wang, P. Bilinski, F. Bremond, and A. Dantcheva, “Imaginator: Conditional spatio-

temporal gan for video generation,” in Proceedings of the IEEE/CVF Winter Conference

on Applications of Computer Vision, 2020, pp. 1160–1169.

[63] M. Chu, Y. Xie, J. Mayer, L. Leal-Taixé, and N. Thuerey, “Learning temporal coherence

via self-supervision for gan-based video generation,” ACM Transactions on Graphics

(TOG), vol. 39, no. 4, pp. 75–1, 2020.

[64] Y. Li, M. Min, D. Shen, D. Carlson, and L. Carin, “Video generation from text,” in

Proceedings of the AAAI conference on artificial intelligence, vol. 32, no. 1, 2018.

[65] S. Tulyakov, M.-Y. Liu, X. Yang, and J. Kautz, “Mocogan: Decomposing motion and

content for video generation,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2018, pp. 1526–1535.

[66] S. Azadi, M. Fisher, V. G. Kim, Z. Wang, E. Shechtman, and T. Darrell, “Multi-content

gan for few-shot font style transfer,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2018, pp. 7564–7573.

[67] Y. Jing, Y. Yang, Z. Feng, J. Ye, Y. Yu, and M. Song, “Neural style transfer: A review,”

IEEE transactions on visualization and computer graphics, vol. 26, no. 11, pp. 3365–

3385, 2019.

[68] W. Xu, C. Long, R. Wang, and G. Wang, “Drb-gan: A dynamic resblock generative adver-

sarial network for artistic style transfer,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2021, pp. 6383–6392.

[69] G. Mariani, F. Scheidegger, R. Istrate, C. Bekas, and C. Malossi, “Bagan: Data augmen-

tation with balancing gan,” arXiv preprint arXiv:1803.09655, 2018.

[70] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Synthetic data

augmentation using gan for improved liver lesion classification,” in 2018 IEEE 15th

international symposium on biomedical imaging (ISBI 2018). IEEE, 2018, pp. 289–293.

111

Bibliography

[71] S.-W. Huang, C.-T. Lin, S.-P. Chen, Y.-Y. Wu, P.-H. Hsu, and S.-H. Lai, “Auggan: Cross

domain adaptation with gan-based data augmentation,” in Proceedings of the European

Conference on Computer Vision (ECCV), 2018, pp. 718–731.

[72] N.-T. Tran, V.-H. Tran, N.-B. Nguyen, T.-K. Nguyen, and N.-M. Cheung, “On data

augmentation for gan training,” IEEE Transactions on Image Processing, vol. 30, pp.

1882–1897, 2021.

[73] A. Ramesh, A. S. Rao, S. Moudgalya, and K. Srinivas, “Gan based approach for drug

design,” in 2021 20th IEEE International Conference on Machine Learning and Applica-

tions (ICMLA). IEEE, 2021, pp. 825–828.

[74] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classifier

gans,” in International conference on machine learning. PMLR, 2017, pp. 2642–2651.

[75] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep

convolutional generative adversarial networks,” arXiv preprint arXiv:1511.06434, 2015.

[76] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein generative adversarial networks,”

in Proceedings of Machine Learning Research Conference on International Conference

on Machine Learning, 2017, pp. 214–223.

[77] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation

using cycle-consistent adversarial networks,” in Proceedings of the IEEE international

conference on computer vision, 2017, pp. 2223–2232.

[78] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial

networks,” arXiv preprint arXiv:1611.02163, 2016.

[79] L. Mescheder, A. Geiger, and S. Nowozin, “Which training methods for gans do actually

converge?” in International conference on machine learning. PMLR, 2018, pp. 3481–

3490.

[80] C. K. Sønderby, J. Caballero, L. Theis, W. Shi, and F. Huszár, “Amortised map inference

for image super-resolution,” arXiv preprint arXiv:1610.04490, 2016.

[81] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-

volutional neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–90,

2017.

112

Bibliography

[82] M. Liang and X. Hu, “Recurrent convolutional neural network for object recognition,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2015,

pp. 3367–3375.

[83] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embedding for face

recognition and clustering,” in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2015, pp. 815–823.

[84] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep hypersphere

embedding for face recognition,” in Proceedings of the IEEE conference on computer

vision and pattern recognition, 2017, pp. 212–220.

[85] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular margin loss for

deep face recognition,” in Proceedings of the IEEE/CVF conference on computer vision

and pattern recognition, 2019, pp. 4690–4699.

[86] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep learning applica-

tions to autonomous vehicle control,” IEEE Transactions on Intelligent Transportation

Systems, vol. 22, no. 2, pp. 712–733, 2020.

[87] J. Fayyad, M. A. Jaradat, D. Gruyer, and H. Najjaran, “Deep learning sensor fusion for

autonomous vehicle perception and localization: A review,” Sensors, vol. 20, no. 15, p.

4220, 2020.

[88] A. Boukerche and X. Ma, “Vision-based autonomous vehicle recognition: A new chal-

lenge for deep learning-based systems,” ACM Computing Surveys (CSUR), vol. 54, no. 4,

pp. 1–37, 2021.

[89] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-scale

hierarchical image database,” in IEEE Conference on Computer Vision and Pattern

Recognition, 2009, pp. 248–255.

[90] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-

efficient learning of deep networks from decentralized data,” in Proceedings of Machine

Learning Research Conference on Artificial Intelligence and Statistics, 2017, pp. 1273–

1282.

113

Bibliography

[91] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,

“Federated learning: Strategies for improving communication efficiency,” arXiv preprint

arXiv:1610.05492, 2016.

[92] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated optimization: Dis-

tributed machine learning for on-device intelligence,” arXiv preprint arXiv:1610.02527,

2016.

[93] B. McMahan and D. Ramage, “Federated learning: Collaborative machine learning

without centralized training data,” Google Research Blog, vol. 3, 2017.

[94] Q. Yang, Y. Liu, Y. Cheng, Y. Kang, T. Chen, and H. Yu, “Federated learning,” Synthesis

Lectures on Artificial Intelligence and Machine Learning, vol. 13, no. 3, pp. 1–207, 2019.

[95] L. Torrey and J. Shavlik, “Transfer learning,” in Handbook of research on machine

learning applications and trends: algorithms, methods, and techniques. IGI global,

2010, pp. 242–264.

[96] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,” Journal of

Big data, vol. 3, no. 1, pp. 1–40, 2016.

[97] J. He, C. Zhou, X. Ma, T. Berg-Kirkpatrick, and G. Neubig, “Towards a unified view of

parameter-efficient transfer learning,” arXiv preprint arXiv:2110.04366, 2021.

[98] C. Shorten, T. M. Khoshgoftaar, and B. Furht, “Text data augmentation for deep learning,”

Journal of big Data, vol. 8, no. 1, pp. 1–34, 2021.

[99] S. Y. Feng, V. Gangal, J. Wei, S. Chandar, S. Vosoughi, T. Mitamura, and E. Hovy, “A

survey of data augmentation approaches for nlp,” arXiv preprint arXiv:2105.03075, 2021.

[100] S.-A. Rebuffi, S. Gowal, D. A. Calian, F. Stimberg, O. Wiles, and T. A. Mann, “Data

augmentation can improve robustness,” Advances in Neural Information Processing

Systems, vol. 34, pp. 29 935–29 948, 2021.

[101] D. Gao, Y. Liu, A. Huang, C. Ju, H. Yu, and Q. Yang, “Privacy-preserving heterogeneous

federated transfer learning,” in 2019 IEEE International Conference on Big Data (Big

Data). IEEE, 2019, pp. 2552–2559.

114

Bibliography

[102] Y. Chen, X. Qin, J. Wang, C. Yu, and W. Gao, “Fedhealth: A federated transfer learning

framework for wearable healthcare,” IEEE Intelligent Systems, vol. 35, no. 4, pp. 83–93,

2020.

[103] S. Saha and T. Ahmad, “Federated transfer learning: Concept and applications,” Intelli-

genza Artificiale, vol. 15, no. 1, pp. 35–44, 2021.

[104] S. Yue, J. Ren, J. Xin, D. Zhang, Y. Zhang, and W. Zhuang, “Efficient federated meta-

learning over multi-access wireless networks,” IEEE Journal on Selected Areas in Com-

munications, vol. 40, no. 5, pp. 1556–1570, 2022.

[105] Z. Charles and J. Konečnỳ, “Convergence and accuracy trade-offs in federated learning

and meta-learning,” in International Conference on Artificial Intelligence and Statistics.

Proceedings of Machine Learning Research, 2021, pp. 2575–2583.

[106] A. Fallah, A. Mokhtari, and A. Ozdaglar, “Personalized federated learning: A meta-

learning approach,” arXiv preprint arXiv:2002.07948, 2020.

[107] A. C.-C. Yao, “How to generate and exchange secrets,” in IEEE Symposium on Founda-

tions of Computer Science, 1986, pp. 162–167.

[108] O. Goldreich, “Secure multi-party computation,” Manuscript. Preliminary version,

vol. 78, 1998.

[109] A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart, “Between a rock and a hard

place: Interpolating between mpc and fhe,” in International Conference on the Theory

and Application of Cryptology and Information Security. Springer, 2013, pp. 221–240.

[110] P. Ananth, A. R. Choudhuri, A. Goel, and A. Jain, “Towards efficiency-preserving round

compression in mpc,” in International Conference on the Theory and Application of

Cryptology and Information Security. Springer, 2020, pp. 181–212.

[111] R. Karl, T. Burchfield, J. Takeshita, and T. Jung, “Non-interactive mpc with trusted hard-

ware secure against residual function attacks,” in International Conference on Security

and Privacy in Communication Systems. Springer, 2019, pp. 425–439.

[112] V. Goyal, E. Masserova, B. Parno, and Y. Song, “Blockchains enable non-interactive

mpc,” in Theory of Cryptography Conference. Springer, 2021, pp. 162–193.

115

Bibliography

[113] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal, and T. Rabin, “F: Honest-

majority maliciously secure framework for private deep learning,” Proceedings on Privacy

Enhancing Technologies, vol. 2021, no. 1, pp. 188–208, 2021.

[114] B. Knott, S. Venkataraman, A. Hannun, S. Sengupta, M. Ibrahim, and L. van der Maaten,

“Crypten: Secure multi-party computation meets machine learning,” Advances in Neural

Information Processing Systems, vol. 34, pp. 4961–4973, 2021.

[115] Y. Li, Y. Zhou, A. Jolfaei, D. Yu, G. Xu, and X. Zheng, “Privacy-preserving federated

learning framework based on chained secure multiparty computing,” IEEE Internet of

Things Journal, vol. 8, no. 8, pp. 6178–6186, 2020.

[116] M. Hao, H. Li, G. Xu, S. Liu, and H. Yang, “Towards efficient and privacy-preserving

federated deep learning,” in IEEE International Conference on Communications, 2019,

pp. 1–6.

[117] C. Xu, J. Ren, D. Zhang, Y. Zhang, Z. Qin, and K. Ren, “Ganobfuscator: Mitigating

information leakage under gan via differential privacy,” IEEE Transactions on Industrial

Informatics, vol. 14, no. 9, pp. 2358–2371, 2019.

[118] J. Zhao, Y. Chen, and W. Zhang, “Differential privacy preservation in deep learning:

Challenges, opportunities and solutions,” IEEE Access, vol. 7, pp. 48 901–48 911, 2019.

[119] D. Byrd and A. Polychroniadou, “Differentially private secure multi-party computation

for federated learning in financial applications,” arXiv preprint arXiv:2010.05867, 2020.

[120] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, R. Zhang, and Y. Zhou, “A

hybrid approach to privacy-preserving federated learning,” in ACM Transactions on

Autonomous and Adaptive Systems, 2019, pp. 1–11.

[121] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith, and B. Thorne, “Pri-

vate federated learning on vertically partitioned data via entity resolution and additively

homomorphic encryption,” arXiv preprint arXiv:1711.10677, 2017.

[122] Y. Aono, T. Hayashi, L. Wang, S. Moriai et al., “Privacy-preserving deep learning

via additively homomorphic encryption,” IEEE Transactions on Industrial Informatics,

vol. 13, no. 5, pp. 1333–1345, 2017.

116

Bibliography

[123] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu, “Batchcrypt: Efficient homomorphic

encryption for cross-silo federated learning,” in 2020 Annual Technical Conference, 2020,

pp. 493–506.

[124] H. Fang and Q. Qian, “Privacy preserving machine learning with homomorphic encryp-

tion and federated learning,” Future Internet, vol. 13, no. 4, p. 94, 2021.

[125] N. Fernandes, A. McIver, and C. Morgan, “The laplace mechanism has optimal utility for

differential privacy over continuous queries,” in 2021 36th Annual ACM/IEEE Symposium

on Logic in Computer Science (LICS). IEEE, 2021, pp. 1–12.

[126] J. Dong, D. Durfee, and R. Rogers, “Optimal differential privacy composition for expo-

nential mechanisms,” in International Conference on Machine Learning. Proceedings

of Machine Learning Research, 2020, pp. 2597–2606.

[127] A. Acar, H. Aksu, A. S. Uluagac, and M. Conti, “A survey on homomorphic encryption

schemes: Theory and implementation,” ACM Computing Surveys (Csur), vol. 51, no. 4,

pp. 1–35, 2018.

[128] Z. H. Mahmood and M. K. Ibrahem, “New fully homomorphic encryption scheme based

on multistage partial homomorphic encryption applied in cloud computing,” in 2018 1st

Annual International Conference on Information and Sciences (AiCIS). IEEE, 2018, pp.

182–186.

[129] B. Hitaj, G. Ateniese, and F. Perez-Cruz, “Deep models under the gan: information

leakage from collaborative deep learning,” in ACM Conference on Computer and Com-

munications Security, 2017, pp. 603–618.

[130] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” Advances in Neural Informa-

tion Processing Systems, vol. 32, pp. 14 774–14 784, 2019.

[131] H. Ren, J. Deng, and X. Xie, “Grnn: Generative regression neural network–a data leakage

attack for federated learning,” ACM Transactions on Intelligent Systems and Technology,

2021.

[132] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks

against machine learning models,” in IEEE Symposium on Security and Privacy, 2017,

pp. 3–18.

117

Bibliography

[133] S. Truex, L. Liu, M. E. Gursoy, L. Yu, and W. Wei, “Towards demystifying membership

inference attacks,” arXiv preprint arXiv:1807.09173, 2018.

[134] S. Truex, L. Liu, M. Gursoy, L. Yu, and W. Wei, “Demystifying membership inference

attacks in machine learning as a service,” IEEE Transactions on Services Computing,

vol. 14, no. 6, pp. 2073–2089, 2021.

[135] C. A. Choquette-Choo, F. Tramer, N. Carlini, and N. Papernot, “Label-only membership

inference attacks,” in International Conference on Machine Learning. Proceedings of

Machine Learning Research, 2021, pp. 1964–1974.

[136] G. Zhang, B. Liu, T. Zhu, M. Ding, and W. Zhou, “Label-only membership inference at-

tacks and defenses in semantic segmentation models,” IEEE Transactions on Dependable

and Secure Computing, 2022.

[137] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended feature

leakage in collaborative learning,” in IEEE Symposium on Security and Privacy, 2019,

pp. 691–706.

[138] B. Zhao, K. R. Mopuri, and H. Bilen, “idlg: Improved deep leakage from gradients,”

arXiv preprint arXiv:2001.02610, 2020.

[139] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller, “Inverting gradients–how easy is

it to break privacy in federated learning?” arXiv preprint arXiv:2003.14053, 2020.

[140] J. Jeon, K. Lee, S. Oh, J. Ok et al., “Gradient inversion with generative image prior,”

Advances in Neural Information Processing Systems, vol. 34, 2021.

[141] H. Yin, A. Mallya, A. Vahdat, J. M. Alvarez, J. Kautz, and P. Molchanov, “See through

gradients: Image batch recovery via gradinversion,” in Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2021, pp. 16 337–16 346.

[142] Z. Li, J. Zhang, L. Liu, and J. Liu, “Auditing privacy defenses in federated learning via

generative gradient leakage,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, 2022, pp. 10 132–10 142.

[143] M. A. P. Chamikara, P. Bertok, I. Khalil, D. Liu, and S. Camtepe, “Privacy preserving

distributed machine learning with federated learning,” Computer Communications, vol.

171, pp. 112–125, 2021.

118

Bibliography

[144] W. Wei, L. Liu, Y. Wut, G. Su, and A. Iyengar, “Gradient-leakage resilient federated

learning,” in 2021 IEEE 41st International Conference on Distributed Computing Systems

(ICDCS). IEEE, 2021, pp. 797–807.

[145] D. Scheliga, P. Mäder, and M. Seeland, “Precode-a generic model extension to pre-

vent deep gradient leakage,” in Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, 2022, pp. 1849–1858.

[146] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J.

Shekita, and B.-Y. Su, “Scaling distributed machine learning with the parameter server,”

in Symposium on Operating Systems Design and Implementation, 2014, pp. 583–598.

[147] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and

Y. Yu, “Petuum: A new platform for distributed machine learning on big data,” IEEE

Transactions on Big Data, vol. 1, no. 2, pp. 49–67, 2015.

[148] P. Moritz, R. Nishihara, I. Stoica, and M. I. Jordan, “Sparknet: Training deep networks in

spark,” arXiv preprint arXiv:1511.06051, 2015.

[149] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Firecaffe: near-linear

acceleration of deep neural network training on compute clusters,” in IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 2592–2600.

[150] Y. Lin, S. Han, H. Mao, Y. Wang, and B. Dally, “Deep gradient compression: Reducing

the communication bandwidth for distributed training,” in The International Conference

on Learning Representations, 2018.

[151] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that exploit confi-

dence information and basic countermeasures,” in ACM Conference on Computer and

Communications Security, 2015, pp. 1322–1333.

[152] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in ACM Conference on

Computer and Communications Security, 2015, pp. 1310–1321.

[153] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved

training of wasserstein gans,” in Advances in neural information processing systems,

vol. 30, 2017.

119

Bibliography

[154] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional networks,” in

IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 2528–2535.

[155] M. D. Zeiler, G. W. Taylor, and R. Fergus, “Adaptive deconvolutional networks for mid

and high level feature learning,” in IEEE International Conference on Computer Vision,

2011, pp. 2018–2025.

[156] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling with gated

convolutional networks,” in Proceedings of Machine Learning Research Conference on

International Conference on Machine Learning, 2017, pp. 933–941.

[157] L. I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal

algorithms,” Physica D: nonlinear phenomena, vol. 60, no. 1-4, pp. 259–268, 1992.

[158] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun. com/exdb/mnist/,

1998.

[159] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features from tiny images,”

in Citeseer, 2009.

[160] G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller, “Labeled faces in the wild: A

database forstudying face recognition in unconstrained environments,” in Workshop on

faces in’Real-Life’Images: detection, alignment, and recognition, 2008.

[161] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,” in British Machine

Vision Association, 2015.

[162] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[163] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga et al., “Pytorch: An imperative style, high-performance deep

learning library,” Neural Information Processing Systems, vol. 32, pp. 8026–8037, 2019.

[164] A. Hore and D. Ziou, “Image quality metrics: Psnr vs. ssim,” in IEEE International

Conference on Pattern Recognition, 2010, pp. 2366–2369.

[165] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate

method to fool deep neural networks,” in IEEE Conference on Computer Vision and

Pattern Recognition, 2016, pp. 2574–2582.

120

Bibliography

[166] A. Modas, S.-M. Moosavi-Dezfooli, and P. Frossard, “Sparsefool: a few pixels make a

big difference,” in IEEE Conference on Computer Vision and Pattern Recognition, 2019,

pp. 9087–9096.

[167] A. S. Shamsabadi, R. Sanchez-Matilla, and A. Cavallaro, “Colorfool: Semantic adver-

sarial colorization,” in IEEE Conference on Computer Vision and Pattern Recognition,

2020, pp. 1151–1160.

[168] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-preserving machine

learning as a service.” Proceedings on Privacy Enhancing Technologies, vol. 2018, no. 3,

pp. 123–142, 2018.

[169] T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Mancuso, D. Rueckert, and J. Passerat-

Palmbach, “A generic framework for privacy preserving deep learning,” arXiv preprint

arXiv:1811.04017, 2018.

[170] M. Al-Rubaie and J. M. Chang, “Privacy-preserving machine learning: Threats and

solutions,” IEEE Symposium on Security and Privacy, vol. 17, no. 2, pp. 49–58, 2019.

[171] J. Liu and X. Meng, “Survey on privacy-preserving machine learning,” Journal of Clinical

and Diagnostic Research, vol. 57, no. 2, p. 346, 2020.

[172] H. C. Tanuwidjaja, R. Choi, S. Baek, and K. Kim, “Privacy-preserving deep learning

on machine learning as a service—a comprehensive survey,” IEEE Access, vol. 8, pp.

167 425–167 447, 2020.

[173] N. Koti, M. Pancholi, A. Patra, and A. Suresh, “{SWIFT}: Super-fast and robust privacy-

preserving machine learning,” in Security Symposium, 2021.

[174] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,

Z. Charles, G. Cormode, R. Cummings et al., “Advances and open problems in federated

learning,” arXiv preprint arXiv:1912.04977, 2019.

[175] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith, “Federated

optimization in heterogeneous networks,” arXiv preprint arXiv:1812.06127, 2018.

[176] V. Smith, C.-K. Chiang, M. Sanjabi, and A. S. Talwalkar, “Federated multi-task learning,”

in Neural Information Processing Systems, 2017, pp. 4424–4434.

121

Bibliography

[177] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated learning with

non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

[178] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence of fedavg on

non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[179] C. Xu, Z. Hong, M. Huang, and T. Jiang, “Acceleration of federated learning with

alleviated forgetting in local training,” arXiv preprint arXiv:2203.02645, 2022.

[180] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line learning

and an application to boosting,” Journal of computer and system sciences, vol. 55, no. 1,

pp. 119–139, 1997.

[181] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” Annals

of statistics, pp. 1189–1232, 2001.

[182] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in Proceedings of

the 22nd acm sigkdd international conference on knowledge discovery and data mining,

2016, pp. 785–794.

[183] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-based

sequence recognition and its application to scene text recognition,” IEEE Transactions

on Pattern Analysis and Machine Intelligence, vol. 39, no. 11, pp. 2298–2304, 2016.

[184] A. Graves, M. Liwicki, S. Fernández, R. Bertolami, H. Bunke, and J. Schmidhuber, “A

novel connectionist system for unconstrained handwriting recognition,” IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 31, no. 5, pp. 855–868,

2008.

[185] A. Graves, S. Fernández, F. Gomez, and J. Schmidhuber, “Connectionist temporal

classification: labelling unsegmented sequence data with recurrent neural networks,” in

International Conference on Machine Learning. ACM, 2006, pp. 369–376.

[186] M. Jaderberg, K. Simonyan, A. Vedaldi, and A. Zisserman, “Synthetic data and artificial

neural networks for natural scene text recognition,” arXiv preprint arXiv:1406.2227,

2014.

[187] A. Mishra, K. Alahari, and C. Jawahar, “Scene text recognition using higher order

language priors,” 2012.

122

Bibliography

[188] K. Wang, B. Babenko, and S. Belongie, “End-to-end scene text recognition,” in Interna-

tional Conference on Computer Vision. IEEE, 2011, pp. 1457–1464.

[189] S. Zhang, M. Lin, T. Chen, L. Jin, and L. Lin, “Character proposal network for robust text

extraction,” in International Conference on Acoustics, Speech, and Signal Processing.

IEEE, 2016, pp. 2633–2637.

[190] D. Karatzas, L. Gomez-Bigorda, A. Nicolaou, S. Ghosh, A. Bagdanov, M. Iwamura,

J. Matas, L. Neumann, V. R. Chandrasekhar, S. Lu et al., “Icdar 2015 competition on

robust reading,” in International Conference on Document Analysis and Recognition.

IEEE, 2015, pp. 1156–1160.

[191] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al., “Communication-efficient

learning of deep networks from decentralized data,” arXiv preprint arXiv:1602.05629,

2016.

[192] X. Yang, Y. Feng, W. Fang, J. Shao, X. Tang, S.-T. Xia, and R. Lu, “An accuracy-lossless

perturbation method for defending privacy attacks in federated learning,” arXiv preprint

arXiv:2002.09843, 2020.

[193] L. Sun, J. Qian, and X. Chen, “Ldp-fl: Practical private aggregation in federated learning

with local differential privacy,” arXiv preprint arXiv:2007.15789, 2020.

[194] J. Sun, A. Li, B. Wang, H. Yang, H. Li, and Y. Chen, “Soteria: Provable defense against

privacy leakage in federated learning from representation perspective,” in Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021, pp.

9311–9319.

[195] A. T. Hasan, Q. Jiang, J. Luo, C. Li, and L. Chen, “An effective value swapping method

for privacy preserving data publishing,” Security and Communication Networks, vol. 9,

no. 16, pp. 3219–3228, 2016.

[196] M. A. P. Chamikara, P. Bertók, D. Liu, S. Camtepe, and I. Khalil, “Efficient data

perturbation for privacy preserving and accurate data stream mining,” Pervasive and

Mobile Computing, vol. 48, pp. 1–19, 2018.

[197] M. Chamikara, P. Bertok, D. Liu, S. Camtepe, and I. Khalil, “Efficient privacy preserva-

tion of big data for accurate data mining,” Information Sciences, vol. 527, pp. 420–443,

2020.

123

Bibliography

[198] H. Lee, J. Kim, S. Ahn, R. Hussain, S. Cho, and J. Son, “Digestive neural networks:

A novel defense strategy against inference attacks in federated learning,” computers &

security, vol. 109, p. 102378, 2021.

[199] Z. Bu, J. Dong, Q. Long, and W. J. Su, “Deep learning with gaussian differential privacy,”

Harvard data science review, vol. 2020, no. 23, 2020.

[200] H. Ren, J. Deng, X. Xie, X. Ma, and Y. Wang, “Fedboost: Federated learning with

gradient protected boosting for text recognition,” arXiv preprint arXiv:2007.07296, 2020.

[201] K. Yadav, B. B. Gupta, K. T. Chui, and K. Psannis, “Differential privacy approach to solve

gradient leakage attack in a federated machine learning environment,” in International

Conference on Computational Data and Social Networks. Springer, 2020, pp. 378–385.

[202] W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, and Y. Wu, “A frame-

work for evaluating gradient leakage attacks in federated learning,” arXiv preprint

arXiv:2004.10397, 2020.

[203] L. Fan, K. W. Ng, C. S. Chan, and Q. Yang, “Deepip: Deep neural network intellectual

property protection with passports,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2021.

[204] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang, “The unreasonable effec-

tiveness of deep features as a perceptual metric,” in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2018, pp. 586–595.

[205] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:

from error visibility to structural similarity,” IEEE transactions on image processing,

vol. 13, no. 4, pp. 600–612, 2004.

124

	List of Acronyms
	List of Tables
	List of Figures
	Introduction
	Motivations
	Overview and Contributions
	Outline

	Background
	Introduction
	Deep Learning and Machine Learning
	Federated Learning
	Private Issues
	Summary

	Generative Data Leakage Attack
	Introduction
	Proposed Method
	Experiment and Discussion
	Summary

	Protected Gradient Boosting
	Introduction
	Proposed Method
	Experiment and Discussion
	Summary

	Leakage Defence with Key-Lock
	Introduction
	Proposed Method
	Experiment and Discussion
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work
	The End

	Bibliography

