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ABSTRACT

A novel method is presented to detect defects in ran-
dom colour textures which requires only a very few nor-
mal samples for unsupervised training. We decorrelate the
colour image by generating three eigenchannels in each of
which the surface texture image is divided into overlapping
patches of various sizes. Then, a mixture model and EM is
applied to reduce groupings of patches to a small number of
textural exemplars, or texems. Localised defect detection is
achieved by comparing the learned texems to patches in the
unseen image eigenchannels.

1. INTRODUCTION

Methods such as cooccurrence matrices and Gabor filters
have been widely applied for defect detection, but princi-
pally on regular and periodic textures [1, 2, 3]. In [4], Varma
and Zisserman argued that a large variety of signals can be
analysed by just looking at small neighbourhoods. They
used 7 × 7 patches to generate a texton representation and
achieved better performance than filtering methods when
classifying material surface images. The results demon-
strated that textures with global structures can be discrim-
inated by examining the distribution of local measurements.
In [5], the authors also advocated the use of local pixel
neighbourhood processing in the shape of local binary pat-
terns as texture descriptors. Other works based on local
pixel neighbourhoods are those which apply Markov Ran-
dom Field (MRF) models, e.g. [6], where the inspection
process was treated as a hypothesis testing problem on the
statistics derived from the GMRF model.

In a random texture application such as ceramic tile pro-
duction, the images under inspection may appear different
in textural pattern from one to another, but their visual im-
pression remains consistent, (see Fig. 1). In other words,
there exist textural primitives that impose consistency within
the product line. Instead of recovering all the variations
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Fig. 1. Example marble tiles from the same family whose
patterns are different but visually consistent.

amongst images from a relatively large number of samples
in a supervised manner for a traditional classification ap-
proach, e.g. as in [7], we recently proposed a new approach
to detect and localise defects on random greylevel textured
surfaces [8]. We learned, in unsupervised fashion, textural
primitive information from a small number of training sam-
ples within a Gaussian mixture modelling (GMM) and Ex-
pectation Maximisation (EM) framework. We named these
representations texture exemplars or texems [8]. In this pa-
per we extend our work by generating colour texems for de-
tecting defects in randomly textured colour surfaces. This
is necessary as some defects are chromatic by nature. A
typical approach would be to directly generate texems from
each RGB channel independently, however, this proved to
miss defects as the channels are indeed correlated. Instead,
we first build a reference eigenspace from a small sample
set of defect-free textures which we then use to project the
RGB channels of a training image into to generate three un-
correlated eigenchannel images. We then learn texems in
these eigenchannels. By projecting the testing images into
the same reference eigenspace, we can compare the textures
in the resulting eigenchannels against the texems to localise
defects. This process is shown schematically in Fig. 2 and
will be described in detail in the next section.

Some defect types are unpredictable and occur only dur-
ing production. Hence, we perform novelty detection, im-
portant from this practical view-point, based on the texems
and the (automatically derived) lower bounds likelihoods of
defect-free samples. To save computational costs we also
implement the overall method in a multiscale framework.



2. PROPOSED METHOD

Similar to the work of Jojic et al. [9], we consider an im-
age as a collection of overlapping patches of various sizes.
As the images of the same product line contain similar tex-
tural elements (see Figure 1), one image can be generated
from the patches extracted from other images. Thus, for a
few given samples we can easily obtain a large number of
patches of various sizes (which can in turn generate a large
set of new images with the same visual impression). How-
ever, it is computationally prohibitive to perform defect de-
tection based on such a large number of patches. Also, the
patches themselves contain lots of redundant information.
We can reduce the number of patches by learning a rela-
tively small number of primitive representatives, i.e. texture
exemplars or texems [8].

2.1. Computing the reference eigenspace

To extend our texture exemplars to colour images, the com-
putational needs of a 3D texems model would be phenom-
enal. Instead, we perform PCA to transform the red, green,
and blue channels into three decorrelated channels for bet-
ter representation. As mentioned above the patterns on each
image within the same texture family can still be differ-
ent, hence the individually derived principal components
can also differ from one image to another. Furthermore,
defective regions can affect the principal components result-
ing in different eigenspace responses from different training
samples. Thus, instead of performing PCA on each training
image separately, we derive a single eigenspace from sev-
eral training images; a reference eigenspace in which nor-
mal samples are represented (see Fig. 2). All the images un-
der inspection will be projected onto this eigenspace. Thus,
the transfomed channels share the same principal compo-
nents.

Each colour pixel is denoted as xi = [ri, gi, bi]
T . Let

X = {xi ∈ R3, i = 1, 2, ..., q} be the set of q 3D vec-

Training
Samples

PCA
Reference

Eigenspace

Eigen-
channel 1

Eigen-
channel 3

Eigen-
channel 2

Texems
and

Lower
Bounds

Test
Image

Eigen-
channel 1

Eigen-
channel 3

Eigen-
channel 2

Novelty
Detection

Defect
Map

Training Stage

Testing Stage

Reference
Eigenspace

Fig. 2. Flow chart of proposed method.

tors made up of the pixels from several defect free samples,
e.g. 5 in this work. Let x̄ = 1

q

∑

x∈X x be the mean vector
of X . Then, PCA is performed on the mean-centred colour
feature matrix X to obtain the eigenvectors E = [e1, e2, e3],
ej ∈ R3. Singular Value Decomposition can be used to ob-
tain these principal components. The colour feature space
determined by these eigenvectors are referred to as the ref-
erence eigenspace Φx̄,E , where the colour features are fully
represented. The tile images are then projected onto this
reference eigenspace Φx̄,E :

X ′ =
−−−→
PCA(X,Φx̄,E) = ET (X − x̄J1,q), (1)

where J1,q is a 1 × q unit matrix consisting of all 1s. The
texems are then learned in the resulting three eigenchannels.

2.2. Generating texems

The texems are texture exemplars at various sizes that en-
capsulate the textural content of a given image. Each texem,
m, is defined by a mean, µ, and a corresponding covariance
matrix, ω, i.e. m = {µ,ω}. The original image I is broken
down into a set of P patches Z = {Zi}

P
i=1, each contain-

ing pixels from a subset of image coordinates. The shape
of the patches can be arbitrary, but we used square patches
(d = N × N ) which may overlap and be of various sizes,
e.g. as small as 5× 5 to as large as required (here 20× 20).
We assume that there exist K texems, M = {mk}

K
k=1,

K � P , for image I such that each patch in Z can be gen-
erated from a texem with certain added variations.

To learn these texems the P patches are projected into
a set of higher dimensional spaces. The number of these
spaces is determined by the number of different patch sizes
and their dimensions are defined by the corresponding value
of d. Each pixel position contributes one coordinate of a
space. Each point in a space corresponds to a patch. Then
each texem represents a class of patches in the correspond-
ing space. We assume each class is a multivariate Gaussian
distribution with mean µk and covariance matrix ωk, which
corresponds to mk in the spatial domain. Thus, the proba-
bility density function for a particular patch Zi given that it
belongs to the kth texem mk, is:

p(Zi|mk, θ) =

1
√

(2π)d|ωk|
exp{−

1

2
(Zi − µk)T

ω
−1
k (Zi − µk)}, (2)

where θ = {αk,µk,ωk}
K
k=1 is the parameter set contain-

ing αk, which is the prior probability of kth texem con-
strained by

∑K
k=1 αk = 1. The parameter set θ can be

determined first by marginalising the joint distribution by
summing across the texems, and then optimising the data
log-likelihood expression of the entire set Z, given by

log p(Z|K, θ) = ΣP
i=1 log(ΣK

k=1p(Zi|mk, θ)αk). (3)



Hence, the objective is to estimate the parameter θ for a
given number of texems. The EM technique can be applied.
That is to find θ̂ where

θ̂ = arg max log(L(θ|Z)) = arg max
θ∈Ω(K)

log p(Z|K, θ). (4)

The E-step involves a soft-assignment of each patch Zi to
texems, M, with a random initial guess or simple K-means
clustering. We denote the intermediate parameters as θ(t).
The probability that patch Zi belongs to the kth texem may
then be computed using Bayes rule:

p(mk|Zi, θ
(t)) =

p(Zi|mk, θ(t))αk

ΣK
k=1p(Zi|mk, θ(t))αk

. (5)

The M-step then updates the parameters by maximising the
log-likelihood function as given in (4). The new estimates
are denoted by α̂k, µ̂k, and ω̂k where

α̂k =
1

P
ΣP

i=1p(mk|Zi, θ
(t)),

µ̂k =
ΣP

i=1Zip(mk|Zi, θ
(t))

ΣP
i=1p(mk|Zi, θ(t))

, (6)

ω̂k =
ΣP

i=1(Zi − µ̂k)(Zi − µ̂k)T p(mk|Zi, θ
(t))

ΣP
i=1p(mk|Zi, θ(t))

.

The E-step and M-step are iterated until the estimations are
stabilises. Then, the texems can be easily obtained by pro-
jecting the parameters back to the spatial domain. Various
sizes of texems can be used and they can overlap to ensure
they capture sufficient textural characteristics.

2.3. Multiscale texems

The dimension of the space we transform patches Z into
will increase dramatically as the patch size increases. This
means that a very large number of samples and high compu-
tational costs are needed in order to accurately estimate the
pdf in very high dimensional spaces. Therefore, instead of
generating variable-size texems, we learn fixed size texems
in a multiscale image pyramid. This results in (multiscale)
texems with a very small size, e.g. 5 × 5. A simple multi-
scale approach by using a Gaussian pyramid is sufficient.

Let us denote I
(n) as the nth level of the pyramid, Z(n)

as image patches extracted from I
(n), l as the number of

levels, and S↓ as the downsampling operator. We then have

I
(n+1) = S↓Gσ(I(n)), ∀n, n = 1, 2, ..., l − 1, (7)

where Gσ denotes the Gaussian convolution. The finest
scale layer is the original image, I

(1) = I. We then extract
multiscale texems from the image pyramid using the method
presented in the previous section. Similarly, let m(n) denote
the nth level of multiscale texems and θ(n) the parameters

associated at the same level, which will then be used for
novelty detection at the corresponding level of the pyramid.

During the EM process, the stabilised estimation of a
coarser level is used as the initial estimation for the finer
level, i.e. θ̂(n,t=0) = θ(n+1), which helps speed up the con-
vergence and achieve a more accurate estimation.

2.4. Novelty detection and defect localisation

Once the texems are obtained, we can work out automatic
minimum bounds of normal samples at each resolution level
across the eigenchannels for novelty detection in unseen im-
ages. A small set of defect free samples (e.g. 4 or 5 only)
are arranged within a multiscale framework using (7), and
patches with the same texem size in each eigenchannel are
extracted. The probability of a patch Z

(n)
i,ej

in the eigenc-
ahnnel ej belonging to texems of the same channel in the
corresponding nth scale is:

p(Z
(n)
i,ej

|θ(n)
ej

) = ΣK
k=1p(Z

(n)
i,ej

|m
(n)
k,ej

, θ(n)
ej

)α
(n)
k,ej

, (8)

where p(Z
(n)
i,ej

|m
(n)
k,ej

, θ
(n)
ej ) is a multivariate Gaussian distri-

bution function as shown in (2). The minimum probability
of a patch Z

(n)
i,ej

at level n, channel ej across the training im-
ages is treated as the lower bound of the data likelihood, de-
noted as Λ

(n)
ej = min(p(Z

(n)
i,ej

|θ
(n)
ej )),∀ Z

(n)
i,ej

∈ Z
(n)
ej . This

completes the training stage.
In the testing stage, the image under inspection is again

layered into a multiscale framework and patches at each
pixel position (x, y) at each level n are examined against the
learned texems. The probability for each patch is then cal-
culated according to (8) and compared to the lower bound,
Λ

(n)
ej , at the corresponding level and channel. Let Q(n)

ej (x, y)
be the probability map at the nth resolution level. Then, the
potential defect map, D(n)

ej (x, y), at level n is:

D(n)
ej

(x, y) =

{

0 if Q
(n)
ej (x, y) ≥ Λ

(n)
ej

Λ
(n)
ej − Q

(n)
ej (x, y) otherwise.

(9)
We need to combine the information coming from all the
resolution levels and channels to build the certainty of the
defect at position (x, y). Similar to [1], we assume that a
defect must appear in at least two adjacent resolution levels
for it to be certified as such. Using a logical AND, imple-
mented through the geometric mean, of every pair of adja-
cent levels, we initially obtain a set of combined pairs as:

D(n,n+1)
ej

(x, y) = [D(n)
ej

(x, y)D(n+1)
ej

(x, y)]1/2. (10)

This operation reduces false alarms and yet preserves most
of the defective areas. Then, the defect candidates from
each eigenchannel and each pair are combined using log-
ical OR, as the arithmetic mean, to provide a final map for
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Fig. 3. Localising textural defects - from top left to bot-
tom right: original defective tile image, detected defective
regions at different levels n = 1, 2, ..., 4, and the final de-
fective regions superimposed on the original image.

the defects detected across all the scales:

D(x, y) =
1

3(l − 1)

l−1
∑

n=1

3
∑

j=1

D(n,n+1)
ej

(x, y). (11)

3. EXPERIMENTAL RESULTS

The data set consisted of five different families of textures
(i.e. images of the surface of 405 tiles) with different types
of defects. In our experiments, only 5 good samples were
used to extract the texems and the lower bound likelihoods.
The number of texems at each resolution level were em-
pirically set to 12, at 5 × 5 pixels each. The number of
multiscale levels was l = 4. These parameters were fixed
throughout the experiments.

Fig. 3 shows a random texture example, from the same
family of tiles as in Fig. 1, with a physical defect on the
left side and clusters of pin holes in the lower right region.
The potentially defective regions detected at each resolution
level across the eigenchannels are also shown, demonstrat-
ing that the texems have good sensitivity to defective re-
gions at different scales. As the resolution progresses from
coarse to fine, additional evidence for the defective region is
gathered, e.g. the pin holes are missing in the defect maps
of level 3 and 4 but are detected at finer scales. Also, a few
false alarms at level 4 have no further support at other scales.
This shows the combination rules can eliminate false posi-
tive regions from the final error map, which is shown super-
imposed on the original image. Three more examples are
shown in Fig. 4, where the proposed method correctly de-
tected both subtle individual pin holes and printing defects.
The proposed method obatined 93.80% sensitivity, 90.22%
specificity, and 91.36% overall accuracy across the data set.

Fig. 4. Defect localisation on random texture examples.

4. CONCLUSIONS

We presented an automatic defect detection and localisation
algorithm for random colour texture surfaces which extends
the work in [8]. The proposed method requires training on
very few defect-free samples. It decorrelates the training
image colour bands and generates three independent eigen-
channels in which texems are derived using a Gaussian den-
sity mixture model. The texems were then applied within a
novelty detection framework to segment defects on unseen
surfaces.
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