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ABSTRACT
Nucleus segmentation is a vitally important task in biomedi-
cal image analysis which leads to multiple applications such
as cellular behavior study, tumor detection and cancer diag-
nosis. However, challenges, such as ambiguous boundary
for touching or overlapping nuclei often exist. This pa-
per presents a dense nucleus segmentation method, namely
CenterSAM combining the advantages from CenterNet and
Segment Anything Model (SAM). It allows fully automatic
prompting segmentation without prior knowledge enabling
accurate and generalizable nucleus segmentation for biomed-
ical images. Comprehensive evaluations of proposed method
are performed on three nucleus segment benchmarks. The
results highlight CenterSAM significantly out-performs the
second best method by 5.3% on Dice Similarity Coefficient
(DSC) in dense nucleus scenarios, meanwhile achieves com-
petitive results on the sparse nucleus segmentation task. The
code has been made publicly available1.

Index Terms— Nucleus segmentation, CenterNet, Seg-
ment anything model.

1. INTRODUCTION

Nucleus segmentation plays an indispensable role in biomed-
ical image analysis which contributes to numerous appli-
cations ranging from disease detection to drug discovery
in biomedical research and clinical diagnostics, such as le-
sion determination and disease stage diagnosis. However,
nucleus segmentation remains a challenge due to the com-
plexity and variability of nucleus structures in size, shape,
and appearance. Particularly, instance segmentation of nu-
clei on cell image requires delineating individual nuclei with
precise boundaries, whereas the cells are often adhesive and
boundaries are ambiguous due to the diversity in imaging
modalities, low contrast inherent to tissue images, indistinct
nucleus margins [1], and juxtaposition or overlapping of tis-
sues [2]. In addition, the presences of noise and artifacts as
results of imaging acquisition, impose further difficulties [3].

Transformer based architecture demonstrates the poten-
tial of a unified segmentation model across natural image

1https://github.com/Rand2AI/CenterSAM.

and biomedical image domains, such as Segment Anything
Model (SAM) that demonstrates great generalization capacity
on both natural images [4] and medical images [5]. Further-
more, works such as MedSAM [6] and Univer-Seg [7] were
proposed, which show the efficacy of SAM based approach
in biomedical domains. However, these methods either target
at the sparse segmentation for organs or rely heavily on man-
ually provided prompts for high-performance segmentation.
SAM on medical images shows that among the three prompt
types bounding box as the input provides better segmentation
performance in the vast majority of cases, especially in dense
contexts such as cell/nucleus segmentation tasks. A simple,
efficient, and accurate network for automatic prompt gener-
ation would be ideal to boost SAM-like model segmentation
performance. CenterNet [8] has attracted public attention in
the field that formulates the detection task as predictions of
object centroid, aligning with the specific requirements of
SAM and showed higher detection accuracy with faster train-
ing and inference. This anchor-free method is lightweight
and versatile, allowing for adjustments based on varying sit-
uations and data volumes. Inspired by these observations, in
this paper, we propose a two-stage method for dense nuclei
segmentation, namely CenterSAM, that combines Center-
Net as an automatic prompt generator and SAM as a precise
segmenter. Our contributions are three-folds:
1. The proposed method eliminates the reliance on manual

prompts, which are typically required by SAM-like mod-
els to achieve high-precision segmentation results.

2. Comprehensive experiments show the enhanced robust-
ness and accuracy of CenterSAM on several nucleus seg-
mentation benchmarks. It outperforms other competitors
particularly in dense tissue scenario.

3. We further analyzed the size distribution and adhesion
conditions of nuclei across multiple benchmark datasets,
shedding a light on the rationale of performance gain
in such densely packed scenarios for nucleus instance
segmentation tasks.

2. PROPOSED METHOD

In this section, we present the technical details of the pro-
posed CenterSAM model shown in Fig. 1, where Center-



Net based detector on the top produces box prompt for SAM
based segmenter at the bottom.

2.1. Nucleis Detection

For an input image I ∈ RW×H×3, the detector first reduces
the size of input by a factor of R = 4, and then pass it through
two consecutive hourglass modules to produce the feature
maps for detection heads. We choose stacked hourglass
network [9] as the backbone for the detection stage, as it typi-
cally exhibits higher performance compared to common used
detection networks such as Deep Layer Aggregation (DLA)
[10]. Building on the concept of a bounding box design cen-
tered around the object’s center point, three heads have been
developed to predict the heatmap of object centroid, bound-
ing box width-height, and bounding box offset respectively,
where the losses for each head are defined as LH, Lwh and
Loff correspondingly.

For heatmap prediction, we represent a predicted keypoint
by Ŷx,y = 1 and Ŷx,y = 0 as for background. Let p ∈ R2 stand
for the coordinate of a center keypoint of ground truth at the
original image, we first project it to the coarse scale p̂ =
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where N is the number of keypoints in an image and α and β
are set to 2 and 4 following [8].

For bounding box prediction, let (x1, y1, x2, y2) be the
bounding box of one instance J , the center point can be repre-
sented by cj =

(
x1+x2

2 , y1+y2

2

)
and the size of the instance as

sj = (x2 − x1, y2 − y1), for each prediction Ŝ ∈ RW
R ×H

R ×2,
the L1 loss is calculated:

Lwh =
1

N

N∑
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|Ŝcj − sj | (2)

In order to correct the offset error of each center point in-
troduced by striding operation due to rounding down, a local
offset Ô ∈ RW

R ×H
R ×2 is predicted and the smooth L1 loss is

used for training. The loss function is defined as follow:
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Thus the overall loss function Ldet for detection stage is de-
fined in the following manner:

Ldet = LH + λwh · Lwh + λoff · Loff (4)

where λwh and λoff are set to 0.1 and 1 if not otherwise
specified. In the inference stage, the detection can be ob-
tained given the predictions from three heads. First, the
heatmap outputs are filtered to select points at a confidence
score by a predefined threshold θ using non-maxima sup-
pression (NMS). After the coordinate output of the predicted
object center is determined, offsets are then added to the
corresponding center coordinates followed by calculating the
bounding box’s region using the predicted width and height.
Finally, the detected object bounding box can be represented
with (xmin, ymin, xmax, ymax) that can be fed into the segmenter
described in the following section.

2.2. Mask Segmentation

Image & Prompt Encoder: For the same pre-processed in-
put image I ∈ RW×H×3, the segmenter resizes its spatial res-
olution to 1024 × 1024 and uses ViT-H/16 [12] as the image
encoder. It produces a down-scaled (by a factor of 16) embed-
ding with 14× 14 windowed attention. To decrease the chan-
nel dimension, a 1×1 convolution is used to compress it down
to 256 channels, followed by another convolution of filter size
3 × 3, also with the same number of channel output. Layer
normalization is applied after each convolution. The image
encoder was trained on SA-1B [4], where image embeddings
that are calculated using the ViT-H/16 image encoder will be
passed to the masks decoder. The bounding boxes are pro-
cessed by the prompt encoder as follows: First, the original
coordinates or input bounding box will be shift 0.5 pixel to
ensure the coordinates point located at the center of the pixel;
Then coordinates of “top-left corner” and “bottom-right cor-
ner” are passed to positional encoding module that utilizes
random spatial frequencies to generate unique embedding to
distinguish different positions in the image, which provides
the model with rich spatial information; To further enhance
the representation of the boxes prompt, an additional posi-
tional embedding weight is given to both “top-left corner” and
“bottom-right corner”, which indicates both the top left and
bottom right corners of the box are specifically represented
in the embedding space. This strategy further emphasizes the
importance of these two key points that define the bounding
box of target objects.
Mask Decoder: A learnable output token embedding is in-
troduced which is similar to the [class] token in [12], where
we refer this [class] token together with prompt tokens as
“tokens”. A single mask decoder layer (see Fig. 1(b)) first
performs self-attention within tokens, followed by a cross-
attention from tokens to the image embedding and versa vice.
An element-wise Multi-Layer Perceptron (MLP) with resid-
ual connection is placed between two cross-attention. For
each attention layer, we add the positional encodings to the
image embedding and re-added the complete set of original
prompt tokens along with their positional encodings to the up-
dated tokens, to further tighten the location information and



(a) CenterSAM framework (b) Mask decoder

Fig. 1: (a) The proposed CenterSAM framework for dense nucleus segmentation. CenterNet based detector on the top produces
box prompts for SAM based segmenter at the bottom. (b) The architecture of mask decoder.

(a) Distribution of nucleus sizes. (b) Distribution of connected nucleus.

Fig. 2: The statistics of nucleus cell. (a) the distribution of nucleus size and (b) the distribution of connected nucleus, where the
dashed lines in (a) indicate the median values.

the corresponding prompt token. The updated tokens and em-
bedding of the first decoder layer will then feed into another
decoder layer with the same structure. After two decoder lay-
ers, the token embeddings will be updated once more by per-
forming attention from output tokens to image embeddings,
result marked as Tfinal. Meanwhile, the output image embed-
dings from two-layer decoder is upsampled by a factor of 4
using two transposed convolutional layers. The size of con-
volution kernel is set to 2 × 2, with a stride of 2 followed
by a Gaussian Error Linear Unit (GELU) activation. The
final image embedding is referred as Efinal with channel di-
mension of D = 2048. The Tfinal is fed into a small 3-layer
MLP to produce a vector VMLP with same channel dimension
D. The mask prediction is obtained by performing a spatial
point-wise multiplication between the Efinal and VMLP.

3. EVALUATION AND DISCUSSION

3.1. Dataset and Implementation

In order to evaluate the performance of the proposed Center-
SAM comprehensively, we used three standard benchmarks
listed in Table 1, including MoNuSeg [22] as a representative
for small dataset, the 2018 Data Science Bowl dataset (2018
DSB) [23] for medium-sized dataset, and TissueNet [21] for
large dataset. These datasets cover different organs (such as

Table 1: The benchmark datasets.

Dataset Imaging Images Resolution Annotation
MoNuSeg H&E 51 1000*1000 32,217
2018 DSB multimodal 670 Variable 29,461
TissueNet multiplexed 6990 512*512 ˜1.2M

Breast, Kidney, Liver, Prostate, Bladder, Colon and Stomach),
various species (including humans, mice, and macaques), and
imaging techniques (such as bright-field and fluorescence).

CenterSAM was trained on each dataset individually us-
ing a GeForce RTX 3090 graphics card. For MoNuSeg and
TissueNet dataset, we followed the default split of the dataset.
For 2018 Data Science Bowl dataset, we randomly split 670
labeled images into an 80-10-10 train-val-test proportion. We
followed the process from Cellpose [24] and cropped the orig-
inal 1000 × 1000 image from MoNuSeg into 9 non-overlap
images. Contrast Limited Adaptive Histogram Equalization
(CLAHE)[25] was applied to all images with a threshold of
2 and adaptive grid size of 8 × 8, then the images are all re-
sized to 512 × 512 before feeding into the models. We in-
creased the default probabilities of multiple augmentations of
CenterNet to enhance the diversity of training images. To be
more specific, the probability for applying shift, scale, ro-
tate and flip augmentation for an input image is increased
to 0.5. We set the learning rate at 1.25 × 10−4 with batch



Table 2: Quantitative results of comparison against State-Of-The-Art (SOTA) methods. The best results are highlighted in bold.

2018 Data Science Bowl
Method DSC(%)↑ mIoU(%)↑
UNet++ 91.10 83.70

Deeplabv3+ [13] 88.80 83.70
SSFormer-S [14] 92.50 86.50

DuAT [15] 92.60 87.00
CenterSAM 92.20 86.60

MoNuSeg
Method DSC(%)↑ AJI(%)↑
UNet 74.56 60.22

UNet++ [16] 80.33 67.30
MAE [17] 73.68 58.62
MDM [18] 81.01 68.25

CenterSAM 81.95 68.75

TissueNet
Method DSC(%)↑ SEG(%)↑

Detectron2 75.50 78.00
Cellulus [19] 64.10 52.40
StarDist [20] 59.40 38.20
Mesmer [21] 83.40 77.20
CenterSAM 88.70 79.50

Fig. 3: Qualitative results of comparison against selected
methods on different datasets.

Table 3: The density of nucleus cell.
Dataset Total Connected Proportion Mean

2018DSB 29,461 8,566 29.08% 22.69%
MoNuSeg 32,217 12,050 37.40% 32.61%
TissueNet 1,286,856 944,651 73.41% 64.37%

size of 32 and train epochs of 140. A learning rate decay
was scheduled by a scale of 10 at epochs 90 and 120. The
detector model was trained from scratch, while a pre-trained
segmenter is used. For MoNuSeg, ResNet-18 is used instead
of the default stacked hourglass network to mitigate the risk
of over-fitting due to small training sample. The max num-
ber of output objects K was increased from 100 to 1000 to
avoid missing small instance, and θ=0.1 for NMS threshold
is used. To evaluate performance differences, we adopt Dice
Score (DSC), mean IoU (mIoU), Aggregated Jaccard Index
(AJI) and SEG score [26] as the evaluation metrics, where
predictions with an IoU equal or greater than 0.5 will be con-
sidered as a successful match for DSC measurement.

3.2. Experimental Result

Table 2 and Fig. 3 show the comparison results against SOTA
methods on different datasets. The proposed CenterSAM
achieves the highest accuracy on both MoNuSeg and Tis-
sueNet datasets. Particularly, our method shows significant
improvement over Mesmer (the second best) on TissueNet in
terms of both DSC and SEG scores by 5.3% and 2.3% respec-
tively. It is worth noting both Mesmer and StarDist require
shape prior knowledge which is no-need for our model. On
the 2018 DSB dataset, CenterSAM is highly competitive with
only a 0.4% gap in DSC and AJI scores compared to DuAT.

We measured the inference speed on the TissueNet
dataset. Detectron2 is the fastest with 3.96× 10−2 ± 3.10×
10−3s per image, followed by StarDist with 6.21 × 10−2 ±
2.37 × 10−2 CenterSAM with 7.05 × 10−2 ± 2.16 × 10−3

and Mesmer with 1.02 × 10−1 ± 8.09 × 10−3. CenterSAM
demonstrates high efficiency with the same accuracy while
having the lowest standard deviation.

To delve into the performance of CenterSAM across three
datasets, we further analyzed the cell nucleus sizes and den-
sity of each datasets (see Fig. 2) to further explore the opti-
mal scenario for applying CenterSAM. 2018 DSB contains a
significantly higher proportion of extremely small nuclei but
have a higher median number than TissueNet dataset. Our ap-
proach is ranked the third place with merely 0.3% lower but
0.1% higher than the second place in terms of DSC and mIoU
scores respectively. It suggests that CenterSAM is capable
of capturing extremely tiny biomedical instances, while the
segmenter was trained on SA-1B dataset that contains mainly
natural images. We further calculated the average number
of nucleis per image and the percentage of nucleis that con-
nected with another nucleis from randomly cropped the image
with a fixed size of 512×512. The visualization of the results
is shown in Fig. 2(b). The 3 shows the quantitative statistics
of nucleus density. TissueNet has 73.41% of nuclei exhibiting
connection or overlap with at least one neighboring nucleus,
whereas CenterSAM outperforms the SOTA by a significant
margin (+5.3% in DSC and +2.3% in SEG). Such superiority
in performance is also evident in the MonuSeg dataset that
has an approximate 37.40% rate of nuclei connection. Our
approach surpasses the current SOTA to a notable extent. On
the 2018 DSB dataset, where the rate of nuclei contact drops
to 29.08%, our method is slightly behind the SOTA.

4. CONCLUSION
In this paper, we proposed CenterSAM, a fully automatic
nucleus instance segmentation method with prompt based
model. It requires no shape or appearance prior knowledge
and manual prompt. The results on multiple benchmarks
underscore its robustness in scenarios where dense nucleus
structures and high overlap rates are presented. Such scenar-
ios are inherently challenging due to the ambiguity in bound-
ary demarcation, making nucleus segmentation a non-trivial
task. The proposed method is more effective than SOTA
suggesting its potential advantages in practical applications.



5. COMPLIANCE WITH ETHICAL STANDARDS

This research study was conducted retrospectively using hu-
man and animal subject data that are publicly available in
open access. Ethical approval was not required.

6. ACKNOWLEDGMENTS

All authors declare that they have no conflicts of interest. Xi-
aoke Ma is funded by the Key Research and Development
Program of Shaanxi (Program No. 2021ZDLGY02-02).

7. REFERENCES

[1] Eli Gibson and et al., “Niftynet: a deep-learning plat-
form for medical imaging,” Computer methods and pro-
grams in biomedicine, vol. 158, pp. 113–122, 2018.

[2] Shujian Deng and et al., “Deep learning in digital
pathology image analysis: a survey,” Frontiers of
medicine, vol. 14, pp. 470–487, 2020.

[3] Tomohiro Hayakawa and et al., “Computational nuclei
segmentation methods in digital pathology: a survey,”
Archives of Computational Methods in Engineering, vol.
28, pp. 1–13, 2021.

[4] Alexander Kirillov and et al., “Segment anything,”
arXiv preprint arXiv:2304.02643, 2023.

[5] Guochen Ning and et al., “The potential of’segment
anything’(sam) for universal intelligent ultrasound im-
age guidance,” BioScience Trends, 2023.

[6] Jun Ma and Bo Wang, “Segment anything in medical
images,” arXiv preprint arXiv:2304.12306, 2023.

[7] Victor Ion Butoi and et al., “Universeg: Univer-
sal medical image segmentation,” arXiv preprint
arXiv:2304.06131, 2023.

[8] Xingyi Zhou and et al., “Objects as points,” arXiv
preprint arXiv:1904.07850, 2019.

[9] Alejandro Newell and et al., “Stacked hourglass net-
works for human pose estimation,” in ECCV. Springer,
2016, pp. 483–499.

[10] Fisher Yu and et al., “Deep layer aggregation,” in CVPR,
2018, pp. 2403–2412.

[11] Hei Law and Jia Deng, “Cornernet: Detecting objects
as paired keypoints,” in ECCV, 2018, pp. 734–750.

[12] Alexey Dosovitskiy and et al., “An image is worth
16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

[13] Liang-Chieh Chen and et al., “Encoder-decoder with
atrous separable convolution for semantic image seg-
mentation,” in ECCV, 2018, pp. 801–818.

[14] Jinfeng Wang and et al., “Stepwise feature fusion: Local
guides global,” in MICCAI. Springer, 2022, pp. 110–
120.

[15] Feilong Tang and et al., “Duat: Dual-aggregation trans-
former network for medical image segmentation,” arXiv
preprint arXiv:2212.11677, 2022.

[16] Zongwei Zhou and et al., “Unet++: A nested u-net ar-
chitecture for medical image segmentation,” in MIC-
CAI. Springer, 2018, pp. 3–11.

[17] Kaiming et al. He, “Masked autoencoders are scalable
vision learners,” in CVPR, 2022, pp. 16000–16009.

[18] Zixuan Pan and et al., “Masked diffusion as self-
supervised representation learner,” arXiv preprint
arXiv:2308.05695, 2023.

[19] Steffen Wolf and et al., “Unsupervised learning of
object-centric embeddings for cell instance segmenta-
tion in microscopy images,” in ICCV, 2023, pp. 21263–
21272.

[20] Uwe Schmidt and et al., “Cell detection with star-
convex polygons,” in MICCAI. Springer, 2018, pp. 265–
273.

[21] Noah F Greenwald and et al., “Whole-cell segmentation
of tissue images with human-level performance using
large-scale data annotation and deep learning,” Nature
biotechnology, vol. 40, no. 4, pp. 555–565, 2022.

[22] Neeraj Kumar and et al., “A dataset and a technique
for generalized nuclear segmentation for computational
pathology,” IEEE transactions on medical imaging, vol.
36, no. 7, pp. 1550–1560, 2017.

[23] Juan C Caicedo and et al., “Nucleus segmentation across
imaging experiments: the 2018 data science bowl,” Na-
ture methods, vol. 16, no. 12, pp. 1247–1253, 2019.

[24] Carsen Stringer and et al., “Cellpose: a generalist algo-
rithm for cellular segmentation,” Nature methods, vol.
18, no. 1, pp. 100–106, 2021.

[25] Ali M Reza, “Realization of the contrast limited adap-
tive histogram equalization (clahe) for real-time image
enhancement,” Journal of VLSI signal processing sys-
tems for signal, image and video technology, vol. 38,
pp. 35–44, 2004.

[26] Vladimı́r Ulman and et al., “An objective comparison of
cell-tracking algorithms,” Nature methods, vol. 14, no.
12, pp. 1141–1152, 2017.


