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SUMMARY

In this paper, we propose a fully automated learning based approach for detecting cells in time-lapse phase
contrast images. The proposed system combines two machine learning approaches to achieve bottom-up
image segmentation. We apply pixel-wise classification using random forests (RF) classifiers to determine
the potential location of the cells. Each pixel is classified into four categories (cell, mitotic cell, halo effect,
and background noise). Various image features are extracted at different scales to train the RF classifier.
The resulting probability map is partitioned using the k-means algorithm to form potential cell regions.
These regions are expanded into the neighboring areas to recover some missing or broken cell regions. In
order to validate the cell regions, another machine learning method based on the bag-of-features and spatial
pyramid encoding is proposed. The result of the second classifier can be a validated cell, a merged cell,
or a non-cell. In the case that the cell region is classified as a merged cell, it is split by using the seeded
watershed method. The proposed method is demonstrated on several phase contrast image datasets, i.e.
U2OS, HeLa, and NIH 3T3. In comparison to state-of-the-art cell detection techniques, the proposed method
shows improved performance, particularly in dealing with noise interference and drastic shape variations.
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1. INTRODUCTION

Phase contrast microscopy enables the monitoring and analysis of cell proliferation without the need
for staining as it is based on bright field microscopy. It is an optical microscopy that transforms the
phase differences in light moving through the specimen into the differences in brightness, which
can be observed and converted into an image. A fundamental task in monitoring cell behavior across
time is cell localisation and segmentation. Manual cell segmentation or detection is a time-intensive,
laborious process and is subjective due to high inter- and intra-operator variability, particularly
with the number of cells increasing exponentially over time. Fully automatic cell segmentation is
challenging due to the large variability in cell shape, low contrast between the object of interest and
the background, and the image artifacts such as halo effect and shade-off.

Cell segmentation methods for phase contrast images can be categorized into region-based
approaches [1, 2, 3, 4], active contour methods [5, 6, 7, 8], energy minimization based approaches
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(a) (b) (c)

Figure 1. Example of the phase contrast images. (a) U2OS human osteosarcoma cells (672× 512 pixel). (b)
Human cervical cancer HeLa cells (400× 400 pixel) (c) NIH 3T3 fibroblast cells (696× 520 pixel).

[9, 10, 11, 12], image restoration based approaches [13, 14, 15], and machine learning-based
approaches [16, 17, 18, 15, 19, 20, 21, 22].

Region-based approaches include methods such as thresholding and watershed. Chalfoun et al.
[3] proposed a morphological watershed-based method to segment cells in colonies, including those
that are touching each other. Empirical global thresholding is used to separate the foreground from
the background, and then seed points are detected using histogram quantization. Next, each pixel
is assigned to the closest seed point using the geodesic distance. Mitotic cells are also detected by
applying thresholding and testing the roundness of the obtained region. However, the method has a
large number of morphological parameters to be adjusted. Energy minimization based approaches,
such as graph cut, have also been introduced to detect and segment cells. Bensch and Ronneberger
[12] proposed a cost function for a graph cut based method to encourage dark-to-bright transition
by defining asymmetric edge weights in a directed graph.

For image restoration based approaches, the aim is to recover an artifact-free phase contrast
image. For example, Yin et al. [13] treated the cell segmentation problem as restoring an artifact-free
phase contrast image. The image model is defined based on the optical properties of phase contrast
imaging, and the restoration problem is formulated using a regularized quadratic cost function. The
segmented cell can be found by applying thresholding on the restored images. However, the method
can not distinguish between artifacts, e.g. halo effect, and bright cells, e.g. cell in the mitosis cycle.
Su et al. [14, 15] introduced a dictionary-based restoration method of phase contrast diffraction
patterns. The restored image is then grouped into atoms, and the cells are segmented based on a
semi-supervised method. However, user initialization is required to propagate the labeling process.

Machine learning-based approaches are used to recognize the cells from the background. The
learning methodology can be supervised [17, 16, 18, 22], semi-supervised [15, 19], or unsupervised
[21, 20]. For example, the methods proposed in [16, 21] used a learning-based approach in cell
detection by selecting an initial set of points corresponding to cell centers and refining the detection
by removing the less likely points. However, these methods are not segmenting the cell region.
He et al. [17] used an AdaBoost classifier to detect cell centers based on wavelet features and
an SVM classifier using LBP features to segment cells from the background. The output of both
classifiers is fed into a seeded watershed method to obtain the final cell regions. In [20], the cell
segmentation is achieved by using random forest classification to learn cell boundaries and then
carrying out superpixel clustering to obtain initial cell regions and build an adjacency graph. This
graph is then partitioned using correlation clustering segmentation. However, these methods are
prune to both under- and over-segment the cells, especially in densely populated regions. Arteta et
al. [18] proposed to detect a set of candidate cell regions using a maximally stable extremal regions
(MSER) detector; each region is scored based on SVM classification. Finally, a subset of these
regions that are non-overlapping is selected as cells using dynamic programming. The authors in
[23] extended the previous work so that it can split the detected region containing overlapping cells
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Figure 2. Proposed system overview.

into different individual ones. Akram et al. [22] used two convolutional neural networks (CNN) to
detect and then segment cells. The first CNN predicts bounding boxes containing the cells, and then
the second CNN produces a segmentation mask for each bounding box.

In this work, we propose a machine learning approach to detect and delineate the cell region
in microscopy phase contrast images (see example images in Figure 1). Pixel-wise classification
is carried out based on a random forest (RF) classifier to achieve low-level image segmentation
and produce a probability map of the cell locations. We construct initial cell regions by using k-
means clustering and region growing and then validate each region using a bag-of-features (BoF)
classifier based on the spatial pyramid feature coding. The main contributions of this paper include
the following aspects.

• Combines two machine learning approaches in an automatic cell-detection paradigm. The
learning is efficient and can be easily adapted to new data.

• A low-level phase contrast image segmentation using a pixel-wise classification is proposed.
The classifier is trained on multi-scale features that enable efficiently highlighting cell regions
regardless of its size or cell-division cycle.

• A region-growing method is proposed to retrieve most of the cell region and to examine its
relationship with its neighboring regions.

• BoF classification with spatial pyramid feature encoding is proposed to validate the cell
regions as a single cell, merged or non-cell. The classifier can handle large variation in cell
region size and shape.

• Splitting the merged cells using a seeded watershed method where the seeds are inferred from
the pixel-wise classification probability map.

The rest of this paper is organized as follows. Section 2 presents the proposed method in detail.
Experimental results and discussion are given in Section 3. Finally, Section 4 concludes this paper.

2. PROPOSED METHOD

Briefly, the proposed method starts with pixel-wise classification using an RF classifier, in order
to create a probability map of cell and non-cell regions. The similar pixels are grouped together
using the k-means algorithm. These initial regions are expanded slightly to recover some missing
structures to form candidate cell regions. The regions are then validated by using the BoF-based
classifier that can handle cell region variation. The merged cell is split by using the seeded watershed
method. The flow chart in Figure 2 illustrates the key stages of the proposed method.
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(a) Original image.

(b) Large eigenvalue of the Hessian matrix. (c) Precondition image restoration.

Figure 3. Example of features extraction from a phase contrast image.

2.1. Pixel-wise Classification

There are several machine learning methods that can be used for pixel-wise labeling. Recently, deep
learning methods, e.g., CNN have emerged as popular approaches. However, deep learning methods
generally require a large quantity of training data in order to obtain good performance due to its
significantly larger number of parameters, typically hundreds of millions or even more depending
on the complexity of its architecture. RF is much more efficient to train and test and has very few
parameters. In this paper, an RF classifier is used to classify image pixels into four classes, i.e.
normal migration (dark) cell, mitotic (bright) cell, halo artifact, and background. RF [24] is a set of
decision trees that form a strong ensemble classifier to overcome problems such as data outliers and
overfitting. The RF uses two randomization techniques to improve its generalization capabilities.
The first technique is bagging where each tree is trained on a different subset of the training data
sampled randomly with replacement. The second technique is the randomized node optimization,
where each node in any tree is trained on a random subset of features to find the best parameter to
split the tree.
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Figure 4. Pixel-wise probability map and clustering results. (a) Original image; (b) Normal cell; (c) Halo
artifact; (d) Mitotic cell; (e) Clustering result; (f) Region dilation (white).

In RF training, we extract a set of features from the training images and train a set of trees
t ∈ {1, · · · , T} independently on a randomly sampled subset of the training data. After training,
each leaf node stores empirical distribution pt(c|v) of classes. Testing a new sample v starts from
the root node of each tree and follows the splitting functions of each node until it reaches the leaf
nodes. The final decision P (c|v) is acquired for each class c by taking the average predication of all
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trees:

P (c|v) = 1

T

T∑
t=1

pt(c|v). (1)

The RF classifier has two important parameters: T the number of trees, and fs the number of
randomly sampled features per node. In this paper, the number of trees is set to 500, and fs = 4

√
l

where l is the feature vector length. For each pixel, the features are extracted at two scales of fixed
window; 4× 4 and 8× 8. Here, we compute two features; the histogram of the pre-conditional
image [13], and the Hessian matrix feature.

The Hessian matrix is a matrix of the second-order partial derivatives of image I . It has been
successfully used to extract ridge features and vessel structures [6, 25]. Hessian matrix H can be
written as:

H =

(
Ixx Ixy
Iyx Iyy

)
(2)

where Iij = ∂2I
∂i∂j and is obtained by using a convolution operation between the image I and the

second derivative of the Gaussian filter. The eigenanalysis of the Hessian matrix is then performed,
and the largest eigenvector/value is extracted as feature. The mitotic cell has a blob-like structure
which can be detected by the Hessian matrix feature. Here, for each window scale, the scale
parameter of the Gaussian filter is defined as 2 and 4, respectively.

The other extracted feature for the RF classifier is the histogram of the precondition image. The
assumption is that we can restore an image s free from artifacts, i.e. halo effect and background
noise:

u = As (3)

where u is an observed image, and A is a matrix composed by the imaging optics. Solving the
equation directly by inverting A is highly prone to noise. Instead, the restored image s can be found
by minimizing the following quadratic function [13]:

O(s) = ||As− g||22 + ωss
trLs+ ωr||Λs||1 (4)

where L is defined as a Laplacian matrix to impose spatial smoothness between neighboring
pixels, Λ is a diagonal matrix (positive) in the l1-norm sparseness regularization, and ωs and ωr

are weighting parameters. To find a close-form solution, the equation (4) is constrained to be
nonnegative values and solved iteratively to obtain the restored phase contrast image. For each
patch window, the histogram of the restored image is computed where the number of bins is 15 and
the histogram is normalized by l2-norm. Figure 3 shows an example of the large eigenvalue of the
Hessian matrix and the restored image. Figures 4 (b), (c), (d) show the probability map from the RF
classifier for normal cell, halo artifact, and mitotic cell, respectively.

2.2. Clustering & Region Growing

The RF classifier generates a probability map based on the extracted low level features. Thus, we
can determine the probable cell location and discard the background regions. However, it is still
difficult to identify the individual cell in densely populated areas. Here, spatial clustering is carried
out to analyze the connected component structure and extract the individual cells.

The k-means algorithm is used to locate the central region of the normal and mitotic cells by
partitioning the probability map into three classes. The output class is automatically selected by
finding which cluster gives the maximum probability to contain cells based on the probability map
computed from the first stage. The cluster is working as a binary mask that refers to the center region
of candidate cells as shown in Figure 4 (e). Note that the normal (i.e. dark) and mitotic (i.e. bright)
cells are clustered separately to reduce the effect of overlapping.

The cell growing process is then applied to extend the cell regions obtained from the k-means
clustering to recover some of the missing cell region. Figure 4 (f) shows an example of the cell
dilation. The probability maps for normal, mitotic, and halo effect are defined as Pd, Pb, and Ph,
respectively. The cell growing process begins by converting these probability maps Pi into a binary
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(a) (b) (c)

Figure 5. Touching candidate cell regions classified as a single cell in the cell validation stage. (a) An image
window of 40× 40 pixels. (b) Touching cell regions result after the region growing stage (red, blue). (c) The

cell validation classifier tests whether the touching cells are actually a single cell.

mask:

M =

{
1 Pd + Pb + Ph > tha,

0 otherwise
(5)

where M represents the searching space that can be picked up in the cell growing process and
tha is defined by applying Otsu’s thresholding which splits M by maximizing the between-class
variance. Each cell region obtained by the k-means clustering has a binary label Ri (1 for cell and 0
otherwise). The new cell region Di is defined as:

Di =

{
1 Ed(Ri) ∗M < thd,

0 otherwise
(6)

where Ed(.) is the Euclidean distance transformation of the cell binary region, and thd is the
searching space parameter that controls the dilation size. Since the aim is to refine the detected
cell regions, the dilation parameter is usually small. Here, thd sets to 5 for normal cell and 3 for the
mitotic cell. The cell growing process can easily determine if candidate cell regions are touching
each other and this helps in the following cell validation stage to identify if the cell region is broken
into small subregions by combining those subregions and testing the united region, as shown in
Figure 5.

2.3. Cell Validation via Spatial Pyramid Coding

The result of the last stage is a large set of candidate cell regions with different shape and size.
In this stage, we propose a classification method based on a spatial pyramid feature coding to
validate the cell identity. The aim is to classify the candidate cell regions into three categories:
single cell, merged cell, and background. We define single cell (if it is not in mitosis phase) as
the region that contains mainly the cell nucleus. The candidate cell regions that are touching after
the cell growing phase are merged into a single region and tested in this stage to determine if the
touching regions belong to the same cell or multiple cells. Figure 5 shows an example of touching
candidate regions classified as a single cell. The proposed cell validation method is built on the
bag-of-features (BoF) model. Various BoF representations have been applied successfully not only
in object and scene classification [26, 27] but also in medical image classification [28]. The BoF
model produces a histogram of feature coding of all locally extracted image descriptors. From a
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set of training images, feature descriptors are extracted and then clustered into a set of codes called
visual words (i.e. codebook). The image features are attached to the nearest code or visual word in
the visual vocabulary. Accordingly, the image is represented as a set of codes and generalized as a
histogram.

The basic BoF model eliminates the spatial information of the extracted local descriptors.
However, including the spatial information has been shown to be useful for the image classification
tasks, e.g. [27, 29]. Spatial pyramid coding (SPC) can be used to capture the local information of the
extracted features. This method splits the image into sections in various scales, and then it produces
a BoF histogram for each section and concatenates all the histograms to form the final representation
of the image.

Support vector machines (SVM) classifier is usually adopted along with SPC by using nonlinear
Mercer kernels, e.g. the Chi-square kernel. However, training a nonlinear classifier is computational
expensive which limit the scalability of the SPC method. In this work, we use locality-constrained
linear coding (LLC) [30] which is an SPC based approach that replaces the traditional vector
quantization method by locality constraint linear sparse coding. LLC method performs very well
with the linear SVM classifier and performs much more efficiently, e.g. as demonstrated in
[30, 31, 32].

Cell validation consist of extracting the scale-invariant feature transform (SIFT) features,
coding the features using LLC and applying SPC when integrating the final histogram image
representations.

2.3.1. Dense SIFT
SIFT is extracting a set of local features that are invariant to scale and rotation. It has been

successfully used in many applications, such as object recognition, and image stitching. The
ordinary SIFT [33] consists of four steps: detecting scale-space extrema, localizing key points,
assigning an overall orientation, and defining a local descriptor. Dense SIFT extracts local features
regularly at each possible location, instead of at key point locations, to model a dense representation
of the input image. Since extracting the same key points from the input cell images is difficult due
to the large deformation of cell shapes, dense SIFT is adopted here.

The local descriptor is defined as a histogram of gradient orientations within a local region
centered at the key point. The size of the local region is usually selected as 16× 16. The local
region is split into 4× 4 sub-regions and for each sub-region, a histogram of edge directions with 8
bins is computed. These histograms are then concatenated to form a 128-dimensional feature vector
and normalized to unit length to improve contrast and illumination invariancy.

2.3.2. Feature coding
Building visual vocabulary from a set of SIFT feature descriptors X = {x1, x2, · · · , xn} is the

second procedure in the proposed cell validation method. K-means algorithm is used to construct
the visual vocabulary, B = {b1, b2, · · · , bK}. Traditionally, feature coding is achieved by vector
quantization, where it assigns each feature vector to one cluster (i.e. visual word) based on a
similarity measurement. However, this hard assignment results in loss of information. Yang et al.
[31] proposed a relaxation of the hard quantization by adding a sparsity regularization term so that
the coding problem is equivalent to the standard sparse coding:

argmin
C

n∑
i=1

‖ xi −Bci ‖2 +λ ‖ ci ‖`1 (7)

where B is a codebook, and C = [c1, c2, · · · , cn] is a set of codes for feature descriptors X . The
second term is the sparsity regularization that is `1 norm of codes C.

In this paper, LLC is used as the feature coding. In LLC [30], sparsity constraint is replaced
with locality constraint to catch the correlations between similar feature descriptors that reduces the
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(a) (b) (c)

Figure 6. Splitting merged cell using seeded watershed method. (a) An image window of 75× 75 pixels; (b)
Merged cell (green); (c) After watershed segmentation, two separated cells are created (blue and red).

quantization errors. The optimization problem is defined as:

argmin
C

n∑
i=1

‖ xi −Bci ‖2 +λ ‖ di � ci ‖ (8)

where � denotes to the element-wise multiplication, and di is the locality factor which is
proportional to the similarity between feature descriptor xi and codebook B.

2.3.3. Spatial pyramid coding
A pooling of features coding is used as input to the SVM classifier. But, this orderless

representation of the features is losing important information about the spatial location of the
features. In order to tackle this problem, spatial pyramid coding is used. In SPC, the image is divided
into subregions at different resolutions {0, · · · , L} and the local features are then pooled in these
subregions and normalized. The total number of subregions at a resolution level l is 22l. Here, max
pooling is applied on the feature coding vectors located inside the same subregion.

SVM classifier [34] finds a hyperplane with the maximal margin that separates the feature space
into two classes. The subset of data that locates the position of the hyperplane separator are called
support vectors and used to define the decision function. Here, a linear SVM is used, as discussed
earlier.

2.4. Splitting Merged Cells

Some cell regions are classified as merged cells by the BoF classifier used in the cell validation
phase. In order to split the merged cells, we propose to use the seeded watershed segmentation. In
the watershed segmentation algorithm, each local minima of the image gradient is considered as
the starting point of water flows. The water is continually spreading to form catchment basins. The
neighboring catchment basins will meet at some points forming a dam or watershed. The water will
stop rising when reaching watersheds or pre-defined background regions. In the end, the image is
segmented into enclosed regions by watersheds at each local minimum. However, the watershed
algorithm tends to over-segment the image. In order to overcome this problem, we use the seeded
watershed segmentation.

The seeded watershed algorithm uses the seed positions, which can be defined by the user
interaction or some morphological operations, as the starting regions of water flooding. Seeds
usually defined for both object (e.g. cell nucleus) and background. Here, object seeds are defined
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Figure 7. Codebook size vs. F1-Score.

using the h-maxima transform of the probability map of the merged cells generated by the pixel-
wise classifier as discussed in Section 2.1. The h-maxima suppress all the local maxima in the
probability map that has a height less than h level. A high h-value means the merged cells will
remain unchanged with one seed. Since the probability map value is in the range between 0 to
1, h is defined at 0.20 to keep the regions with high probability as seeds. The background seeds
defined at the regions that have the lowest probability (i.e. equal to zero). The object and background
seeds information are combined and used as input for watershed segmentation. Figure 6 shows
some examples of merged cells detected during the validation phase and after applying the seeded
watershed algorithm.

3. EXPERIMENTAL RESULTS

3.1. Dataset and Evaluation

The proposed method is tested on three datasets of phase contrast images: U2OS human
osteosarcoma cells, human cervical cancer HeLa cells, and NIH 3T3 fibroblast live cells. These
datasets include many challenging problems, such as high density of cells, deformable cell shapes,
a variability of cell sizes, and missing boundaries.

The U2OS dataset contains 97 time-lapse images recorded at a resolution of 672× 512 pixels.
Only 10 images are assigned for training and the rest for testing. The cells are growing from 90+ to
400+ cells. The groundtruth carried out every 10th frame, in total 2431 cells are annotated to perform
the quantitative analysis. The HeLa dataset is provided with Arteta et al. method†. It contains 22
phase contrast images separated equally into training and testing. The total number of the annotated
cells for evaluation is 1073. The groundtruth manually defines the cell nuclei. The NIH 3T3 dataset‡

contains 238 images acquired every quarter hour for more than 62 hours using a 10X (0.3 NA)
objective on Zeiss Axiovert 200M microscope. The evaluation is carried out every 10 frames (i.e.

†http://www.robots.ox.ac.uk/˜vgg/software/cell_detection/
‡https://isg.nist.gov/deepzoomweb/data/dissemination
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23 images) with a total number of 790 annotated cells. The last 6 images in the sequence are used
for training. Figure 1 shows an example of the phase contrast images from the three datasets.

An automated segmented cell is a truly detected cell (TDC), if the cell center is very close to a
point in the groundtruth (i.e. radius distance ≤ p). If not, the cell is a false detected cell (FDC). The
remaining groundtruth centers without a matching is considered as a false negative cell (FNC). Here,
five evaluation metrics are used to measure cell detection performance: precision (%), recall (%),
F1-score (%), Euclidean distance De between detected cell centers and the matched ground truth,
and also, the absolute difference Dn of the ground truth and detected cell numbers per frame. For
each dataset, p is defined as the average radius of the single objects. Precision, recall and F1-score
are defined as:

Precision =
TDC

TDC + FDC
, (9)

Recall =
TDC

TDC + FNC
, (10)

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

. (11)

Table I. U2OS cell detection quantitative comparison. Using Precision (%), recall (%), F1-score (%), and
mean ± standard deviation of De and Dn.

Precision Recall F1-score µDe ± σDe µDn ± σDn

Yin et al. Method [13] 83.26 87.58 85.36 3.50± 2.68 13.6± 8.78
Arteta et al. “singletons”

Method [23] 94.63 84.12 89.07 3.74± 2.89 27± 9.54

FogBank Method [3] 81.99 92.51 86.93 4.48± 3.05 31.20± 16.23
Bensch et al. [12] (Asym. cost) 87.62 86.80 87.21 4.15± 3.14 5.30± 4.29
Bensch et al. [12] (Sym. cost) 93.65 83.18 88.10 4.14± 2.88 27.2± 11.89

Proposed Method 95.98 97.20 96.59 2.94± 2.07 4.3± 2.83

3.2. U2OS cells

Figure 7 shows the effect of different codebook size on the BoF classifier in terms of F1 measure
for the detected cells. The codebook size of 1500 gives the best result where F1-score is 96.59%.
The performance beyond 1500 codebook seems show no improvements.

The proposed method is compared to four different methods as shown in Table I: Yin et al. method
[13], Arteta et al. “singletons” method [23], FogBank method§ [3] and Bensch et al. [12] method¶.
In Yin et al. [13], an image restoration technique is introduced. The final cell region is obtained by
applying adaptive thresholding. In Arteta et al. [23], the authors used an SVM classifier to score the
candidate cell regions obtained by the MSER method. Then the optimal cell regions are selected by
using dynamic programming. We refer this method as “singletons”. FogBank method [3] applied a
similar principle of the watershed morphology by detecting some seed points and cluster each pixel
based on its distance to the seed points. This method involves a large number parameter. However,
the parameter settings are not provided in [3]. For fair comparison, we empirically test their method
with different parameters on the training set and use the ones achieved the best result for comparison.
In Bensch et al. [12], we tested two different configurations for the cost function: asymmetric and
symmetric cost functions. Asymmetric boundary cost means the cost of the transition between
two neighboring nodes in one direction is not the same as in the reverse direction. Asymmetric

§https://isg.nist.gov/deepzoomweb/resources/csmet/pages/fogbank_segmentation/
fogbank_segmentation.html
¶http://lmb.informatik.uni-freiburg.de/Publications/2015/BR15/
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cost endorses dark-bright intensity transitions. The parameters are adjusted using a grid search as
suggested by the authors.

As presented in Table I, the overall evaluation metrics show better performance of the proposed
method over the state of art. The precision and recall of the proposed method are 95.98%, 97.20%,
compared to 83.26%, 87.58% for Yin et al. method, 94.63%, 84.12% for Arteta et al. method,
81.99%, 92.51% for FogBank method, and 87.62%, 86.80% for Bensch et al. method using
asymmetric cost. We found that asymmetric boundary cost of Bensch et al. method is no better
than the symmetric cost. In fact, symmetric boundary cost provided better cell detection results.
Table I also shows the mean and standard deviation, De and Dn, for each method. The proposed
method has a smaller distance 2.94± 2.07 between detected cell centers and the groundtruth than
all other methods. In terms of the absolute difference between the number of the detected cells
and the groundtruth, the proposed method has much smaller difference of 4.3± 2.83, compared to
13.6± 8.78 for Yin et al. method, and 27± 9.54 for Arteta et al. method.

Figure 8 shows some typical results of the proposed method, Yin et al., and Arteta et al. methods.
The segmented cell is highlighted using green contour. The groundtruth points and the detected cell
center are shown in yellow and red, while the false detected cell in magenta and the false negative in
blue. In contrast to Yin et al. and Arteta et al. methods, the proposed method is effective in detecting
both normal migration cell and mitotic (bright) cell. Arteta et al. method tends to over-segment the
cell. The identification and segmentation of the cells provide the basis for tracking the cell growth
over time.

3.3. HeLa cells

The proposed method is compared to four cell detection methods: CellStat method [35], Arteta et
al. “singletons” method [23], Akram et al. method [22], and SemiPlanarCC [20]. The F1-score is
used to evaluate the cell detection as commonly used in the literature.

As shown in Table II, the proposed method achieves a good performance compared to the other
detection methods. CellStat applied adaptive thresholding to segment the image into clusters. A
circular hough transform is used to detect cell centers, then the cell contour is recovered by using a
dynamic programming method. However, it has a poor performance with F1-score of 35.0% since
determining cell centers from a large cluster is problematic. Also, the method cannot segment low
contrast cells. Arteta et al. method performed better with F1-score of 87.0%, however, it failed to
highlight the bright cells. Akram et al. used a convolutional neural network for cell detection and
non-maxima suppression to remove duplicate cell regions. The F1-score is 93.20%. SemiPlanarCC
[20] computes superpixels of the cell boundary probability map to construct a weighted region
adjacency graph that converts the segmentation problem into graph partitioning and solves it by a
correlation clustering method. It also adds a constraint on the valid cell size. However, it tends to
produce many false-positive cell regions. The proposed method achieves F1-score 96.29% compared
to SemiPlanarCC F1-score 95.0%.

Table II. The quantitative comparison of HeLa cell detection.

F1-score (%)
CellStat Method [35] 35.0

Arteta et al. “singletons” Method [23] 87.0
Akram et al. Method[22] 93.20

SemiPlanarCC [20] 95.0
Proposed Method 96.29

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2010)
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3.4. NIH 3T3 cells

We also test the proposed method on a publicity available dataset, NIH 3T3 fibroblast cells. The
images have less populated cells but have strong halo effect. The proposed method was compared
to two different methods: FogBank method [3], and Bensch et al. [12] method, as shown in table
III. The proposed method performed better in F1-score and recall: 90.92% and 94.43% respectively,
while Bensch et al. [12] with asymmetric cost gave better precision at 94.21%. Figure 10 shows
a comparison between the proposed method, FogBank method [3], and Bensch et al. [12] method
with symmetric boundary cost. FogBank method tends to over segment the cells especially when
cells are touching each other. Bensch et al. [12] method suffered from higher false negative cells
since it can not separate the touching cells. Overall, the proposed method performed better despite
the strong halo effect.

Table III. NIH 3T3 cell detection quantitative comparison.

Precision Recall F1-score µDe ± σDe µDn ± σDn

FogBank Method [3] 81.96 87.67 84.72 4.14± 4.87 2.83± 2.20
Bensch et al. [12] (Asym. cost) 94.21 79.08 85.99 4.12± 4.23 5.45± 5.46
Bensch et al. [12] (Sym. cost) 89.62 86.05 87.80 3.63± 3.81 2.91± 3.43

Proposed Method 87.66 94.43 90.92 3.62± 3.31 2.65± 2.18

4. CONCLUSION

We presented an automated segmentation method that combines two machine learning methods
based on RF and BoF classifiers in order to detect cells in microscopy phase contrast images. We
adopted RF classifier to create a probability map of cell locations. K-means algorithm and region-
growing are proposed to form candidate cell regions. The BoF based on spatial pyramid coding
features is used to validate the cell region and detect the merged cell which can be split later by
using a seeded watershed algorithm. The proposed method showed better results compared to the
state-of-the-art cell detection methods.
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