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ABSTRACT

Face detection in the wild is a challenging vision problem due
to large variations and unpredictable ambiguities commonly
existed in real world images. Whilst using hand-crafted
features is generally problematic, introducing powerful but
complex models is often computationally inefficient. Feature
aggregation and multi-resolution are two efficient strategies
for traditional visual recognition methods. In this paper, we
show that such strategies can be integrated into Convolutional
Neural Network (CNN) architecture via average pooling and
channel-wise feature concatenation. Shallow networks with
feature aggregation at multi-resolution enables the traditional
cascade framework to tackle the challenging detection prob-
lems efficiently. The proposed method is tested on a public
benchmark with across dataset evaluation. Both quantitative
and qualitative results show promising performance improve-
ments on detecting faces in unconstrained environment.

Index Terms— Face detection, CNN, cascade, feature
aggregation, and multi-resolution.

1. INTRODUCTION

“Face in the wild” is a challenging detection problem, where
class distribution between face and background is extremely
unbalanced and heavily biased towards the background.
Faces are captured with large pose and facial expression
variations, severe occlusions and clutter, and varied light-
ing conditions. The traditional Viola-Jones (VJ) [1] frame-
work which uses a multi-stage cascade detector, performs
poorly due to the limitations of discriminative power of its
feature and classifier. Current advances in Deep Neural
Network (DNN) based methods have been shown superior
over many other methods, such as Deep Dense Face Detec-
tor (DDFD) [2], CNN Deformable Part Model (DPM) [3],
Regions with Convolutional Neural Networks Features (R-
CNNs) [4], and Graph CNN [5]. Furthermore, Fully Convo-
lutional Neural Network (FCN) [6] was firstly introduced for
semantic segmentation, and then adapted to solve object de-
tection problems [7, 8, 9]. Although deeper models generally
outperforms shallow ones, training complex models is not a
trivial task, especially for binary detection problems where

the distribution of target object and background is extremely
unbalanced. In order to efficiently train a deep detection net,
a typical strategy is to adapt a pre-trained image recognition
model via fine tuning. However, normally large patch size of
image input is used for recognition nets. Without sufficient
visual content, it is significantly difficult for deep models
to capture small objects. Multi-scale cascade detection has
proved to be an efficient scheme to construct face detector
with different resolutions in an ensemble fashion [10, 11, 12].
The most relevant work to ours is [13], where 3 face-nonface
classification CNNs are used for separating face regions from
background and 3 calibration CNNs are used to refine the
location of detected bounding box. However, cascade based
method make a compromise between the number of stages,
accuracy and efficiency. In addition, refining the detected
windows between stages introduces re-sampling the patches
from the original image, which is non-trivial during the test-
ing phase. In our method, such refinement procedure only
applies at the last stage, hence no patch re-fetching is re-
quired.

Feature aggregation and multi-resolution strategies were
proved to be the efficient schemes for visual recognition tasks
with hand-crafted features [14, 15]. In this paper, we show
that introducing such strategies into CNN architecture design
also helps improving the accuracy of challenging face detec-
tion problems. The proposed Multi-Resolution Feature Ag-
gregation (MRFA) embeds a fast elimination stage, and two
verification stages into a cascade framework. A large amount
of easy background patches generated by sliding window are
eliminated at the very early stage using a shallow but fast net
at a coarse scale. To precisely locate the face region, veri-
fication nets are designed with feature aggregation at multi-
resolution via average pooling and channel-wise feature con-
catenation. The face-nonface binary decision is first made by
the detection classifier, and then for all positive predictions, a
regression procedure is applied to refine the locations, aspect
ratios of major and minor axes, and angles of output bound-
ing boxes. Our work leverages recent advances in CNNs for
efficient face detection, where deep structure and large scale
model adapting that require excessive resources, such as train-
ing data and time on both pre-trained and adapted models, are
avoided. Our proposed solution is not overwhelmed by the



model complexity.

2. METHOD

Fig. 1 shows the basic flowchart of the proposed MRFA face
detector. It consists of two main phases: fast elimination,
and precise verification. Window patches are firstly gener-
ated by densely scanning the input image at multiple scales
using sliding windows. The majority of window patches are
quickly eliminated as background by an ElmNet using a patch
resolution of 12×12. Then, all retained candidates from Elm-
Net are verified by two VefNets using a patch resolution of
48×48. At the end of cascade, the detection branch outputs
the binary classification of face-nonface decision with con-
fidence scores, meanwhile the regression branch refines the
bounding box location by determining the optimal face center,
angle, and aspect ratio. The final detections are obtained via
removing redundant detections with a 2-step Non-Maximal
Suppression (NMS).

Fig. 1. The pipeline of the proposed MRFA detector.

2.1. Sliding Window Elimination Net

A large amount of patch candidates are generated by the slid-
ing window method. The ElmNet is designed to quickly elim-
inate negative patches to reduce the computational cost for the
following phases. Fig. 2 provides the details of the architec-
ture for ElmNet, where only one convolutional layer and one
fully connected layer are used. Adopting such simple CNN
structure is motivated by the following two reasons. Firstly,
ElmNet has a small input size of 12×12, a small kernel size
of 3×3, and a small number of filters of 16. Compared to
other nets, ElmNet has significantly smaller number of pa-
rameters, which enables a lower memory consumption and a
much lower computational cost. Secondly, at this fast elim-
ination stage, low frequency image features extracted from
coarse spatial resolution is more effective in rejecting easy
negative hypotheses. Since there is no hierarchical feature
extraction within ElmNet, the discriminative power is limited.
In order to retain most positive windows for the following
stage, a high recall rate can be achieved by shifting the deci-
sion boundary of Softmax layer towards zero. For example,
using a minimal face size of 48×48, 91.12% recall can be
achieved on FDDB dataset by shifting the decision boundary
to 0.01.

Fig. 2. Network architecture of ElmNet.

2.2. Multi-Task Verification Net

A multi-task VefNet is designed to precisely locate face re-
gions by verifying retained face candidates at a higher image
resolution of 48×48. Fig. 3 provides the details of the archi-
tecture, where VefNet is divided into 4 main blocks.

Block 1 consists of 3 average pooling branches which use
three filters (1 × 1, 3 × 3, and 5 × 5) with no spatial down-
sampling. Three pooling branches joint together via concate-
nating the outputs across channels. In contrast to traditional
multi-scale methods that construct Gaussian pyramid as net-
work input, such structure embeds a simple average blurring
scheme into network itself, which greatly helps the later com-
putational blocks to identify scale-invariant features.

Block 2 extracts the first level of visual features via se-
quentially passing the multi-resolution images through a
convolutional layer, a batch normalization layer, an ReLU
non-linear transform layer, and a max pooling layer. In or-
der to gain high speed efficiency, we aggressively reduce
the spatial resolution by setting the strides of convolutional
layer and max pooling layer both to 2. Batch normaliza-
tion layer is inserted between convolutional layers and ReLU
layers (same for other blocks) to enforce regularization to
internal co-variate shift caused by weight updates during
back-propagation. Inspired by GoogLeNet [16], a simpli-
fied inception module which contains three feature extraction
branches, is used to generalize discriminative power further.

Each branch in Block 3 starts with a dimensionality reduc-
tion module with a 1× 1 convolutional layers which removes
redundant feature channels, and improves computational ef-
ficiency. Blocks 3.b and 3.c consist of two 3 × 3, and one
5 × 5 feature extraction modules, respectively. It is worth
noting that although a 5 × 5 filters has the same reception
field as two consecutive 3 × 3 filters, the latter could gener-
alize even deeper structures. The outputs of three branches
in Block 3 are concatenated across channels, followed by an
average pooling layer to reduce the spatial resolution. Yang
et al. [14] showed that aggregating hand-crafted features im-
proves the detection accuracy. In our method, Block 3 embeds
such multi-level feature interfusion into a learnable frame-
work.

Block 4 contains two fully connected objective branches,
detection branch and bounding box regression branch (top
row and bottom row of Block 4 in Fig. 3 respectively). Pre-
vious blocks are trained with detection branch using Softmax
loss, whereas regression branch is trained using smooth `1



loss. Binary classification is carried out by the detection
branch without shifting the decision boundary at the last
stage.

As the face candidates are generated by sliding window,
the optimal locations of faces may not be in the hypothesis
set. The detection performance can be further boosted by re-
fining the locations of output bounding boxes. The regression
target is a quintuple defined by two coordinates of face center
offset to top left corner, lengths of major and minor axes with
respect to the size of bounding box, and the angle of major
axis with vertical axis. A positive value of face angle indi-
cates an anti-clock rotation with respect to vertical axis. The
bounding box calibration procedure only applies to the posi-
tive response given by detection branch. Then a 2-step NMS
is followed to remove redundancies. For the detections at the
same scale, we iteratively select the detection with highest
confidence score and remove the detections that has the Inter-
section over Union (IoU) ratio larger than 0.50 with selected
window. For the detections at different scales, the redundan-
cies can be found by measuring the Intersection over Mini-
mum (IoM) ratio, where the threshold is set to 0.75. The first
step removes the redundant detections that are spatially offset
to the correct location, and the second step enables removing
redundancies in scale.

Fig. 3. Network architecture of VefNet.

3. EXPERIMENT AND DISCUSSION

The Annotated Facial Landmarks in the Wild (AFLW) [17]
dataset was used to train the face detector. The dataset con-
tains 22,712 labeled faces out of 21,123 images. The positive
face windows were further augmented by horizontal flipping.
In total, 45,424 faces were used in the training procedure.
The negative images contain no face. To bootstrap non-face
images, labeled face windows were replaced with non-face
patches which were randomly sampled from The PASCAL
Visual Object Classes (PASCAL VOC) dataset [18] (the per-
son subset was excluded). In total, 18,089 negative images
were generated using this bootstrapping approach. To train
ElmNet, non-face samples were cropped randomly from nega-
tive images, and then resized to 12×12. The negative-positive

Fig. 4. ROC curves of the proposed detector and recent meth-
ods on FDDB with the discrete score metric.)

ratio of ElmNet was set to 10 : 1. With cascading set-up, the
negative samples for training the detection branch of VefNet
were the residuals (false positives) generated by densely scan-
ning the negative image set using previous stages. The net-
works were trained using MatConvNet [19]. The number of
epochs was set to 50, the size of mini-batch was 128, and mo-
mentum of 0.9 were used. The learning rate gradually drops
from 1e−2 to 1e−5. Regression branch of VefNet was trained
independently, and it converges in 2 epochs.

The proposed face detector was quantitatively evaluated
on the FDDB [20] dataset that contains 5,171 annotated faces
in 2,845 images. The quantitative results were generated fol-
lowing the standard evaluation procedure with the software
provided by the authors. For discrete score evaluation, de-
tections with over 0.50 IoU with annotations are counted as
true positive. Since the ground truth faces are labeled us-
ing ellipses, for fair comparison, we also fitted ellipses to
our bounding boxes given the outputs of regression branch of
VefNet. NMS was used to retain the ones with highest confi-
dence scores while removing the redundancies. We compared
proposed method with state-of-the-art representative methods
which are evaluated on the same dataset. Table 1 shows the
comparison of discrete and continuous detection rates given
the number of false positives, and the discrete ROC curves
are shown in Fig. 4. DPM based methods, Faceness [3], is
leading the performance, mainly because the variations of fa-
cial parts are relatively small, thus detecting facial parts are
more robust than detecting face as a whole. However, DPM
methods require training part detectors, and searching opti-
mal configuration, which makes building the detector a la-
borious, time-consuming task, and are known to be much
slower than cascade based methods. CasCNN [13] refines
the bounding boxes between each stage, and then re-fetches
the image patches for the next stage. Such procedure does
improve both discrete and continuous scores, however it is



Fig. 5. Typical detection results on FDDB dataset (red: ground truth, blue: detection results of the proposed method).

non-trivial. Our method only applies simple location calibra-
tion at the last stage, and no re-fetching is required. Com-
pared to DDFD where a deeper structure is used, the proposed
MRFA achieved higher True Positive (TP) rate after 100 false
positives, and outperformed it by a significant margin (6.9%
higher) at 500 false positives. ACF-Multiscale [14] method
aggregates multiple features, such as color, gradient, local
histogram, into a rich representation, and then trains multiple
soft cascade with depth-2 decision tree for different views.
It shows that combining multiple models and features out-
performs a single model. The computational cost of aggre-
gating feature channels is considerably more expensive. Sig-
nificantly, Koestinger [21] showed that without rich features,
the performance of multi-view based method drops by a sig-
nificant margin. In addition, sophisticated post-processing is
required to combine the multiple detection outputs given by
detectors of different views. The proposed method embeds
feature aggregation and multi-resolution strategies into the
network architecture. The features are self-learned through
training, and it outperforms the traditional methods which
use the cascade framework and hand-crafted features, such
as NPDFace [22], ACF-Multiscale [14] and Koestinger [21].
For image retrieval based methods, such as Boosted Exem-
plar [23], they generally have higher recall rate compared to
those traditional methods, however, our method outperformed
[23] in all aspects.

Qualitative results on the FDDB dataset are shown in
Figs. 5, and 6. Red and blue ellipses represent ground truth
and true positives, whereas yellow and green ellipses repre-
sent false positives and false negatives respectively. Fig. 5
illustrates some examples of typical detection results with
large pose and facial expression variations, blurring, and se-
vere occlusion and clutter. The first row of Fig. 6 shows some
examples of false positives and false negatives. The false pos-
itives are usually observed at the region that contains partial

Table 1. Comparison of detection rates (%) with both discrete
and continuous metrics on FDDB.

Disc. Metric Cont. Metric
FP=100 FP=500 FP=100 FP=500

Proposed 82.77 87.89 65.13 68.85
Faceness [3] 87.64 89.38 69.70 71.38
CasCNN [13] 85.07 N.A. 66.29 N.A.
DDFD [2] 80.99 83.40 64.45 66.41
Li et al. [23] 80.82 83.89 56.87 59.20
NPDFace [22] 77.97 80.89 58.04 60.25
Yang et al. [14] 81.65 84.45 60.43 62.49
Koestinger [21] 57.03 69.70 40.55 49.49

face, and false negatives are mainly caused by severe blurring
and faces in small scale. The second row of Fig. 6 shows
some interesting detections in yellow, which are counted as
false positives since there are no annotations to match. How-
ever, they are in fact correct detections. Both quantitative and
qualitative results show promising performances on detecting
face in unconstrained environment.

Fig. 6. First row: examples of false positives and false nega-
tives. Second row: examples of correct detections but counted
as false positives. (red: ground truth, blue: true positive detec-
tion, yellow: false positive detection, green: false negatives).
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