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Abstract—Federated learning (FL) is a powerful Machine
Learning (ML) paradigm that enables distributed clients to
collaboratively learn a shared global model while keeping the
data on the original device, thereby preserving privacy. A central
challenge in FL is the effective aggregation of local model weights
from disparate and potentially unbalanced participating clients.
Existing methods often treat each client indiscriminately, apply-
ing a single proportion to the entire local model. However, it is
empirically advantageous for each weight to be assigned a specific
proportion. This paper introduces an innovative Element-Wise
Weights Aggregation Method for Federated Learning (EWWA-
FL) aimed at optimizing learning performance and accelerating
convergence speed. Unlike traditional FL approaches, EWWA-
FL aggregates local weights to the global model at the level of
individual elements, thereby allowing each participating client
to make element-wise contributions to the learning process. By
taking into account the unique dataset characteristics of each
client, EWWA-FL enhances the robustness of the global model
to different datasets while also achieving rapid convergence.
The method is flexible enough to employ various weighting
strategies. Through comprehensive experiments, we demonstrate
the advanced capabilities of EWWA-FL, showing significant
improvements in both accuracy and convergence speed across
a range of backbones and benchmarks.

Index Terms—Federated Learning, Weights Aggregation,
Adaptive Learning

I. INTRODUCTION

As the digital world continues to expand at an unprece-
dented rate, the world is inundated with a massive amount
of data, distributed across various devices, sensors, and plat-
forms. With the growing adoption of Machine Learning (ML)
algorithms, the demand for efficient, secure, and decentralized
learning processes has become increasingly critical. Federated
Learning (FL) [1]–[4] has emerged as a promising solution to
address these challenges. It enables the deployment of learning
algorithms on decentralized data sources while safeguarding
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Fig. 1. Illustration for our proposed EWWA-FL

data privacy. FL focuses on training ML models across a mul-
titude of dispersed devices or clients, each holding their own
local datasets, eliminating the need for data exchange. This
approach effectively addresses privacy and security concerns,
as it obviates the need to transfer potentially sensitive data to
a centralized location. However, a key challenge in FL lies in
the aggregation of model weights. The process of combining
model weights from multiple, disparate clients is inherently
complex due to the heterogeneous nature of their data distri-
butions [5]–[7]. In an FL network, each client utilizes its local
data to train an independent model. Consequently, these local
models may capture different data patterns, posing a challenge
to the creation of a well-generalized global model. Various
strategies, such as Federated Averaging (FedAvg), have been



developed to mitigate these issues. Nonetheless, devising an
efficient and robust aggregation mechanism remains a signifi-
cant challenge in the field of FL.

There has been a surge in recent research focused on adap-
tive weight aggregation. Reddi et al. [8] proposed a method
called FedOpt. They provide a theoretical analysis of the
model’s convergence on heterogeneous data for non-convex
optimization problems, as well as the relationship between
dataset heterogeneity and communication efficiency. Three
specific optimization methods, termed FedAdam, FedAdagrad,
and FedYogi, are employed by the authors. These methods
modify the global update rule of FedAvg from one-step
SGD to one-step adaptive gradient optimization. Conversely,
the work presented in [9] aims to address the challenge
of high communication cost in FL. The authors propose
a novel communication-efficient adaptive FL method called
FedCAMS and also provide a theoretical analysis to guarantee
model convergence. They first improve upon FedAdam by
incorporating AMSGrad [10] with max stabilization. Both
FedOpt and FedCAMS aggregate local updates and obtain
an averaged gradient, upon which global model aggregation
is conducted. In other words, both methods treat each client
equally when generating the global updates. However, the un-
derlying philosophy of adaptive optimization generally favors
treating each individual weight independently. While FedOpt
and FedCAMS both use adaptive techniques for global model
aggregation, their averaging processes do not account for
the varied contributions of local models trained on different
datasets. This is noteworthy because different datasets result
in different levels of convergence [11], [12].

In the work of Federated Boosting (FedBoosting) [11], the
authors proposed an adaptive gradient aggregation method
based on the boosting algorithm. They discovered that the
generalization ability of the global model on Non-Independent
and Identically Distributed (non-IID) data is unsatisfactory
due to the presence of weight divergence, particularly when
employing the FedAvg strategy. Consequently, each client
participating in the training receives a unique aggregation
percentage. Similarly, Wu et al. [12] found that in FL, the path
that minimizes the local objective does not necessarily align
with the path of global minimization. This implies that each
client’s contribution to global aggregation will differ. Based
on this observation, Wu et al. proposed Federated Adaptive
Weighting (FedAdp), a method that measures the contributions
of participating clients based on the correlation between local
and global gradients. All of the above studies have one thing
in common: they treat all model parameters equally when
aggregating the global model. Specifically, both FedOpt and
FedCAMS perform a simple averaging of local model weights
prior to subsequent computations. Although FedBoosting and
FedAdp assign different proportions to each local model, they
still allocate the same proportion to each parameter within
these models. This approach may not be the most intuitive or
efficient way to handle local models.

Key to the FL process is the merging of model weights
from different clients, which is inherently intricate and poses

several challenges. The main reason for this complexity is
the heterogeneity of the data distribution of the participating
entities, cause each client’s local dataset has different statistical
properties. For example, one client’s dataset may contain
one or more specific classes, while another client does not.
This heterogeneity can result in non-IID data, which poses a
significant challenge in aggregating local updates in a way that
is representative and conducive to global model performance
and generalization. To mitigate the effects of different data
distributions and to ensure robust model aggregation, many
sophisticated algorithms and techniques are proposed [1], [8],
[11], [12]. Building a balanced and harmonious model requires
not only rigorous mathematical or algorithmic knowledge, but
also a comprehensive understanding of the differences and
nuances inherent in the data landscape of different clients.
Based on the findings from Wu et al. [12], we would like to
expand the idea to a more grained level that the elements in
each local model have their personalized path to minimize the
local objective. It is conceivable that each client should have
a different weight, and likewise, each parameter within the
local model should also have a unique weight. In the context
of convex optimization for learning, the goal is to update the
model’s weights to achieve convergence. A model comprises
various parameters, the values of which fluctuate depending on
the feature space of the local dataset. Within the framework
of FL, individual local models, trained on distinct datasets,
display unique patterns and directions of convergence. As a
result, the same parameter across these local models may
have vastly different values and may not align closely with
each other. Additionally, each parameter may follow a unique
trend and orientation toward convergence. As a result, us-
ing a uniform proportion to aggregate all parameters into a
global model may not be the most suitable approach. Based
on this understanding, we introduce Element-Wise Weights
Aggregation Method for FL (EWWA-FL), which assigns a
different aggregation proportion to each parameter in the local
model. Experimental results show that our method outper-
forms FedAvg, FedCAMS, and FedOpt across various neural
networks, benchmark datasets, and experimental settings. The
contributions of this work are fourfold:

• We introduce a new perspective on element-wise weight
combination for FL. This approach assigns a specific
proportion to each parameter in the local model, aiming
to improve aggregation. Experimental results confirm the
novelty of our proposed EWWA-FL.

• A comprehensive evaluation is conducted. We test
the model’s generalization ability using various neural
networks on different benchmark datasets, employing
both Independent and Identically Distributed (IID) and
non-IID strategies.

• The adaptive element-wise aggregation paradigm demon-
strates faster convergence compared to other recent
works.

• We disclose the implementation details of the proposed
algorithm to ensure its reproducibility.



The paper is organized as follows: Section II reviews
previous studies related to adaptive weight aggregation in
FL. Preliminaries on vanilla FL and the Adam optimiza-
tion algorithm are then discussed. Our proposed approach is
elaborated upon in Section III. Section IV provides insights
into the experiments, offers in-depth discussions, and suggests
potential mitigation methods. Finally, concluding remarks are
presented in Section V.

II. RELATED WORK

A fundamental challenge in FL is the efficient aggregation
of model weights from diverse and potentially non-IID data
sources to produce a globally consistent model. Adaptive
weight aggregation addresses this challenge by assigning
different proportions to local model weights based on their
quality or relevance, as opposed to treating them equally. This
approach recognizes the inherent heterogeneity present in real-
world FL environments. It optimizes the performance of the
global model by leveraging the more informative weights from
local models and potentially mitigates the negative impact of
less reliable participants.

In the work [8], the authors provide a comprehensive
discussion on adaptive weight aggregation for FL and propose
a flexible framework called FedOpt. This framework is ca-
pable of incorporating multiple optimization algorithms. The
authors specialize FedOpt into FedAdam, FedAdagrad, and
FedYogi by employing three example optimization algorithms:
Adam [13], Adagrad [14], and YOGI [15]. This approach
closely parallels the FedAvg process, diverging only in the
final stage of weight aggregation. After obtaining the averaged
local gradients, denoted as ĝ, the first-order momentum matri-
ces m are computed for FedAdam, FedAdagrad, and FedYogi,
as detailed in (1). However, the computation of the second-
order variance matrices v varies depending on the algorithm.
Specifically, FedAdam employs (2), while FedAdagrad and
FedYogi utilize (3) and (4), respectively, to derive their second-
order matrices.

mr = β1mr−1 + (1− β1)ĝr (1)

vr = β2vr−1 + (1− β2)ĝ
2
r (2)

vr = vr−1 + ĝ2r (3)

vr = β2vr−1 + (1− β2) · ĝ2r · sign(vr−1 − ĝ2r) (4)

where, r is the training round, β1 and β2 are two momentum
parameters, sign() is the symbolic functions. In the end, all
those three methods employ Eq.5 for weights aggregation.

ωr = ωr−1 + ηt
mr√
vr + ϵ

(5)

where, ηt is the adaptive learning rate, calculated by:

ηt = η0

√
1− βr

2

1− βr
1

(6)

where η0 denotes the initial learning rate, while βr
1 and

βr
2 represent the r-th powers of the parameters β1 and β2,

respectively. The authors provide a theoretical analysis to
demonstrate the superiority of the proposed FedOpt in com-
parison to other methods. The primary distinction between
FedOpt and our proposed method, EWWA-FL, lies in the
location of the optimization algorithm. Specifically, FedOpt
employs the optimization algorithm after averaging the local
models, whereas EWWA-FL performs the optimization after
each local training. As a result, FedOpt treats each client
equally and assigns the same aggregation proportion to each
local model through averaging. In contrast, our method treats
each parameter in every local model differently. Building
upon FedOpt, Wang et al. [9] introduced FedCAMS with the
objective of reducing communication costs. The optimization
algorithm in FedCAMS occupies the same position as in
FedOpt, thereby ensuring that all local weights are aggregated
equally.

Unlike FedOpt and FedCAMS, FedBoosting [11] and
FedAdp [12] assign different proportions to each local model
to perform adaptive weight aggregation. FedBoosting com-
putes the aggregation proportion based on the results of local
training T i

r and cross-validation V i,j
r . The authors first sum all

the validation results for a local model across all other local
model validation datasets. Then, they calculate the weight of
this sum of validation results. Finally, a Softmax function is
applied to derive the final proportion for each local model.
Equations.7, 8, and 9 provide the local weight aggregation
proportion pir for the i-th local model in training round r:

p(i)r = softmax(softmax(T (i)
r ) ·

N∑
j ̸=i

V (i,j)
r ) (7)

softmax(T (i)
r ) =

exp(T
(i)
r )∑N

j=1 exp(T
(j)
r )

(8)

V (i,j)
r =


V

(1,1)
r V

(1,2)
r · · · V

(1,j)
r

V
(2,1)
r V

(2,2)
r · · · V

(2,j)
r

...
...

. . .
...

V
(i,1)
r V

(i,2)
r · · · V

(i,j)
r

 (9)

On the other hand, FedAdp focuses on the angle of conver-
gence between the updated local weight and the global weight.
In particular, they quantify the contribution of each client in
each round of global observations according to the angle θi:

θ(i) = arccos(
< G, g(i) >

||G|| · ||g(i)||
) (10)

where G is the global gradient, < · > is the inner product
operation and || · || denotes the L2 normalization. To suppress
instability caused by instantaneous angular randomness, the
angle θir is then averaged over previous training rounds r:

θ̂(i)r =

{
θ
(i)
r if r = 1

r−1
r θ̂

(i)
r−1 +

1
r θ

(i)
r if r > 1

The authors then designed a non-linear mapping function
that quantifies each client’s contribution based on angular



information. Inspired by the Sigmoid function, they use a
variant of Gompertz function [16]:

F(θ̂) = α(1− 1

exp(exp(α(1− θ̂)))
) (11)

where α is a hyper-parameter. The final proportions for each
local model are calculated by giving each client’s contribution
value into the Softmax function.

In comparison to FedOpt and FedCAMS, although
FedBoosting and FedAdp provide different aggregation pro-
portions for local clients, their aggregation proportions are still
at the model level. In contrast, our proposed EWWA-FL makes
progress in this regard by providing a more fine-grained,
element-wise aggregation level. This feature enhances the
adaptability and convergence of the global model, especially
considering that the local models come from different datasets.

III. METHODOLOGY

In this section, we first present a preliminary discussion
on FedAvg, as it is the most commonly used method in
FL applications. Subsequently, we briefly explain the Adam
optimization algorithm, highlighting that Adam provides an
adaptive learning rate for each parameter, in contrast to the
Stochastic Gradient Descent (SGD) algorithm. Finally, we
introduce the EWWA-FL algorithm, which enables element-
wise global weight aggregation in FL.

A. FedAvg

It is the most basic method behind all the recent proposed
FL methods. Assuming we have many clients C and their local
datasets D. The task is formulated as F with weights ω. So
the local gradient g is:

gi =
1

||di||
∇ω

∑
j

L(F(x(j);ω), y(j));∀i ∈ ||C|| (12)

Where || · || denotes the L2 normalization of a vector, x and y
are the samples and their relevant labels in the i-th local dataset
di. The server gathers all the local gradients and conduct the
averaging process to generate the next round of global model
ωr. We assume that ||di|| = ||dk||;∀di, dk ∈ D.

ωr = ωr−1 −
1

C

C∑
i=1

gi (13)

The FedAvg algorithm [17] aims to create a unified model
by averaging gradients from various local clients. While this
method is effective for centralizing distributed learning, it is
not without shortcomings. Specifically, inherent differences in
data distributions among clients lead to diverse convergence
directions for local model weights. This diversity arises from
the incoherent feature spaces of the data, posing challenges
for FedAvg. When local datasets differ significantly in their
data distributions, this can induce a considerable bias in
local model weights. Consequently, the simplistic averaging
mechanism employed by FedAvg may not yield optimal re-
sults, particularly in the presence of significant data biases
or extreme outliers. Recognizing these limitations, we have

started exploring more nuanced aggregation strategies, such
as weighted averages or other adaptive mechanisms. These
approaches gauge the contribution of each local model based
on factors like data distribution or its relevance to the overall
learning objective [18]–[20]. Employing these refined tech-
niques produces a global model that is both resilient and
accurate, skillfully navigating the complexities of differing
data distributions and overcoming some limitations inherent
to traditional FedAvg methods.

B. Element-Wise Aggregation for FL

Prior to detail our proposed method, we would like to
briefly introduce the Adam algorithm [13] firstly. It is a SGD
optimization method based on the momentum idea. Before
each iteration, the first-order and second-order moments of the
gradient are computed and the sliding average is computed to
update the current parameters. This idea combines the ability
of the Adagrad [14] algorithm to handle sparse data with the
properties of the RMSProp [21] algorithm to deal with non-
smooth data. Finally, it achieves very good test performance
on both traditional convex optimization problems and deep
learning optimization problems. More details of Adam is
shown in Algorithm 1.

Algorithm 1 Adam
Require: initial learning rate α
Require: exponential decay rates β1, β2 ∈ [0, 1]
Require: maximum iteration number I

1: initial weights ω0

2: initial 1st-order moment vector m0 ← 0
3: initial 2nd-order moment vector v0 ← 0
4: for each iteration i = 1, 2, 3, ..., I do
5: gi ← ∇ωL(F(ωi−1)) ▶ get gradients at iteration i
6: mi ← β1 ·mi−1 + (1− β1) · gt ▶ update biased

1st-order moment estimate
7: vi ← β2 ·mi−1 + (1− β2) · (gt ⊙ gt) ▶ update biased

2nd-order moment estimate
8: m̂i ← mi

1−βi
1

▶ compute biased-corrected 1st-order
moment estimate

9: v̂i ← vi
1−βi

2
▶ compute biased-corrected 2nd-order

moment estimate
10: ωi ← ωi−1 − α√

v̂i+ϵ
· m̂i ▶ update weights

11: end for
12: return ωI

All of the above works [8], [9], [11], [12], [17] either
average the local models or assign dynamic proportions to
the entire local model for global model aggregation. The
learning process for deep learning model can be viewed as a
convex optimization problem where the weights in the model
are trained to reach a minimum point. The basic components
of the model are a number of parameters whose values can
vary greatly with the different feature spaces of different
local datasets. In the FL scenario, local models trained on
different local datasets obtain different degrees and directions
of convergence. In these local models, the values of the same
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Fig. 2. Diagram of EWWA-FL. The left part is the client that performs the local training. The right side is the server calculating the local contributions and
aggregating a new global model based on the local contributions and gradients. All calculations on the server end are done on an element-by-element basis.

parameters may be completely different or even not close to
each other, leading to convergence heterogeneity in the local
models. Therefore, giving one proportion for all the parameters
in the local model is not the best way to aggregate the global
model. From another perspective, in contrast to SGD, the
adaptive learning methods calculate the learning rate from the
point of view of the elements. That is to say, in common
model training scenarios, Adam provides an element-wise
adaptive learning rate. We would like to follow Adam’s idea
and introduce element-level adaptive aggregation to FL. As
shown in Figure 2, the left part is the client that performs the
local training. The right side is the server, which calculates the
local contributions and aggregates a new global model based
on the local contributions and gradients. All computations on
the server end are performed on an element-by-element basis.
Specifically, Algorithm 2 is the pseudo-code of our proposed
EWWA-FL. In the first round of global training, the global
weights ω0, first-order moment vectors m0 and second-order
moment vectors v0 are initialized. Then, the server end assigns
weights to each local model for local training. Once the local
training is complete, The server collects the gradients of all
local models to update the biased first-order moments and
second-order moments mr and vr and compute the unbiased
estimates m̂r and v̂r. Then obtain the contribution br of the
local model to the new global model. Finally, the aggregation
proportion for each local model is computed using Softmax.
All the computations related to the first-order moment, second-
order moment, local contribution and final aggregation propor-
tion are element-wise, which means each parameter in each
local model will receive a specific aggregation proportion in
each round, rather than one proportion for all parameters in
the local model.

IV. EXPERIMENTS

In this section, we first describe the settings of all experi-
ments. Then, we introduce the backbone neural networks and
the datasets for benchmark evaluation. After that, we present

Algorithm 2 EWWA-FL
Require: initial local learning rate α
Require: exponential decay rates β1, β2 ∈ [0, 1]
Require: global training round R

1: initial weights ω0

2: initial 1st-order moment vector m0 ← 0
3: initial 2nd-order moment vector v0 ← 0
4: for each round r = 1, 2, ..., R do
5: for each client c ∈ C do
6: g

(c)
r ← ∇ωL(F(ωr−1))

7: m
(c)
r ← β1 ·mr−1 + (1− β1) · g(c)r

8: v
(c)
r ← β2 ·mr−1 + (1− β2) · (g(c)r ⊙ g

(c)
r )

9: m̂
(c)
r ← m(c)

r

1−βr
1

10: m̂
(c)
r ← v(c)

r

1−βr
2

11: b
(c)
r ← α√

ˆ
v
(c)
r +ϵ

· m̂(c)
r

12: end for
13: p

(c)
r ← exp(b(c)r )∑C

i=c exp(b
(i)
r )

;∀c ∈ C

14: Gr ←
∑C

i=c p
(i)
r · g(i)r

15: end for

multiple sets of experiments to access the performance of our
proposed EWWA-FL against other state-of-the-art methods.

A. Settings, Backbones and Datasets

We utilized the PyTorch framework [22] to implement all
neural network models. For anyone interested in replicating
our results, the source code is open to the public and can
be accessed here1. For our proposed EWWA-FL method,
the global aggregation learning rate for Adam, Adagrad, and
Yogi was set at 1.0 based on the FedOpt reference [8]. We
chose the two momentum parameters of 0.9 and 0.999. Local
training was conducted using the SGD optimization algorithm,

1https://github.com/Rand2AI/EWWA-FL

https://github.com/Rand2AI/EWWA-FL


TABLE I
TOP-1 CLASSIFICATION ACCURACY (%) ACROSS DIFFERENT METHODS, BACKBONE NEURAL NETWORKS AND BENCHMARK DATASETS WITH IID

DISTRIBUTION ON LOCAL CLIENTS. “C-10”, “C-100” AND “IC-12” STAND FOR CIFAR-10, CIFAR-100 AND ILSVRC2012, RESPECTIVELY. FEDAMS
IS DERIVED FROM FEDCAMS AND HAS NO EFFICIENT COMMUNICATION SETTINGS. THE RED ONES ARE THE HIGHEST ACCURACY AND THE BLUE ONES

ARE THE NEXT HIGHEST. CROSSED SYMBOLS INDICATE EXPERIMENTAL FAILURE, i.e. NO GLOBAL MODEL CONVERGED IN FIVE TRIALS.

Model LeNet
(32*32)

ResNet-20
(32*32)

ResNet-32
(32*32)

ResNet-18
(224*224)

ResNet-34
(224*224)

Dataset MNIST C-10 C-100 C-10 C-100 C-10 C-100 IC-12 C-10 C-100 IC-12
FedAvg 98.14 91.20 58.58 91.37 61.91 89.50 68.59 65.50 89.27 68.30 67.91

FedAMS 98.77 86.57 54.58 87.21 54.23 91.59 66.07 × 91.91 65.41 ×
FedCAMS × 76.77 41.65 84.7 41.77 91.35 66.62 × 91.44 66.41 ×

FedOpt
Adam × 73.59 22.31 74.84 × 78.07 × × 81.71 × ×

Adagrad × 64.63 × 67.36 × × × × × × ×
YOGI × 65.93 × 71.90 × 73.88 × × 71.8 × ×

EWWA-FL
Adam 98.00 89.73 64.14 90.17 65.63 90.77 70.98 65.64 91.23 70.15 68.23

Adagrad 97.99 89.74 64.16 90.17 65.84 91.17 70.34 65.64 91.13 69.77 68.33
YOGI 98.00 89.43 64.10 90.10 65.38 90.88 70.78 65.54 91.13 70.34 68.27

TABLE II
PERCENTAGE (%) OF TOP-1 CLASSIFICATION ACCURACY ACROSS METHODS, BACKBONE NEURAL NETWORKS, AND BENCHMARK DATASETS IN NON-IID

CONDITIONS ON LOCAL CLIENTS. THE VALUES HIGHLIGHTED IN RED DEMONSTRATE THE HIGHEST PERFORMANCE. THE GLOBAL AGGREGATION
OPTIMIZATION ALGORITHM FOR FEDOPT AND EWWA-FL IS ADAM.

Model LeNet
(32*32)

ResNet-20
(32*32)

ResNet-32
(32*32)

ResNet-18
(224*224)

ResNet-34
(224*224)

Dataset MNIST C-10 C-100 C-10 C-100 C-10 C-100 IC-12 C-10 C-100 IC-12
FedAvg 96.30 72.57 55.49 75.76 57.11 82.55 66.26 50.68 82.64 65.02 46.13

FedAMS 96.78 54.78 37.33 54.46 39.71 55.71 33.71 29.26 44.13 32.12 24.09
FedCAMS × 47.76 × 46.47 26.87 40.03 25.57 × 41.27 24.27 ×

FedOpt × 61.16 × 46.75 × × × × × × ×
EWWA-FL 96.88 76.04 56.07 78.50 57.56 83.86 66.74 51.67 84.36 65.97 52.50

accompanied by a consistent learning rate of 0.01 and a
momentum of 0.9. The local batch size was set at 64. The
ILSVRC2012 dataset was given a training round number of
100, while the other datasets were subjected to 500 rounds.
The code we used to reproduce the FedOpt and FedCAMS
results was taken from FedOpt’s official GitHub repository2.

The neural networks of choice include LeNet [23], ResNet-
18, ResNet-20, ResNet-32, and ResNet-34 [24]. LeNet is com-
prised of three convolutional layers with each succeeded by
a Sigmoid activation function. The output layer is a fully-
connected layer. Its input dimension stands at 32 ∗ 32 ∗ 3.
On the other hand, ResNet-18 and ResNet-34 are derivatives
from PyTorch’s official offerings, having an input dimension of
224∗224∗3. As for ResNet-20 and ResNet-323, the developers
are tailored specifically for the CIFAR-10 and CIFAR-100
datasets [25]. The input size for them is 32 ∗ 32 ∗ 3.

Specifically, we employed the MNIST dataset [26] for
LeNet. The CIFAR-10 and CIFAR-100 datasets underwent
experimentation using ResNet-18, ResNet-20, ResNet-32, and
ResNet-34. It is worth noting that for ResNet-18 and ResNet-
34, the sample dimensions were upsampling to 224 ∗ 224 ∗ 3.
The ILSVRC2012 dataset [27] was exclusively tested using
ResNet-18 and ResNet-34. The datasets were partitioned in a
9 : 1 ratio for training and testing. Subsequently, the training
data is distributed to three local clients, following either an

2https://github.com/yujiaw98/FedCAMS
3https://github.com/akamaster/pytorch resnet cifar10

IID or non-IID distribution. The test samples are retained on
the server end to assess the performance of the current round
of the global model.

B. Accuracy on IID data

Table I presents a comprehensive comparison of top-1
classification accuracies for various FL methods, employing
different backbone neural networks, and tested on multiple
benchmark datasets where clients are assumed to have an IID
distribution. The table employs color-coding to highlight sig-
nificant results; values highlighted in red indicate the highest
performance for each dataset, while those in blue signify the
second highest performance.
Performance on Large-Class Datasets: One of the most
noteworthy observations is that our proposed EWWA-FL
algorithm exhibits exceptional performance on datasets that
have a large number of classes. Specifically, it outshines the
competition on the CIFAR-100 and ILSVRC2012 datasets,
both of which have a large number of classes, 100 and
1000 respectively. For instance, when employing the ResNet-
20 architecture on the CIFAR-100 dataset, our EWWA-FL
model, when optimized using the Adagrad optimizer, achieved
an outstanding accuracy of 64.16%. This is considerably
better than the next best performing method, FedAvg, which
achieved an accuracy of 58.58%. The improvement margin
in this case is 9.53%, a significant leap in performance.
Similarly, when using ResNet-32 as the backbone architecture
on CIFAR-100, EWWA-FL notched an accuracy of 65.84%,

https://github.com/yujiaw98/FedCAMS
https://github.com/akamaster/pytorch_resnet_cifar10


(a) ResNet-18, CIFAR-10, IID (b) ResNet-18, CIFAR-10, non-IID

(c) ResNet-18, CIFAR-100, IID (d) ResNet-18, CIFAR-100, non-IID

(e) ResNet-32, CIFAR-10, IID (f) ResNet-32, CIFAR-10, non-IID

Fig. 3. Visualization of the average training loss across all local clients is shown. The horizontal axis represents the number of global aggregation rounds,
while the vertical axis indicates the average loss for the current round. The blue line represents our proposed EWWA-FL, the orange line is from FedCAMS,
and the green line represents FedOpt.



surpassing FedAvg’s 61.91% by a margin of 6.35%. Though
the performance gain is not as high as observed on CIFAR-
100, EWWA-FL continues to outperform other methods on
ILSVRC2012 dataset as well. For the ResNet-18 architecture,
it reached an accuracy of 65.64%, and for ResNet-34, it
achieved 68.33%. Both of these figures are the highest among
the tested methods for their respective architectures on this
dataset.

Competitive Results on Smaller-Class Datasets: Although
EWWA-FL does not achieve the highest accuracy on datasets
like MNIST and CIFAR-10, it is important to note that
the algorithm is highly competitive. For the MNIST dataset,
when using the LeNet architecture, the highest accuracy was
achieved by FedAMS with 98.77%. However, EWWA-FL
was closely behind with an accuracy of 98.00%, making
the difference a mere 0.79%. On the CIFAR-10 dataset, the
performance gaps are also quite narrow. For instance, the
differences in accuracy rates when comparing EWWA-FL to
the best-performing methods are 1.63%, 1.33%, 0.46%, and
0.75% for architectures ResNet-20, ResNet-32, ResNet-18, and
ResNet-34, respectively.

In conclusion, our proposed EWWA-FL method exhibits con-
vincing performance, especially in challenging scenarios in-
volving large classes of datasets. Although it is not necessarily
the absolute best in all cases, it maintains a competitive edge
in various benchmarks.

Compared with FedOpt, that is also capable of employ-
ing various global aggregation optimization algorithms, our
proposed EWWA-FL significantly outperforms in terms of
stability and convergence. In our experiments, the average
standard variance for EWWA-FL was remarkably low, at
only 0.1094%. Additionally, the minimum and maximum
variances were confined to a tight range, specifically be-
tween 0.0047% and 0.2673%, respectively. This suggests that
EWWA-FL offers a highly consistent and reliable performance
across different scenarios. In contrast, FedOpt showed a much
higher variability. The average standard variance for FedOpt
was 3.5200%, more than thirty times higher than that of
EWWA-FL. Furthermore, the minimum and maximum vari-
ances for FedOpt were 2.0950% and 4.9550%, respectively,
indicating a less stable performance. It is worth noting that
FedOpt encountered significant issues during our testing phase.
Despite conducting at least five separate attempts, none of
the FedOpt trials converged as expected. This suggests that
FedOpt may have fundamental limitations when it comes
to achieving reliable convergence. We trialed code from the
official FedCAMS GitHub repository as well as our own
deployed code. Similarly, FedAMS and FedCAMS demon-
strated a lack of robustness in our experiments. Specifically,
FedAMS failed to converge on the ILSVRC2012 dataset,
while FedCAMS failed on both the MNIST and ILSVRC2012
datasets. These failures further underscore the superiority of
EWWA-FL in achieving stable and consistent results across
various benchmark datasets.

C. Accuracy on non-IID data

The circumstance on non-IID data exhibits distinct chal-
lenges compared to those on IID data. As the results presented
in Table II, our proposed EWWA-FL model consistently out-
performed other methods across various benchmarks, includ-
ing MNIST and CIFAR-10 datasets. For these experiments,
We employed Adam as the global optimization algorithm for
both FedOpt and EWWA-FL for a fair comparison. Focusing
on the MNIST dataset, EWWA-FL achieved an accuracy of
96.88%. This figure is marginally but importantly higher by
0.1033% when compared to the 96.78% reported for FedAMS.
The small but consistent improvement serves to highlight the
efficacy of EWWA-FL in dealing with non-IID data. On the
CIFAR-10 dataset, when using ResNet-20, EWWA-FL signif-
icantly outshone its closest competitor, FedAvg, by achiev-
ing an accuracy of 76.04%. This was a notable 4.7816%
improvement over FedAvg’s 72.57%. The performance gains
extended to more challenging datasets as well. For example,
on the ILSVRC2012 dataset, EWWA-FL reached an accuracy
of 52.50%, which was 13.8088% higher than the 46.13%
managed by FedAvg. This suggests that EWWA-FL is not
only effective for simpler datasets but also scales well to
more complex and larger datasets. In the course of our exper-
imental evaluation, it became evident that certain algorithms
like FedAMS, FedCAMS, and FedOpt encountered significant
difficulties in reaching convergence. This was consistent with
their performance on IID data. Specifically, FedAMS and
FedCAMS yielded unsatisfactory results in numerous tests,
such as achieving only 37.33% accuracy using ResNet-20 on
the CIFAR-100 dataset and 40.03% accuracy using ResNet-18
on the CIFAR-10 dataset. Moreover, FedAMS scored as low
as 24.09% when tested using ResNet-34 on the ILSVRC2012
dataset. Similarly, FedOpt struggled in several experiments,
underscoring the limitations of current global optimization
techniques when dealing with non-IID data distributions. As
elaborated in Section III, the model divergence owing to the
heterogeneity of local feature spaces is substantial when only
a single aggregation proportion is provided for the entire local
model. Given that each parameter in the local model can
have its own unique direction and level of convergence, the
one-size-fits-all approach falls short. In contrast, an element-
wise global model aggregation strategy, as implemented in
EWWA-FL, offers the adaptability and flexibility needed to
facilitate better convergence across a range of neural networks
and benchmark datasets.

D. Convergence Speed

Convergence speed is also an important metric for evaluat-
ing methods in terms of adaptive aggregation. In Figures 3,
we visualize the average training losses across all local clients
for both IID and non-IID data. The figures in the left column
correspond to experiments conducted on IID data using various
backbone neural networks and datasets. Overall, our proposed
EWWA-FL method exhibits the fastest convergence when
compared with FedCAMS and FedOpt. When using a shallow
neural network (e.g. ResNet-18), the convergence speeds of



EWWA-FL and FedCAMS are similar. However, the perfor-
mance gap widens when training on deeper neural network
(e.g. ResNet-32). On the other hand, in experiments conducted
on non-IID data, shown in the right column, the convergence
speed of EWWA-FL remains fast. FedCAMS experiences a
significant slowdown when using ResNet-18 on both CIFAR-
10 and CIFAR-100 datasets. Nonetheless, FedCAMS achieves
good convergence speed when using ResNet-32 on the CIFAR-
10 dataset. We empirically believe that this is because deeper
neural networks contain more weights, allowing for better
fitting on small-scale datasets. Lastly, FedOpt performs the
worst among all the methods in our experiments. The loss
values produced by FedOpt are so large that they are difficult
to visualize; therefore, we have normalized them to fall within
a range of 0 to 1. The green lines indicate that FedOpt strug-
gles to converge, even after 500 rounds of global aggregation.
In some experiments, as mentioned in Section IV-B, FedOpt
failed to converge. So there is no green lines in Figures 3 (b),
(c) and (d).

V. CONCLUSION

In this paper, we propose an adaptive element-wise global
weights aggregation method for FL, specifically EWWA-FL.
This method demonstrates better and faster convergence com-
pared to other recent works. Comprehensive experiments are
conducted using various neural networks and datasets to
showcase the superiority of our approach. We also provide
a brief theoretical analysis based on the Adam optimization
algorithm. In future work, we plan to focus on the theoretical
proof to further validate our method from a mathematical
perspective. The implementation of our method is publicly
available to ensure its reproducibility.
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