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Abstract— We present a machine learning based approach to
automatically detect and segment cells in phase contrast images.
The proposed method consists of a multi-stage classification
scheme based on random forest (RF) classifier. Both low level
and mid level image features are used to determine meaningful
cell regions. Pixel-wise RF classification is first carried out to
categorize pixels into 4 classes (dark cell, bright cell, halo
artifact, and background) and generate a probability map
for cell regions. K-means clustering is then applied on the
probability map to group similar pixels into candidate cell
regions. Finally, cell validation is performed by another RF
to verify the candidate cell regions. The proposed method has
been tested on U2-OS human osteosarcoma phase contrast
images. The experimental results show better performance of
the proposed method with precision 92.96% and recall 96.63%
compared to a state-of-the-art segmentation technique.

I. INTRODUCTION

Phase contrast microscopy is an optical based technique
that converts difference in phase of object light waves into
change in intensity which can be displayed as variations in
the image. It produces high contract images compared to
the bright field microscopy of transparent specimens such
as living cells directly without need to be killed, fixed, and
stained, so that it is used to monitor cell proliferation and
examine the drug effect.

Cell segmentation is an important task in order to analyse
cell behavior and track its movement across time-lapse
images. Manually segmenting cells is a time-consuming,
laborious process, that can suffer from high inter- and intra-
operator variability, especially in the case of large volume of
data captured across time, where each image may contain
hundreds of cells. Automatic cell segmentation is still a
challenging task, due to low contrast between cell and
background, large variations in cell structure, and image
artifacts such as halo effect.

Various cell detection and segmentation methods in phase
contrast images have been introduced, e.g. thresholding and
morphologic operations [1], [2], deformable model based
segmentation [3], [4], [5], watershed segmentation [6], [7],
[8], graph based methods [9], [10], [11] and machine learning
based techniques [6], [12], [13], [2], [14], [15], [8], [16].
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Machine learning based methods can be categorized to
supervized [6], [12], [13], [2], semi-supervized [14], [8],
and unsupervized or clustering based methods [15], [16]
depending on the mechanism of the learning. Some of these
methods [12], [13], [15] have been used in cell detection
based on initial selection of a set of candidate points or small
regions corresponding to the cell locations then pruning of
less likely candidates using leaning-based method. However,
these methods are not able to delineate the cells. He et al. [6]
proposed to use SVM classifier with wavelet features to high-
light cell region and seeded watershed method to separate
the cell from the background. The seeds are extracted by a
separate AdaBoost classifier. In [16], superpixel clustering is
used to segment cells based on learning of the cell boundary
using a random forest classifier. However, these methods tend
to over or under estimate the cell region, particularly when
cells form clusters.

Yin et al. [2] proposed a phase contrast image restora-
tion method by formulating the problem as a regularized
quadratic cost function so that the cell can be segmented by
simple thresholding. An SVM classifier is used to identify
cells. However, this method is not able to segment bright cells
e.g., mitotic cells. Su [14] extends the previous method to
segment the bright cells by using different restoration method
based on a dictionary representation of diffraction patterns.
However user interaction is required to define initial seeds
for a semi-supervised method to correctly classify cells.

In this work, we propose a multi-stage RF classification
based method to detect and segment cells in microscopy
phase contrast images. The first RF classifier is used as a
low-level image segmentation to generate a probability map
of cell regions. The second RF classifier differentiates the
cells from the background noise, and produces delineated
cell boundaries.

II. PROPOSED METHOD

Briefly, the proposed method consists of three steps as
shown in Figure 1. First, pixel-wise classification is per-
formed using an RF to generate a probability map of dark
and bright cell regions. Next, K-means clustering is used to
group pixels into candidate cell regions. Finally, a second
RF is introduced to verify the cells and delineate them from
the background.

A. Pixel-wise Classification

Random Forest (RF) [17] is an ensemble classifier from a
set of decision trees that can robustly overcome overfitting
and outlier problems. RF injects the randomness not only by
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Fig. 1. Proposed system overview.

training each tree on different training sets using a bootstrap
sampling but also with a random set of features that is drawn
at each node to determine the best tree splitting. In the first
stage, we classify image pixels into four categories, i.e. dark
cell, bright (mitotic) cell, halo effect, and background.

In RF classification, we train a set of tress t ∈ {1, · · · , T}
independently on subsample of the training data. The testing
of unseen data is achieved by taking each testing point v
and pushed it down from the root of all tress until it finds
the corresponding leaves. The RF combines the predication
from all trees by simply taking the average predication of
each class c:

P (c|v) =
1

T

T∑
t=1

pt(c|v). (1)

The setting of RF classifier has two parameters: the
number of trees T and the number of features m randomly
chosen at each split. In this work, we set T = 500 and
m = 4

√
L where L is the length of feature vector.

We train RF on two kinds of features, the largest eigen-
value of hessian matrix and the histogram of the pre-
conditional features [2], extracted from two sub-windows of
size 4 and 8. The output is treated as a probability estimation
of the dark and bright cell location.

Hessian matrix has been widely used to enhance vessel
and tubular structure [18] and also as ridge detector [19].
Hessian matrix H is defined as a composition of the second
partial derivatives of image I:

H =

(
Ixx Ixy
Iyx Iyy

)
(2)

where Iij = ∂2I
∂i∂j and computed by convolving the second

derivative of Gaussian filter at scale σ and the image I . From
the obtained Hessian matrix, eigen analysis is performed.
Largest eigenvector and its corresponding eigenvalue is a
good indicator of the cell location. The scale parameters σ
are set as 2 and 4 for each sub-window respectively.

The histogram of the pre-conditioned image is used as an
input features for our RF classifier. In this method, a linear
model is derived to restore an artifact free image:

g = Af (3)

where g is a vectorized observed image, A is an ill-
conditioned matrix determined by the imaging optics, and

f is the restored phase contrast image. Solving the problem
by inversing A is highly noise sensitive. Hence, the problem
is formulated as a constrained quadratic function:

O(f) = ||Af − g||22 + ωsf
trLf + ωr||Λf ||1 (4)

where L is a Laplacian matrix working as spatial smoothness
regularization, Λ is a positive diagonal matrix in the l1-norm
sparseness regularization, and ωs and ωr are weighting co-
efficients. The restored image f is computed by minimizing
the objective function in Eq. (4).

B. Clustering & Region Dilation

The probability map produced by the first RF classifier
based on those low level image features provides an in-
dication of cell location. However, a direct segmentation
using the binary output of the classifier is prune to mis-
segmentation, particularly when cells form clusters. Instead,
we carry out a connected component analysis through spatial
clustering and morphological process.

We use the k-means method to find the peak center of the
dark and bright cells by clustering the probability values for
dark and bright cells. The number of classes is set as 3. We
automatically select the output class corresponds to the cells
centers by observing the clustering set that maximizes the
probability map computed from the first stage. The clustering
set is converted to binary label that refer to the potential
bright and dark cell regions. Note, the dark and bright cell
are treated separately to minimize the overlapping effect.

Cell dilation process is then performed to extend the cell
region beyond its center. Let us denote probability maps
for dark, bright, and halo artifacts by Md, Mb, and Mh

respectively. We convert the these probability maps into a
binary mask by:

B =

{
1 Md +Mb +Mh > tb,

0 otherwise
(5)

where tb is a threshold value and set to 0.55. The result
B represent the likelihood region that can be selected by
the dilation process. Each candidate cell is represented by
a binary region Ri in the clustering label (1 for cell, 0
background). The dilated cell region Ci is computed as:

Ci =

{
1 dist(Ri) ∗B < td,

0 otherwise
(6)



TABLE I
CELL DETECTION QUANTITATIVE COMPARISON. USING PRECISION, RECALL, F1-SCORE, AND MEAN ± STANDARD DEVIATION OF De AND Dn .

Precision Recall F1-score µDe ± σDe µDn ± σDn

Proposed Method 92.96 96.63 94.76 3.16± 2.26 10.5± 6.04
Yin et al. Method [2] 84.08 89.40 86.66 3.77± 3.25 15.6± 10.68

where dist(.) is the Euclidean distance transform of the
binary region, and td is the distance parameter. Parameter
td controls the size of the dilated region, and we set this
parameter to 6 for dark cell and 3 for the bright cell. The
dilatation process has an advantage that we can determine if
the candidate cells centers are touching each other.

C. Cell Validation

In the final stage, we validate the cell identity by using
another RF classifier. We classify the dilated candidate cell
regions into three categories, i.e. single cell, touching cells
and background. The touching cells detected in the last stage
are combined into one region and tested by this classifier to
determine if the regions are belonging to the same cell or
multiple cells. Histograms of oriented gradients (HoG) [20],
and histogram of image intensity are extracted as features
from each candidate cell region. HoG is one of the popular
image features in object detection. It is based o measuring
the distribution of gradient orientations in local regions. The
HoG descriptor is implemented by splitting the image into
small regions to compute the histogram of edge directions
for each region. The histograms of these small regions
are concatenated after being normalized within a larger
region called block to improve the contrast and illumination
invariance. HoG is useful in differentiating single cell from
multiple cells connected to each other in that the silhouette
of multiple cells are more likely to non-convex and thus
their spatial distribution of image gradients differ from that
of a single cell. This cell validation stage is essential to
remove false positives and minimizing duplicated detections
on single cells.

III. EXPERIMENTAL RESULTS

We test the proposed method on phase contrast images of
U2-OS human osteosarcoma cells in control conditions. The
time-lapse sequence contains 97 images. Each image in the
sequence is 512 × 672 in dimension and cells proliferated
from 100+ to 400+ cells. Manual labeling was carried out
on every 10th frame (2405 annotated cell) in order to carry
out quantitative analysis. The training set includes 10 images
(excluded during the testing), where 2 images used to train
the first classifier, and 8 images to train the second classifier.

The manual labeling introduced in form of points cor-
responding to cell centroids. A cell region is considered a
true positive (TP) if its centroid is within a small radius
distance p of the ground truth point. If the distance is
larger that p, centroids are considered false positive (FP).
The unassigned ground truth points are counted as false
negatives (FN). We used 5 evaluation metrics: precision (%),
recall (%), F1-score (%), Euclidean distance De between

detected cell centroids and the corresponding ground truth
points, and finally the absolute difference Dn between the
number of ground truth points and the detected cell cen-
troid numbers. Precision, recall and F1-score are defined
as: Precision = TP

TP+FP , Recall = TP
TP+FN , F1 = 2 ∗

Precision ∗Recall/(Precision+Recall).
Table I shows the quantitative comparison between the

proposed method and Yin et al. Method [2]. The proposed
methods shows higher precision, recall and F1-score and
lower distance between cell centroids and ground truth points
and also lower absolute difference Dn in cell numbers
compared to Yin et al. method. The proposed method can
effectively detect both dark and bright cell, in contrast of Yin
et al. method that can only restore the dark cells.

Figure 2 shows some examples offinal segmentation re-
sults from the proposed method. The single cell is high-
lighted by green contour and the touching cell by blue.
These touching cells occur when the cells are very close
to each other and without clear boundaries in-between. The
detection and segmentation of the cells provide the basis for
establishing correspondence from one image to another so
that the cell growth can be identified and tracked over time.

IV. CONCLUSION

We presented a machine learning based method to detect
and segment the living cells in phase contrast images. A
multi-stage RF classifier is proposed to segment and validate
the cell regions. K-means clustering and region dilation are
used as a link the two classification stages. Cell centers are
obtained by K-means clustering from the cell probability
map. Region dilation is applied to restore cell region around
its center and detect the touching cell. The proposed method
showed promising results despite the low contrast and weak
edges.
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