
4th International Conference on Computational and Mathematical Biomedical Engineering - CMBE2015

29 June-1 July 2015, France

P. Nithiarasu and E. Budyn (Eds.)

PHASE CONTRAST CELL SEGMENTATION USING MACHINE
LEARNING APPROACH

Ehab Essa1, Xianghua Xie1, Rachel J Errington2, and Nick White3

1Department of Computer Science, Swansea University, UK, csehab,x.xie@swansea.ac.uk
2Institute of Cancer & Genetics, School of Medicine, Cardiff University, UK, erringtonrj@cf.ac.uk

3School of Optometry and Vision Sciences, Cardiff University, UK, whiten@cardiff.ac.uk

SUMMARY
In this paper, we present a machine learning approach based on random forest (RF) for automatic

segmentation of living cells in phase contrast images. The proposed method is performed by a multi-
stage classification working on both low and high level of the image. Pixel-wise classification is first
performed to obtain a probability map of dark and bright cell regions. K-means clustering is then
used to group pixels into candidate cell regions. Finally, another RF is called to verify the candidate
cell regions. The experimental results show promising performance of the proposed method.
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1 INTRODUCTION

Phase contrast microscopy is an optical based technique that converts difference in phase of object
light waves into change in intensity which can be displayed as variations in the image. Phase contrast
microscopy produces high contract images compared to the bright field microscopy of transparent
specimens such as living cells directly without need to be killed, fixed, and stained, so that it is used
to monitor cell proliferation in natural and examine the drug effect.

Cell segmentation is an important task in order to analyze cells behavior and track its movement across
time-lapse images. Manually segmenting of cells is a time-consuming, laborious process, that can
suffer from high inter- and intra-operator variability, specially in the presence of large volume of data
captured across time, where each image may contain hundreds of cells. Automatic cell segmentation
is still a challenge despite the existence of many methods, due to low contrast between cell and
background, inconsistency between the cell structure itself, and the image artifacts such as halo effect.

Many cell detection and segmentation methods in phase contrast images have been introduced based
on one or more approaches e.g. thresholding and morphologic operations [21, 4, 8, 22], deformable
model [9, 12, 2, 19, 1], watershed [10, 11, 7, 15], graph based model [18, 16, 13] and machine learning
[10, 17, 3, 22, 20, 14, 15, 23].

Machine learning methods can be categorized to supervised [10, 17, 3, 22], semi-supervised [20, 15],
and unsupervised or clustering methods [14, 23] depending on the mechanism of the learning system
used. Some of these methods [17, 3, 14] have been used in cell detection based on initially select a set
of candidate points or small regions refereing to the cell location then prune the less likely candidates
using leaning-based method. However, these methods are not able to delineate the cell region. He
et al. [10] proposed to use SVM classifier with wavelet features to highlight cell region and seeded
watershed method to separate the cell from the background. The seeds extracted by another AdaBoost
classifier. In [23], superpixel clustering is used to segment cells based on learning the cell boundary
probability by a random forest classifier. However, these methods may largely over or under estimate
the cell region.

Yin et al. [22] proposed an artifact-free phase contrast image restoration method by represent the
problem as a regularized quadratic cost function so that the cell can be segmented by simple thresh-
olding. A SVM classifier used to identify cell from non-cell. However, this method is not able to



segment bright cells e.g., mitotic cells. Su [20] extends the previous method to segment the bright
cell by proposed different restoration method based on the dictionary representation of diffraction
patterns. However user interaction is required to define some seeds for a semi-supervised method to
correctly classify cells.

In this work, we propose a multi-stage random forest (RF) classifier method to detect and segment
cells in microscopy phase contrast images. The first RF classifier is used as a low-level image seg-
mentation to generate a probability map of cell regions. The second RF classifier differentiates the
cells from the background noise and returns delineated cells region.

2 PROPOSED METHOD AND RESULTS

Briefly, the proposed method consists of three steps. First, pixel-wise classification is performed using
RF to generate a probability map of dark and bright cell regions. Second, K-means clustering is used
to group pixels into candidate cell regions. Finally, another RF is proposed to verify the cell identity
from the background.

RF [5] is an ensemble classifier from a set of decision trees. RF injects the randomness not only by
training each tree on different training sets using a bootstrap sampling but also with a random set of
features that is drawn at each node to determine the best tree splitting. In the first stage, we classify
image pixels into four categories, i.e. dark cell, bright (mitotic) cell, halo effect, and background.
We train RF on two kinds of features, the largest eigenvalue of hessian matrix and the histogram of
the pre-conditional features [22], extracted from two sub-windows of size 4, and 8 respectively. The
output is treated as a probability of the dark and bright cell location.

A direct segmentation using the binary output of the first RF classifier is prune to mis-segmentation,
particularly when cells form clusters. Instead, we carry out a connected component analysis through
spatial clustering and morphological process. K-means is an unsupervised clustering in which each
pixel can only join one cluster. This achieved by defining a centroid at the initial center of each cluster
and assigning each sample in the data set to the nearest centroid by measuring the distance between
them, then update the centroid in an iterative manner. We use the k-means clustering to find the peak
center of the dark and bright cells. The number of classes is 3. We automatically select the output
class corresponds to the cells centers by observing the clustering set that maximizes the probability
map computed from the first stage.

Cell dilation process is then performed to extend the cell region beyond its center. This carried out
by converting the probability map into a binary mask and retrieving the region within certain pixel
distance. The dilatation process has an advantage that we can easily know if the candidate cells
centers are touching each other as they might be a broken cell center or different cells touching. Thus,
we create a set of all candidate cell regions, including combine the touching cells region into one set.

In the final stage, we validate the cell identity by using another RF classifier. We classify the initial
candidate cell regions into three categories, i.e. single cell, touched cells and background. Histograms
of oriented gradients (HOG) [6], and histogram of image intensity are extracted as features from each
candidate cell region.

We test the proposed method on phase contrast images of U2-OS human osteosarcoma cells in control
conditions. The time-lapse sequence contains 97 images. The training set includes 10 images (2
images to train the first classifier, and 8 images to train the second classifier). Figure 1 shows the
final segmentation results. The initial cell region classified as single cell by the second classifier is
highlighted by green color. The blue and red color refer to the touching cell and the combined initial
cell regions classified as single cell respectively by the second classifier.

3 CONCLUSION

We present a machine learning method to detect and segment the living cells in phase contrast images.
Multi-stage RF classifier is proposed to produce a bottom-up cell segmentation. The proposed method
shows a promising result despite the segmentation challenges of low contrast and weak edges.
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Figure 1: Cell segmentation results. (a) original image. (b) result image.
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