
Attention-based Graph Estimation and Directed Convolution for
Prediction of Traffic Conditions

Michael P. Kenning
Department of Computer Science

Swansea, Wales, UK
788486@swansea.ac.uk

Xianghua Xie∗
Department of Computer Science

Swansea, Wales, UK
x.xie@swansea.ac.uk

ABSTRACT
In this paper we present a novel attention-based graph estima-
tion strategy to learn the graph structure of a road network. The
strategy uses unique compositions cyclical traffic information to
estimate and fuse long- and short-term graphs. We also introduce
an attention-based convolution for directed graphs that models
traffic information as separate flows into and out of vertices. The
local attention mechanism in the directed attention-based convo-
lution hence complements the global attention mechanism in the
graph estimation. We evaluate these techniques using a modified
Traffic Transformer on two commonly used datasets: METR-LA and
PeMS-Bay. From the results we conclude that the graph estimation
strategy and the convolutional layer lead to models that are robust
to troublesome traffic conditions.

KEYWORDS
graph, deep learning, traffic prediction, graph estimation
ACM Reference Format:
Michael P. Kenning and Xianghua Xie. 2023. Attention-based Graph Es-
timation and Directed Convolution for Prediction of Traffic Conditions.
In Proceedings of 10th Workshop on Deep Learning on Graphs 2023 (KDD-
DLG’23). ACM, New York, NY, USA, 5 pages.

ACKNOWLEDGEMENT
The experiments were possible with the support of AccelerateAI,
a supercomputer cluster provided by Supercomputing Wales and
part-funded by the European Regional Development Fund through
the Welsh Government.

1 INTRODUCTION
The graph has proved to be a useful mathematical object for repre-
senting irregular domains, as the flourishing research over the last
decade has shown [3]. Graphs are used to structure the irregular
relations between entities and convolutional layers based on graphs
have seen broad application, such as to electroencephalographys
[11] and citation networks [5].

The primary concern in applying graph techniques to new do-
mains is to design a graph appropriate to the domain. A common
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD-DLG’23, Long Beach, CA,
© 2023 Association for Computing Machinery.

construction for traffic datasets, for example, uses a thresholded
Gaussian kernel [10] of the distances between traffic sensors, an ap-
proach which recurs in the research [1, 7, 8, 12]. The traffic sensors
do not necessarily relate to one another symmetrically. That the
traffic detected by a sensor located on a major road is important
to predicting traffic on a minor road does not imply that the traffic
on a minor road is as important in predicting traffic on the major
road. These relations may be represented as directed graphs or
simply directed flows. Directed diffusion, which uses directed flows,
has thus been an effective tool in modelling traffic [8]. Directed
diffusion was later successfully used in a transformer architecture,
the Traffic Transformer [1].

Distance-based constructions of traffic networks do not however
capture the long-distance, structural interactions of traffic networks
[9]. Recent research on traffic prediction has thus explored deep-
learning techniques to learn graph structures from the data itself
[2, 12, 13, 17], an approach termed graph estimation [3]. Some graph
estimation approaches augment the distance-based traffic graph
with a learned structure [2, 4, 12], while others wholly learn the
graph structure [13].

In this paper we propose a graph estimation strategy that uses
a novel combination of the historical information supplied to the
Traffic Transformer [1] to estimate separately a long-term and
short-term structure, which we identify with the static and dy-
namic structures. It makes use of an attention mechanism to re-
duce the training parameters. Additionally we present a directed
attention-based convolutional layer that models neighbourhoods
as two separate groups of neighbours. The graph attention network
(GAT) [14] does work on directed graphs, but it does not model
neighbours with different orientations distinctly. We evaluate the
proposed techniques on a modified Traffic Transformer against the
METR-LA and PeMS-Bay datasets.

2 RELATEDWORK
The task of traffic prediction means modelling temporal data in
an irregular domain. A notable early example of the application of
deep learning to this task is the diffusion convolutional recurrent
neural network [8]. The temporal information is modelled using
a recurrent neural network (RNN) and directed diffusion, where
the in- and out-flows of a vertex are modelled as parallel diffusion
processes. Alternatively the convolution has been defined such
that it models spatial and temporal information simultaneously,
a so-called gated convolutional neural network [16]. The Traffic
Transformer [1] uses the directed diffusion layer in a transformer
architecture that obviates the serial computation of RNNs, reporting
state-of-the-art results. All three aforementioned works construct
the traffic graph from sensor distances.

https://orcid.org/0000-0001-9854-5567
https://orcid.org/0000-0002-2701-8660

KDD-DLG’23, Long Beach, CA,
Kenning and Xie

Techniques to estimate the traffic graph have received greater at-
tention in the literature recently. Generally speaking, there are three
kinds of graph estimation strategies: metric-based methods, neural-
based (hence indirect) methods and direct methods [3]. Metric-
based methods use heuristics or some measure on the data to com-
pute edge-weights, e.g. the cosine similarities of vertex attributes
[6]. Neural-based techniques avoid relying exclusively on observed
data by training a neural mechanism to estimate a graph from in-
put. One model uses a separate graph-estimation component to
compute a graph structure to complement an a priori structure [15].
More simply graph can be directly estimated that complements a
pre-defined graph of the traffic network [4].

Alternatively the historical traffic information can be leveraged
to learn different graphs, the structures of which complement one
another; for example, by using two data pipelines to estimate static
and dynamic traffic structures separately [7], or two levels of struc-
ture, macro- and micro-level, might complement one another [12].
The learning can be further decomposed into global and local struc-
tural estimation, each with static and dynamic components [17].
Typically that means the static component is fixed after training,
while the dynamic component changes according to the sample fed
to the model. The decomposition can also happen at a data-level,
where a separate graph is learned on several streams of informa-
tion, e.g. weekly, daily and hourly stream [2]. A full estimation
of the 𝑛-by-𝑛 weight matrix can be avoided by using a global at-
tention mechanism, an example of a neural-based approach [13].
Estimation is performed over multiple attention heads and the re-
sulting structure is an average of the heads. In this example [13]
there is decomposition into neither global/local nor static/dynamic
structures.

3 METHODOLOGY
In this section we present static–dynamic fusion, an attention-based
approach to graph estimation, and the directed attention-based con-
volution. Static–dynamic fusion uses two combinations of cyclic
information, long-term and short-term, to estimate a graph, which
is then used to structure the directed attention-based convolution.
The local attention mechanism in the latter thus complements the
global attention mechanism in the former.

Graph definitions. A graph𝐺 = ⟨𝑉 , 𝐸⟩ consists of a set of vertices
𝑉 and edges 𝐸. The order of the graph is 𝑛 = |𝑉 | and the size is
𝑚 = |𝐸 |. If two vertices 𝑥,𝑦 ∈ 𝑉 have an edge 𝑥𝑦 ∈ 𝐸, they are
adjacent. 𝐸 is an unordered set; when it is ordered, the edges acquire
an orientation and the edges and the graph itself are directed. For a
directed edge ®𝑥𝑦 ∈ 𝐸 𝑥 is the start vertex and 𝑦 the endvertex.

For a given vertex 𝑥 ∈ 𝑉 , its adjacent vertices of undirected
edges constitute the vertex’s neighbourhood Γ(𝑥). When the graph
is directed, the neighbourhood consists of the in-neighbourhood
Γin (𝑥) for adjacencies where 𝑥 is the start vertex and the out-
neighbourhood Γout for adjacencies where 𝑦 is the endvertex. By
convention in deep learning 𝑥 ∈ Γ(𝑥), but 𝑥 ∉ Γin (𝑥) ∪ Γout (𝑥).

If the vertices 𝑉 are indexed, a graph can be represented by an
adjacency matrix A ∈ {0, 1}𝑐×𝑐 , where A𝑖 𝑗 is non-zero when the 𝑖
and 𝑗th vertices are adjacent. If the edges are weighted, where A
is non-zero,W records a weight for each edge. Vertices may also
carry 𝑐-dimensional signals, a mapping 𝑓 : 𝑉 → R𝑐 .

Static–dynamic fusion. The purpose of static–dynamic fusion is
to estimate the graph structure from the data even at inference, so
that the model does not rely on a fixed structure learned at training.
We alsowant themodel to draw on two sources of information: long-
term, more stable structures, and short-term, ephemeral structures
that occur locally. As with the Traffic Transformer [1], the data
supplied to the graph estimation for prediction is separated into
weekly-, daily- and hourly-periodic data, the tensors 𝑓𝑤 , 𝑓𝑑 , 𝑓ℎ ∈
R𝑡×𝑛×𝑐 , one week, one day and one hour preceding the target
sequence respectively, where the data has 𝑡 per sequence and 𝑐

channels. The model learns to predict the target sequence 𝑌 by
generating a predicted sequence 𝑌 . The graph estimator learns
a static structure Wstat and a dynamic structure Wdyn from two
distinct compositions of the streams.

Before the composition, the streams are first projected into a new
space by a projection matrix U ∈ R𝑐×𝑒 where the new space has
𝑒 channels. Hence each vertex has a 𝑒-dimensional feature vector.
The projected data is denoted 𝑓𝑤′ = 𝑓𝑤U, 𝑓 ′𝑑 = 𝑓𝑑U, 𝑓 ′ℎ = 𝑓ℎU.

The streams and target data are then concatenated along their
first dimensions to yield the long- Z𝑙 and short-term Z𝑠 data,
Z𝑙 = [𝑓 ′𝑤 ∥0 𝑓 ′

𝑑
∥0 𝑓 ′

ℎ
], and Z𝑠 = [𝑓 ′

ℎ
∥0 𝜁 · 𝑌], where the binary

operator ∥𝑖 concatenates two tensors along their 𝑖th dimension,
and 𝜁 ∈ {0, 1} is a flag indicating whether the algorithm is training,
whether 𝑌 is part of the short-term data.

Two ℎ-headed attention vectors, astat, adyn ∈ R2𝑒×ℎ are then
applied to each pair of vertex feature vectors in the long- and short-
term data to yield the two raw weight matrices, averaged over the
timestep dimension:

W′
stat,𝑥𝑦 =

3(𝑡−1)∑︁
𝑖=0

[
Z𝑙,𝑖,𝑥

Z𝑙,𝑖,𝑦] astat , and (1)

W′
dyn,𝑥𝑦 =

(1+𝜁) (𝑡−1)∑︁
𝑖=0

[
Z𝑠,𝑖,𝑥

Z𝑠,𝑖,𝑦] adyn , (2)

where 𝑥,𝑦 ∈ 𝑉 . Finally the two weight matrices are combined with
a sigmoid-activated, learned coefficient 𝛽 ∈ (0, 1), one for each
attention head, giving the estimated graph W̃:

W̃ = 𝛽 · ReLU(Wstat) + (1 − 𝛽) · ReLU(Wdyn) . (3)

In order to sparsify the weight matrix, we impose a hard thresh-
old of 0.1 on the values of W̃. To restrain the size of the values we
add L1 regularisation of the sum of W̃ to the loss function. Lastly
we apply dropout to remove 80% of edges at training.

For the sake of the evaluation, we use a simple graph estimation
strategy where there is no distinction between long- and short-term
data, in order to determine the effectiveness of the static–dynamic
fusion. In the simple graph estimation, there is no fusion as in
Eq. (3). Instead, the weight matrix is estimated from a combination
of all sequences using a single attention vector a ∈ R2𝑒×ℎ :

W̃𝑥𝑦 = ReLU
(∑︁(3+𝜁) (𝑡−1)

𝑖=0

[
Z𝑖,𝑥

Z𝑖,𝑦] a) (4)

where Z =
∑︁𝑡

𝑖=0

[
𝑓 ′𝑤

0 𝑓 ′𝑑 0 𝑓 ′ℎ 0 𝜁 · 𝑌 .
]
, (5)

Directed attention-based convolution. The attention-based con-
volution in the GAT computes coefficients that are applied over
the sum of features in a given vertex 𝑥 ’s neighbourhood Γ(𝑥). It

Attention-based Graph Estimation and Directed Convolution for Prediction of Traffic Conditions
KDD-DLG’23, Long Beach, CA,

does not distinguish between in- and out-flows, however. An input
matrix of vertex signals h = 𝑓 (𝐺) is first projected with its own
projection matrix U ∈ R𝑐×𝑒 to h′ = hU ∈ R𝑛×𝑒 . The coefficients
are then computed for the projected features using the attention
vector a ∈ R2𝑒 and passed through a LeakyReLU function:

C𝑥𝑦 = LeakyReLU([h𝑥 | |h𝑦]a) (6)

yielding a coefficient matrix C. The coefficients are then normalised
using softmax,

𝛼𝑥𝑦 = softmaxΓ (𝑥) = exp(C𝑥𝑦)/
∑︁

𝑦∈Γ (𝑥) expC𝑥𝑧 . (7)

We want to learn the in- and out-flows separately, however,
like the directed diffusion used in the Traffic Transformer [8]. We
propose a directed attention-based convolution that leverages the
power of attention and also models the in- and out-flows distinctly,
as in the directed diffusion. Instead we increase the size of the di-
mension vector a ∈ R3𝑒 that is sliced into a vector for in-neighbours
a0, the focal vertex a1 and out-neighbours a2. Then we reformulate
Eq. (6) as

C𝑥𝑦 =

{
LeakyReLU(𝑐𝑥 (𝑥)) 𝑥 = 𝑦

LeakyReLU(𝑐𝑥 (®𝑦𝑥) + 𝑐𝑥 (®𝑥𝑦)) 𝑥 ≠ 𝑦
(8)

where, 𝑐𝑥 (𝑥) = h′𝑥a (9)

𝑐𝑥 (®𝑦𝑥) =
{[

h′𝑦
 h′𝑥] a0:1 ®𝑦𝑥 ∈ 𝐸

0 otherwise
(10)

𝑐𝑥 (®𝑥𝑦) =
{[

h′𝑥
 h′𝑦] a1:2 ®𝑥𝑦 ∈ 𝐸

0 otherwise
(11)

where 𝑎0:1, 𝑎1:2 ∈ R2𝑒 are equal slices of a. The simplicity of this
mechanism adds a little overhead but allows the flows to be mod-
elled separately. For our application, however, we include the edge
weights learned in the graph estimation in the weighted sum for
both the undirected and directed attention-based convolution. The
weighted sum is thus:ℎ′′𝑥 = LeakyReLU(∑𝑦∈Γ (𝑥)W̃𝑥𝑦𝛼𝑥𝑦ℎ𝑦).When
there is no graph learning, we still use the weights from the original
graphW. We refer to the edge weights from graph estimation as
global weights and the attention coefficients in the convolutional
layer as local weights.

4 EXPERIMENTAL DESIGN
Models. We evaluate the proposed techniques using the Traffic

Transformer [1]. The model is fed either (1) the original distance-
based graph or an estimated graph from (2) from static–dynamic
fusion or (3) simple graph estimation. The Traffic Transformer’s
convolutional layers additionally are replaced with either (1) 1-step
and (2) 2-step directed diffusion, (3) undirected attention or (4) di-
rected attention. In total, we evaluate the performance of 12 models.
We treat the 2-step directed diffusion with no graph estimation as
our baseline because such a configuration is essentially the Traffic
Transformer as originally presented [1]. We refer to the models us-
ing undirected or directed attention, structured with the estimated
graphs, as the “fully attention-based models”.

Control variables. The models were trained on 4 NVIDIA V100
GPUs and 16 Intel Xeon Gold 6148 CPU cores hosted by the Sunbird

supercomputer at Swansea University. Each model was trained for
100 epochs with a batch-size of 4 for the METR-LA dataset and
2 for the PeMS-Bay dataset. Batch normalisation was applied to
the output of the convolutional layer. The batch size must be kept
low because the graph estimator demands a large memory capacity
owing to so many parameters. We used the Adam optimiser with a
learning rate 𝜆 = 1×10−4. For the scheduled sampling, we choose a
sampling rate that means that at the fifth epoch there is a fifty-fifty
chance that the model trains its decoder on the true values or on
predictions. As the loss function we used the mean absolute error
(MAE), and add a regularisation term of the estimated graph W̃:

| |W̃| | = 1
𝑏

∑︁𝑏

𝑖=1

∑︁𝑛

𝑗=1

∑︁𝑛

𝑘=1
|W̃𝑖, 𝑗, 𝑘 |, (12)

yielding the loss function: 𝑙 (𝑦,𝑦) = MAE(𝑦,𝑦) + | |W̃| |. The input
data to the encoder and decoder is z-normalised, where the mean
and standard deviation are computed from the training set. The
labels are not normalised; therefore the model is trained to map
normalised speeds to unnormalised speeds.

Datasets and metrics. We used the METR-LA and PeMS-Bay
datasets. The METR-LA dataset is a network of 207 loop detectors
in Los Angeles County. The dataset contains 23,974, 3,425 and 6,850
training, validation and testing sequences respectively. The PeMS-
Bay dataset consists of speed readings 325 loop detectors from the
San Francisco Bay Area [8]. The dataset is split into 36,465, 5,209
and 10,419 training, validation and testing sequences respectively.
The samples of both datasets are sequentially ordered but randomly
sampled to train the model. Each successive sample’s prediction
horizon overlaps by 55 minutes with the previous sample’s.

The graphs that are published with METR-LA and PeMS-Bay
are computed using thresholded Gaussian kernel [10] using the
distances between each pair of vertices dist(𝑎, 𝑏):

W𝑥𝑦 =

{
exp

(
−dist(𝑎, 𝑏)2/𝜎2

)
if dist(𝑎, 𝑏) ≤ 𝜅,

0 otherwise,
(13)

where 𝜎 is the standard deviation of the training samples, 𝜅 is a
threshold and W𝑥𝑦 is the entry at the 𝑥th row and 𝑦th column.
This computation leads to some disconnected vertices. We remove
these vertices before we conduct our experiments, yielding reduced
graphs that we still refer to as the original graphs. We also remove
self-loops. The reduced graph of METR-LA has 206 instead of 207
vertices and that of PeMS-Bay has 319 instead of 325 vertices.

The models are assessed on the basis of three metrics, lower
values of all representing a better prediction. The first metric is
the MAE, which measures the average absolute deviation of the
predicted value from the target value. The second metric, the root
mean squared error, measures the averaged squared prediction
errors and the quality of the predictions, namely how far from the
target value the predicted values lie. The third metric, the mean
average percentage error (MAPE), the ratio of the prediction error
with respect to the target value. We follow the example of Cai et al.
[1] by excluding datapoints in the measurement where the true
value 𝑦 (𝑖, 𝑗) is zero for two reasons: (1) no prediction is necessary
at these points; and (2) a zero speed would lead to a zero-division
error in computing the MAPE.

KDD-DLG’23, Long Beach, CA,
Kenning and Xie

PeMS-Bay

2

3

4

5

M
ea

n
of

 M
AE

1-step diffusion 2-step diffusion

0 2000 4000 6000 8000
No. three-hour window

2

3

4

5

M
ea

n
of

 M
AE

Attention

0 2000 4000 6000 8000
No. three-hour window

Directed attention

No graph estimation
Simple graph estimation
Static-dynamic graph estimation

Figure 1: A linegraph plotting the rolling average in three-
hour windows on the test set of the PeMS-Bay dataset. In a
few places graph estimation flattens spikes in the error.

METR-LA

5

10

15

M
ea

n
of

 M
AE

1-step diffusion 2-step diffusion

0 1000 2000 3000 4000
No. three-hour window

5

10

15

M
ea

n
of

 M
AE

Attention

0 1000 2000 3000 4000
No. three-hour window

Directed attention

No graph estimation
Simple graph estimation
Static-dynamic graph estimation

Figure 2: A linegraph plotting the rolling average in three-
hour windows on the test set of the METR-LA dataset. Note
that between the 1,000th and 3,000th hours the error consis-
tently rises except in the directed attention model.

0 1000 2000 3000 4000
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

No
. t

hr
ee

-h
ou

r w
in

do
w

Previous week
Previous day
Previous hour

Figure 3: The proportion of sensors with missing data was
computed at each timestep and a three-hour rolling average
was taken over the sequence.

5 RESULTS AND DISCUSSION
The full tables of results on the test set of the PeMS-Bay and METR-
LA datasets are presented respectively in Table 1. We have also
visualised the MAE as a rolling average of three-hour windows for
the PeMS-Bay and METR-LA datasets respectively in Figs. 1 and 2.

We can see from the results on the PeMS-Bay dataset that di-
rected attention attains the lowest average where there is no graph
estimation. Directed diffusion is a runner-up. Static–dynamic fusion
appears to worsen results, whereas the simple graph estimation
improves the performance. The two-week errors suggest that both
simple graph estimation and static–dynamic fusion are correcting
errors where they occur in other models. They are minor correc-
tions, but they are consistent.

The results on the METR-LA dataset indicate however that di-
rected diffusion is not attaining the lowest average errors. More-
over, static–dynamic fusion is apparently ameliorating the error.
Interestingly, 1-step directed diffusion attains the lowest average
errors when static-dynamic fusion is used. A more complex picture
emerges in the two-week errors. Although it does not have the
lowest errors, the directed diffusion is correcting for errors that
consistently occur in the other models when predicting between
windows 1000 and 3000. On analysing the proportion of vertices
without data, it is clear that in periods where there is a high quantity
of missing data, the models without graph estimation suffer Fig. 3.
This suggests that graph estimation, in particular static–dynamic
fusion, is robust to missing data. Additionally the static–dynamic
fusion is correcting the other models in periods of missing data. It
does not substantially improve the directed diffusion model in this
same timespan, with or without graph estimation. The downside
is that there is unusual some difficulty around the 300th window,
which static–dynamic fusion better corrects for, but directed atten-
tion better corrects for.

It is worth noting in the discussion of these results that theMETR-
LA dataset is considered more difficult than PeMS-Bay [8], which is
noticeable in the models’ higher prediction errors on the former and
the noted difficulties in prediction visualised in Fig. 2. Nevertheless
a few provisional conclusions may be made. It is clear that directed
diffusion is more robust to errors and that static–dynamic fusion is
rendering the other models more robust to errors, too. A reason for
the robustness may lie in the 80% dropout used during training. If
the graph estimator is drawing upon many redundant structures to
make traffic predictions, it would avoid the flaw of drawing on one
road where unexpected conditions occur. Although, if this is the
case, it would not satisfactorily explain the difference between the
directed diffusion without graph estimation in comparison to the
other convolutional layers.

The method is limited in a few ways however. A study of the
estimated graphs themselves is beyond the scope of this paper, but
a cursory inspection shows us that the estimated graphs are dense
in comparison to the topological graphs. Our proposed means to
limit the weights of the graph did not work. This had consequences
for the efficiency of graph estimation alongside traffic prediction.
In future we will conduct a fuller study of the graphs. There is also
potential here to simplify the whole model by implicitly including
the global attention coefficients from graph estimation in the con-
volutional layer, instead of constructing a weight matrix which is
then used as usual.

6 CONCLUSION
In this paper we presented a novel graph estimation strategy built
on novel combinations of historical sequence data at two differ-
ent levels. One layer represented long-term changes in the graph

Attention-based Graph Estimation and Directed Convolution for Prediction of Traffic Conditions
KDD-DLG’23, Long Beach, CA,

Table 1: The prediction errors of each model on PeMS-Bay (above) and METR-LA (below) at 15, 30 and 60 minutes. The best results for each
dataset appear in bold, the second-best in italics. The model indicated by the asterisk (*) is our baseline in both datasets (Traffic Transfomrer
[1]).

Models on PeMS-Bay MAE MAPE RMSE
15’ 30’ 60’ 15’ 30’ 60’ 15’ 30’ 60’

No graph
estimation

Attention 2.787 2.841 2.885 6.575 6.686 6.773 4.810 4.915 5.018
Directed attention 2.652 2.681 2.704 6.450 6.505 6.533 4.656 4.719 4.782
1-step diffusion 2.730 2.791 2.837 6.424 6.573 6.684 4.711 4.827 4.931
2-step diffusion* 2.741 2.782 2.812 6.452 6.537 6.594 4.757 4.844 4.924

Static-dynamic
graph
estimation

Attention 2.634 2.660 2.680 6.368 6.406 6.430 4.640 4.693 4.751
Directed attention 2.659 2.680 2.710 6.476 6.479 6.510 4.647 4.699 4.777
1-step diffusion 2.759 2.798 2.835 6.518 6.594 6.663 4.769 4.853 4.943
2-step diffusion 2.743 2.782 2.812 6.565 6.656 6.723 4.759 4.840 4.920

Simple graph
estimation

Attention 2.615 2.642 2.659 6.386 6.424 6.438 4.631 4.682 4.732
Directed attention 2.627 2.657 2.684 6.331 6.383 6.439 4.598 4.668 4.743
1-step diffusion 2.754 2.802 2.836 6.522 6.611 6.673 4.770 4.870 4.961
2-step diffusion 2.718 2.756 2.784 6.410 6.485 6.536 4.717 4.800 4.879

Models on METR-LA MAE MAPE RMSE
15’ 30’ 60’ 15’ 30’ 60’ 15’ 30’ 60’

No graph
estimation

Attention 4.894 5.089 5.463 13.457 13.877 14.603 7.515 7.798 8.285
Directed attention 4.880 4.717 4.695 13.926 13.541 13.476 7.755 7.678 7.748
1-step diffusion 4.657 4.686 4.927 13.521 13.486 13.852 7.415 7.495 7.812
2-step diffusion* 5.008 5.160 5.415 13.318 13.541 13.937 7.653 7.893 8.253

Static-dynamic
graph
estimation

Attention 4.308 4.314 4.438 12.452 12.328 12.492 7.119 7.137 7.326
Directed attention 4.980 4.869 4.914 14.350 13.915 13.907 7.846 7.836 8.016
1-step diffusion 4.289 4.456 4.771 11.892 12.173 12.784 6.852 7.097 7.531
2-step diffusion 4.374 4.336 4.413 12.503 12.251 12.251 7.133 7.083 7.208

Simple graph
estimation

Attention 4.670 4.719 5.007 12.748 12.756 13.214 7.326 7.460 7.842
Directed attention 5.521 5.403 5.520 14.766 14.351 14.488 8.356 8.366 8.604
1-step diffusion 4.230 4.353 4.732 11.656 11.880 12.577 6.766 6.989 7.473
2-step diffusion 4.529 4.632 4.924 13.629 13.781 14.229 7.363 7.440 7.760

and the other short-term changes. At the core of the graph estima-
tion strategy is an attention mechanism, which serves to reduce
the number of trainable parameters in the model. The attention
mechanism in the graph estimator is a global estimation of graph
structure. It is complemented by the second contribution of this
paper, a directed attention-based convolution, where the attention
coefficients are local. The two levels complement one another, and
in the results it is shown that they are robust to errors to which
the other models are consistently vulnerable. It is suggested that
the dropout layer in the graph estimation enables the estimator
to detect redundant structures. In future work we will investigate
strategies to enforce a greater deal of sparsity. We will also investi-
gate means of incorporating the global attention coefficients into
the convolutional layers, obviating the needless construction of
whole weight matrices.

REFERENCES
[1] Ling Cai, Krzysztof Janowicz, Gengchen Mai, Bo Yan, and Rui Zhu. 2020. Traffic

transformer: Capturing the continuity and periodicity of time series for traffic
forecasting. Transactions in GIS 24, 3 (2020), 736–755.

[2] Liujuan Chen, Kai Han, Qiao Yin, and Zongmai Cao. 2020. GDCRN: Global
Diffusion Convolutional Residual Network for Traffic Flow Prediction. In Knowl-
edge Science, Engineering and Management (Lecture Notes in Computer Science).
438–449.

[3] Stavros Georgousis, Michael P. Kenning, and Xianghua Xie. 2021. Graph Deep
Learning: State of the Art and Challenges. IEEE Access 9 (2021), 22106–22140.

[4] Kan Guo, Yongli Hu, Zhen Qian, Yanfeng Sun, Junbin Gao, and Baocai Yin.
2022. Dynamic Graph Convolution Network for Traffic Forecasting Based on
Latent Network of Laplace Matrix Estimation. IEEE Transactions on Intelligent
Transportation Systems 23, 2 (2022), 1009–1018.

[5] William L. Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive Represen-
tation Learning on Large Graphs. In Advances in Neural Information Processing
Systems. 1024–1034.

[6] Ali Golzadeh Kermani, Ali Kamandi, and Ali Moeini. 2022. Integrating graph
structure information and node attributes to predict protein-protein interactions.
Journal of Computational Science 64 (2022), 101837.

[7] Xiangyuan Kong, Weiwei Xing, Xiang Wei, Peng Bao, Jian Zhang, and Wei Lu.
2020. STGAT: Spatial-Temporal Graph Attention Networks for Traffic Flow
Forecasting. IEEE Access 8 (2020), 134363–134372.

[8] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolu-
tional recurrent neural network: Data-driven traffic forecasting. In International
Conference on Learning Representations. 1–16.

[9] Zhishuai Li, Gang Xiong, Yuanyuan Chen, Yisheng Lv, Bin Hu, Fenghua Zhu, and
Fei-Yue Wang. 2019. A Hybrid Deep Learning Approach with GCN and LSTM
for Traffic Flow Prediction*. In IEEE Intelligent Transportation Systems Conference.
1929–1933.

[10] David I. Shuman, Sunil K. Narang, Pascal Frossard, Antonio Ortega, and Pierre
Vandergheynst. 2013. The emerging field of signal processing on graphs: Ex-
tending high-dimensional data analysis to networks and other irregular domains.
IEEE Signal Processing Magazine (2013).

[11] Tengfei Song, Wenming Zheng, Peng Song, and Zhen Cui. 2019. EEG Emotion
Recognition Using Dynamical Graph Convolutional Neural Networks. IEEE
Transactions on Affective Computing (2019), 1–1.

[12] Xuxiang Ta, Zihan Liu, Xiao Hu, Le Yu, Leilei Sun, and Bowen Du. 2022. Adaptive
Spatio-temporal Graph Neural Network for traffic forecasting. Knowledge-Based
Systems (2022), 1–34.

[13] Cong Tang, Jingru Sun, Yichuang Sun, Mu Peng, and Nianfei Gan. 2020. A
General Traffic Flow Prediction Approach Based on Spatial-Temporal Graph
Attention. IEEE Access 8 (2020), 153731–153741.

[14] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In International Con-
ference on Learning Representations. 1–12.

[15] Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and Xing
Xie. 2021. Graph Structure Estimation Neural Networks. In Web Conference 2021.
342–353.

[16] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-temporal graph convo-
lutional networks: A deep learning framework for traffic forecasting. In IJCAI
International Joint Conference on Artificial Intelligence. 3634–3640.

[17] Qi Zhang, Jianlong Chang, Gaofeng Meng, Shiming Xiang, and Chunhong Pan.
2020. Spatio-Temporal Graph Structure Learning for Traffic Forecasting. AAAI
Conference on Artificial Intelligence 34, 01 (2020), 1177–1185.

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Experimental Design
	5 Results and Discussion
	6 Conclusion
	References

