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Abstract
Segment-wise matching is an important problem for higher-level understanding of shapes and geometry analysis. Many existing
segment-wise matching techniques assume perfect segmentation, and would suffer from imperfect or over-segmentation inputs.
To handle this shortcoming, we propose a multi-layer graph (MLG) to represent possible partially merged segments of input
shape. We adapt the diffusion pruning technique on the MLGs to find high quality segment-wise matching. Experimental results
on man-made shapes demonstrate the effectiveness of our method.

CCS Concepts
•Computing methodologies → Mesh models; Shape analysis;

1. Introduction

Given two similar 3D meshes and their segmentations, 3D segment-
wise matching aims to establish meaningful correspondences of
segments between the two meshes. It is an important problem
as it helps with higher-level understanding in geometry anal-
ysis [ZYL∗17], and has many applications, including defining
better similarity measures between 3D models [KvKSHCO15,
SSS∗10, KO17], functionality analysis [vKXZ∗13], surface regis-
tration [HAWG08] and structure-aware analysis [MWZ∗13].

Existing segment-wise graph-based matching techniques can be
roughly classified into two categories. The first category takes a
structural strategy to find the best matching that respects both ge-
ometry and topological variations. [AXZ∗15] uses a combinatorial
tree search and deformation energy constraint to establish mean-
ingful segment-wise correspondences. [ZYL∗17] finds the best bi-
nary segmentation in a top-down manner, via matches along the
object hierarchy and recognition measures to better handle struc-
tural variations and imperfect initial segmentation than [AXZ∗15].
The second category derives from notable spectral matching tech-
niques [LH05]. SHED (Shape Editing Distance) [KvKSHCO15]
takes shape segments and performs matching to define a better
shape similarity measure. It innovates to find both one-to-one and
one-to-many segment-wise correspondences, using both geome-
try and topology information. [KO17] uses HKS features for pre-
segmentation, and spectral matching to find segment-wise corre-
spondences, with special focus on symmetric issues.

We observed two problems in these works. First, most of these
techniques request a perfect input segmentation. Imperfect input
segmentation would lead to bad matching. In Figure 1, the two
handles are over-segmented, which affects the topology (graph
distance) of the underlying segment graph, and easily leads to

SHED Ours

Figure 1: Given imperfect input segmentation, [KvKSHCO15]
(left) produces many incorrect matchings. The over-segmented
handles in both candles are particularly challenging. Our technique
(right) can find more meaningful merged segment-wise matching.
Colors indicate segmentation, and lines indicate output segment-
wise correspondences. Merged segments are indicated in polygons.

bad matching. Second, correct segment matching also depends on
the global shapes and functionality. For example, in Figure 1 the
two handles are connected to two different segments in respec-
tive meshes. This requires merging of two base segments, before a
meaningful consistent segment-wise matching can be established.
These observations inspire us to investigate the following research
questions: Can merged segments help improve the accuracy of
segment-wise matching with imperfect and over-segmented inputs?
How can we develop a representation that facilitates matching of
merged segments, and a technique for segment-wise matching?

Contributions. To address these questions, we construct a multi-
layer graph (MLG) consisting of nodes with input and merged seg-
ments, built in a bottom-up manner. We further adapt diffusion
pruning [TMRL14] to such MLGs using geometry and topology
constraints. Early stage results are encouraging.
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Figure 2: Overview. We take pre-segmented shapes as input and use MLGs to represent the input meshes with provided segmentation. Next
we adapt diffusion pruning to the MLGs to find reliable matchings.

2. MLG and Diffusion Pruning

We define a multi-layer graph as a hierarchical representation cov-
ering possible combinations of the segmented shape. The lowest
layer consists of nodes representing the input segments, and the
highest layer consists of one node representing the entire shape.
Nodes in internal layers are defined by merging nodes in lower lay-
ers. We then adapt diffusion pruning techniques to obtain match-
ings. An overview of the method is shown in Figure 2.

Let S = {S1,S2,S3, ...} be all segments of an input shape S. De-
note by N[n]

i the ith node in the nth layer of a MLG, which satisfies

N[n]
i ⊂ S. (We use [n] to indicate the layer and to differentiate it

from the power operator). Nodes in the bottom layer (layer 1) is
defined as N[1]

i = Si. Next, we define the merging operator between

2 nodes N[n]
i and N[n]

j (i 6= j) to form a new node N[n+1]
k as

N[n+1]
k = merge(N[n]

i ,N[n]
j ) = N[n]

i ∪N[n]
j

where N[n]
i , N[n]

j share some vertices or faces. All nodes N[n]
i in in-

ternal layers can be defined by the merging operator recursively.
Merging stops when the entire shape S is reached. To reduce the
complexity of MLG, we further apply a user defined volume con-
straint to limit how large a new node can be in each layer. In
this way, the volume constraint controls how many layers will be
formed in the MLG. For every pair of nodes in the same MLG
(within and across layers) with shared vertices/faces, an edge is
formed to connect them. All edges are weighted as 1. MLG dis-
tance between nodes can be defined by their shortest path.

Once the MLGs are built, we construct an affinity matrix to en-
code both geometry similarity and topological consistency, using
Light-Field Descriptor (LFD) scores [CTSO03] and graph distance
on MLGs. We then adapt and apply diffusion pruning twice. First
we only involve bottom layer (layer 1) to find useful segment-wise
correspondences as anchors. Then, with these anchors, we involve
higher layers for final output computation.

3. Results

Figure 3 shows one set of results, compared against SHED [KvK-
SHCO15]. Due to imperfect segmentation, SHED often produces
inconsistent matching (Figure 3(a)). For example, the T-shaped seg-
ment in the right lamp (green circle) should not be matched sepa-

(a) SHED matching result (b) Layer 1 matching result

(c) Layer 2 matching result (d) Layer 3 matching result

Figure 3: Results comparison, colors indicate segmentation only.
In a) Circles indicate inconsistent matching from SHED. In (b), (c),
(d) polygons with same color indicate our matching results.

rately. The upper (red circles) and lower left stick are inconsistently
matched, in terms of position, to the upper right and lower left stick
respectively. In Figures 3(b), (c) and (d), ours can find consistent
one-to-one, one-to-merged and merged-to-merged segment corre-
spondences, with the help of multi-layer graphs.

4. Conclusion and Further Work

In this paper, we propose a MLG representation and adapt diffu-
sion pruning to find segment-wise matching. The early results sug-
gest that our technique can find meaningful segment-wise matching
under imperfect and over-segmented inputs. Since our technique
builds MLGs in a bottom-up manner, one limitation is the high
number of possible internal nodes relative to the number of input
segments. We hope to address this issue in the future by developing
better merging constraints and using fewer layers in the matching.
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