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Abstract

The benefit of localized features within the regular domain has given rise to the use
of Convolutional Neural Networks (CNNs) in machine learning, with great proficiency
in the image classification. The use of CNNs becomes problematic within the irregular
spatial domain due to design and convolution of a kernel filter being non-trivial. One so-
lution to this problem is to utilize graph signal processing techniques and the convolution
theorem to perform convolutions on the graph of the irregular domain to obtain feature
map responses to learnt filters. We propose graph convolution and pooling operators
analogous to those in the regular domain. We also provide gradient calculations on the
input data and spectral filters, which allow for the deep learning of an irregular spatial do-
main problem. Signal filters take the form of spectral multipliers, applying convolution
in the graph spectral domain. Applying smooth multipliers results in localized convo-
lutions in the spatial domain, with smoother multipliers providing sharper feature maps.
Algebraic Multigrid is presented as a graph pooling method, reducing the resolution of
the graph through agglomeration of nodes between layers of the network. Evaluation of
performance on the MNIST digit classification problem in both the regular and irregu-
lar domain is presented, with comparison drawn to standard CNN. The proposed graph
CNN provides a deep learning method for the irregular domains present in the machine
learning community, obtaining 94.23% on the regular grid, and 94.96% on a spatially
irregular subsampled MNIST.

1 Introduction
In recent years, the machine learning and pattern recognition community has seen a resur-
gence in the use of neural network and deep learning architecture for the understanding of
classification problems. Standard fully connected neural networks have been utilized for
domain problems within the feature space with great effect, from text document analysis to
genome characterization [22]. The introduction of the CNN provided a method for iden-
tifying locally aggregated features by utilizing kernel filter convolutions across the spatial
dimensions of the input to extract feature maps [10]. Applications of CNNs have shown
strong levels of recognition in problems from face detection [11], digit classification [4], and
classification on a large number of classes [15].

The core CNN concept introduces the hidden convolution and pooling layers to identify
spatially localized features via a set of receptive fields in kernel form. The convolution
operator takes an input and convolves kernel filters across the spatial domain of the data
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provided some stride and padding parameters, returning feature maps that represent response
to the filters. Given a multi-channel input, a feature map is the summation of the convolutions
with separate kernels for each input channel. In CNN architecture, the pooling operator is
utilized to compress the resolution of each feature map in the spatial dimensions, leaving
the number of feature maps unchanged. Applying a pooling operator across a feature map
enables the algorithm to handle a growing number of feature maps and generalizes the feature
maps by resolution reduction. Common pooling operations are that of taking the average and
max of receptive cells over the input map [1].

Due to the usage of convolutions for the extraction of partitioning features, CNNs re-
quire an assumption that the topology of the input dimensions provides some spatially reg-
ular sense of locality. Convolution on the regular grid is well documented and present in
a variety of CNN implementations [9, 20], however when moving to domains that are not
supported by the regular low-dimensional grid, convolution becomes an issue. Many ap-
plication domains utilize irregular feature spaces [13], and in such domains it may not be
possible to define a spatial kernel filter or identify a method of translating such a kernel
across spatial domain. Methods of handling such an irregular space as an input include using
standard neural networks, embedding the feature space onto a grid to allow convolution [8],
identifying local patches on the irregular manifold to perform geodesic convolutions [14],
or graph signal processing based convolutions on graph signal data [7]. The potential appli-
cations of a convolutional network in the spatially irregular domain are expansive, however
the graph convolution and pooling is not trivial, with graph representations of data being the
topic of ongoing research [5, 21]. The use of graph representation of data for deep learning
is introduced by [3], utilizing the Laplacian spectrum for feature mining from the irregular
domain. This is further expanded upon in [7], providing derivative calculations for the back-
propagation of errors during gradient descent. We formulate novel gradient equations that
show more stable calculations in relation to both the input data and the tracked weights in
the network.

In this methodology-focused study, we explore the use of graph based signal-processing
techniques for convolutional networks on irregular domain problems. We evaluate two meth-
ods of graph pooling operators and report the effects of using interpolation in the spectral
domain for identifying localized filters. We evaluate the use of Algebraic Multigrid agglom-
eration for graph pooling. We have also identified an alternative to the gradient calculations
of [7] by formulating the gradients in regards to the input data as the spectral convolution of
the gradients of the output with the filters (Equation 2), and the gradients for the weights as
the spectral convolution of the input and output gradients (Equation 3). These proposed gra-
dient calculations show consistent stability over previous methods [7], which in turn benefits
the gradient based training of the network. Results are reported on the MNIST dataset and
the subsampled MNIST on an irregular grid.

The rest of the paper is outlined as follows. Section 2 describes the generation of a graph
based CNN architecture, providing the convolution and pooling layers in the graph domain
by use of signal-processing on the graph. Section 3 details the experimental evaluation of
the proposed methods and a comparison against the current state of the art, with Section 4
reporting the results found and conclusions drawn in Section 5.
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Figure 1: Graph based Convolutional Neural Network components. The GCNN is designed
from an architecture of graph convolution and pooling operator layers. Convolution layers
generate O output feature maps dependent on the selected O for that layer. Graph pooling
layers will coarsen the current graph and graph signal based on the selected vertex reduction
method.

2 Methods

The familiar CNN architecture pipeline consists of an input layer, a collection of convolution
and/or pooling layers followed by a fully connected neural network and an output prediction
layer. One issue with CNNs is that the convolution of a filter across the spatial domain is
non-trivial when considering domains in which there is no regular structure. One solution is
to utilize the multiplication in the spectral graph domain to perform convolution in the spatial
domain, obtaining the feature maps via graph signal processing techniques. The graph based
CNN follows a similar architecture to standard CNNs; with randomly initialized spectral
multiplier based convolution learnt in the spectral domain of the graph signal and graph
coarsening based pooling layers, see Figure 1 for a pipeline. Training is compromised of a
feed-forward pass through the network to obtain outputs, with loss propagated backwards
through the network to update the randomly initialized weights.

The topic of utilizing graphs for the processing of signals is a recently emerging area in
which the graph G forms a carrier for the data signal f [19]. The graph holds an underly-
ing knowledge about the spatial relationship between the vertices and allows many common
signal processing operators to be performed upon f via G, such as wavelet filtering, con-
volution, and Fourier Transform [6, 19]. By representing the observed domain as a graph
it is possible to perform the signal processing operators on the observed data as graph sig-
nals. Coupling these graph signal processing techniques with deep learning it is possible to
learn within irregularly spaced domains, upon which conventional CNNs would be unable
to convolve a regular kernel across. The proposed technique will therefore open the door for
deep learning to be utilized by a wider collection of machine learning and pattern recognition
domains with irregular, yet spatially related features.
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Figure 2: Eigenvectors ui={2,20,40} of the full 28×28 regular gird (left) and the subsampled
irregular grid (right).

2.1 Convolution on Graph
A graph G = {V,W} consists of N vertices V and the weights W of the undirected, non-
negative, non-selflooping edges between two vertices vi and v j. The unnormalized graph
Laplacian matrix L is defined as L = D−W , where di,i = ∑

N
i=1 ai forms a diagonal matrix

containing the sum of all adjacencies for a vertex. Given G, an observed data sample is a
signal f ∈ RN that resides on G, where fi corresponds to the signal amplitude at vertex vi.

Convolution is one of the two key operations in the CNN architecture, allowing for lo-
cally receptive features to be highlighted in the input image [10]. A similar operator is
presented in graph based CNN, however due to the potentially irregular domain graph con-
volution makes use of the convolution theorem of convolution in the spatial domain being a
multiplication in the frequency domain [2].
To project the graph signal into the frequency domain, the Laplacian L is decomposed into a
full matrix of orthonormal eigenvectors U = {ui=1...N}, where ui is a column of the matrix U ,
and the vector of associated eigenvalues λi=1...N [19], Figure 2. The forward Graph Fourier
Transform is therefore given for a given signal as f̃i = ∑

N
l=1 λl f T

i ui, and its corresponding
inverse fi = ∑

N
l=1 λl f̃iui. Using the matrix U the Fourier transform is defined as f̃ = UT f ,

and the inverse as f =U f̃ , where UT is the transpose of the eigenvector matrix.
For forward convolution, a convolutional operator in the vertex domain can be composed

as a multiplication in the Fourier space of the Laplacian operator [2]. Given the spectral
form of our graph signal f̃ ∈ RN and the spectral multiplier k ∈ RN , the convolved output
signal in the original spatial domain is the spectral multipication, i.e. y =U f̃ k. It is possible
to expand this for multiple input channels and multiple output feature maps:

ys,o =U
I

∑
i=1

UT fs,i� ki,o , (1)

where I is the number of input channels for f , s is a given batch sample, and o indexes an
output feature map from O output maps.

Localized regions in the spatial domain are defined by the kernel receptive field in CNNs,
and for graph based CNNs the spatial vertex domain localization is given by a smoothness
within the spectral domain. Therefore to identify local features within the spatial domain the
spectral multipliers used for spectral convolution are identified by tracking a subsampled set
of filter weights k̂i,ok ∈ R<N which are interpolated up to a full filter via a smoothing kernel
Φ such as cubic splines: ki,o = Φk̂i,o. This has the added benefit of reducing the number of
tracked weights, however leads to an extra pair of operations in interpolating the weights to
the full k ∈ RN for multiplication. Reducing the number of tracked weights increases the
smoothness of the final interpolated filter, and lowering the tuning parameter of the number
of tracked weights learns sharper features.
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2.2 Backpropagation on Graph

Backpropagation of errors is a pivotal component of deep learning, providing updates of
weights and bias for the networks towards the target function with gradient descent. This
requires obtaining derivatives in regards to the input and weights used to generate the output,
in the case of graph based CNN convolution the gradients are formulated in regards to the
graph signal f and the spectral multipliers k. The gradients for an input feature map channel
fs,i is given as the convolution of the gradients for the output ∇y and the spectral multipliers
in the spectral domain via

∇ fs,i =U
O

∑
o=1

UT
∇ys,o� ki,o (2)

for a provided batch of S graph signals. Gradients for the full set of interpolated spectral
multipliers is formulated as the convolution of the gradients for the output ∇y with the input
fs,i via

∇ki,o =
N

∑
s=1

UT
∇ys,o�UT fs,i. (3)

As the filters are spectral domain multipliers, we do not project this spectral convolution
back through the graph Fourier transform. The smooth multiplier weights ∇k can then be
projected back to the subsampled set of tracked weights by the multiplication with the in-
versed smoothing kernel ∇k̂i,o = ΦT ∇ki,o.

2.3 Pooling on Graph

The pooling layer is the second component in conventional CNN, reducing the resolution of
the input feature map in both an attempt to generalize the features identified and to manage
the memory complexity when using numerous filters [1]. During graph based convolutions
there is no reduction in size between the input signal and the output feature map due to
the multiplication of the RN filter with the RN spectral signal. As such, each layer of a
deep graph CNN would possess a graph with RN vertices. Such a construction could be
beneficial, as this would allow the algorithm to store a single instance of the graph and the
associated N2 eigenvector matrix U . If pooling is utilized, there is benefit gained from the
feature map generalization and the reduction in complexity of the graph Fourier transforms
as each layer’s vertex count N is lowered. To pool local features together on the graph, it is
required to perform graph coarsening and project the input feature maps through to the new,
reduced size graph. Coarsening G = {V,W} to Ĝ = {V̂ ,Ŵ} not only requires the reduction
of vertex counts, but also a handling of edges between the remaining N̂ vertices. Common
methods of generating V̂ are to either select a subset of V to carry forward to Ĝ [18] or to
form completely new set of nodes V̂ from some aggregation of related nodes within V [16].
One method for selection of V̂ can be achieved by selecting the largest eigenvalue λN and
splitting V into two subsets based on the polarity of the associated eigenvector UN [12]. We
can therefore define V̂ = {uN , i};uN , i >= 0 and its complement V̂ c = {uN , i};uN , i < 0. V̂ is
then utilized to construct the graph Ĝ, although by reversing the selection for the polarity to
keep it is just as understandable to choose V̂ c for construction of Ĝ.

In this study we utilize Algebraic Multigrid (AMG) for graph coarsening, a method of
projecting signals to a coarser graph representation obtained via greedy selection of vertices
[16]. Aggregation takes a subset of vertices on V and generates a singular vertex in the new
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Figure 3: Two levels of graph pooling operation on regular and irregular grid with MNIST
signal. From left: Regular grid, AMG level 1, AMG level 2, Irregular grid, AMG level 1,
AMG level 2.

set of coarsened nodes V̂ in the output graph. Graph coarsening is by no means a trivial task,
with extensive literature exploring the subject [12, 16, 17].

With a coarser graph structure Ĝ it is required to then downsample the graph signal f1:N
into a new signal f̂1:n that is able to reside on Ĝ. AMG provides a set of matrices for the in-
terpolation of the input signal f ; the restriction matrix R and the projection matrix P. Down-
sampling f ∈ RN on G to f̂ ∈ RN̂ on Ĝ is achieved by the multiplication of the signal with
the restriction matrix, f̂s,i = R fs,i, whilst the reverse pooling required for backpropagation is
achieved via multiplication with the projection matrix, fs,i = P f̂s,i.

3 Implementation
Although we utilize forms of the 2D grid, the graph CNN is generalizable to more irregu-
lar domain problems; such as sensor networks, mesh signals, text corpora, human skeleton
graphs and more. These domains quite often contain irregular spatial geometries, upon which
it is non-trivial to define a filter kernel for convolution. In this study we evaluate the perfor-
mance of the proposed graph CNN derivative calculations with an implementation on both
the standard regular 28 grid and the irregular subsampled 2D grid.

The 2D grid is the graph representation of the Von Neumann neighborhood of vertices
in a regular domain, most commonly applied to that of pixel relationships in images. For an
image, each pixel is represented by a vertex on G, with the pixel intensities for each vertex
forming the graph signal f . The edge weights are taken as the euclidean distance between
the nodes in the Von Neumann neighborhood. To evaluate the performance of graph CNN
on the 2D grid we utilize the MNIST dataset, consisting of 60,000 examples of handwritten
numerical digits in 28× 28 grayscale pixel images. The edge weights for G are the binary
presence of an edge between vi and v j on the 4-way adjacency, with V ∈ R784.

To obtain an irregular spatial geometry domain upon which a conventional CNN can-
not convolve, we subsampled the 28× 28 grid by selecting 84 random vertices to exclude
from the grid. Upon removing the selected vertices and their corresponding edges from the
graph, we then subsample the MNIST dataset with the respective signals such that f ∈R700.
This irregular spatial domain now requires the graph-based CNN operators above to form a
convolved output feature map.

The architecture of the graph CNN was set to C20PC50PRF ; where Cκ defines a convo-
lutional layer with 60 tracked weights and κ output feature maps, P defines an AMG pooling
with a coarsening factor of β = 0.05 and 2 levels, R defines a rectified linear unit layer, and
finally F describes fully connected layers providing output class predictions. Networks were
trained for 500 epochs, with the full 10,000 test samples being classified at each epoch to
track the predictive performance of the network.
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Figure 4: Effect of spline interpolation of tracked weights on spectral filter smoothness
during graph-based convolution. a) Original image, b) k̂ = Rceil( 4√N), c) k̂ = Rceil( 3√N), d)
k̂ = Rceil( 2√N), e) k̂ = RN

To perform derivative checking, the calculation of the gradients for ∇ f , ∇k and ∇k̂ were
evaluated using random perturbations of errors on the scale of 10−4. Derivatives for ∇k̂ were
checked for interpolation over varying numbers of tracked weights in the network, including
the full set N̂ ∈RN . The experiment was repeated 100 times and the average percentage error
of the calculated gradient versus the empirically obtained gradient is reported in Figure 7.

The graph-based CNN architecture was implemented within MATLAB using GPU en-
abled operators.

4 Results

The graph CNN method was evaluated on both the regular 28× 28 grid and irregular ran-
domly subsampled grid. We report the predictive accuracy of the network at each epoch of
training using both the proposed graph CNN method and the method proposed by [7]. We
also show the effects of smoothed spectral multiplier filters on the convolution output and
the derivative errors we obtained for gradient calculations. In summary we found that by in-
creasing the smoothness of the spectra filters we were able to increase the local relationship
of features in the spatial domain, however this also resulted in higher error being introduced
by the interpolation when calculating the gradients of the tracked weights k̂. Overall we
found that the proposed calculations for derivatives in respect to k̂ introduced little error
during backpropagation. The accuracy observed when testing unobserved samples is very
promising, exceeding 94% on both the regular and irregular geometry domains.

4.1 Convolution and filter smoothness

Reducing the number of tracked filter weights produces smoother spectral multipliers after
interpolation up to ki,o = Φk̂i,o. Figure 4 shows the effect of interpolating weights from
various lengths of k̂ as applied to the 2D graph with the Cameraman.tif graph signal residing
on it. As the number of tracked weights is reduced the spatial locality of the features learnt
is reduced, providing sharper features, whilst as the number of tracked weights approaches
N the spatial localization of the feature map is lost.
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Figure 5: Feature maps formed by a feed-forward pass of the regular domain. From left:
Original image, Convolution round 1, Pooling round 1, Convolution round 2, Pooling round
2.

Figure 6: Feature maps formed by a feed-forward pass of the irregular domain. From left:
Original image, Convolution round 1, Pooling round 1, Convolution round 2, Pooling round
2.

4.2 Localized feature maps
By interpolating smooth spectral multipliers from the 60 tracked weights we were able to
convolve over the irregular domain to produce feature maps in the spatial domain with spa-
tially localized features. Figure 6 visualizes output for each layer of the Graph CNN convo-
lution and pooling layers for both the regular and irregular domain graphs.

4.3 Backpropagation derivative checks
The proposed method gave an average of 1.41%(±4.00%) error in the calculation of the gra-
dients for the input feature map. In comparison, by not first applying a graph Fourier trans-
form to ∇ys,o in the calculation for ∇ fs,i, as in [7], we obtain errors of 376.50%(±1020.79%).
Similarly the proposed method of obtaining the spectral forms of ∇ys,o and fs,i in the calcu-
lation of ∇ki,o gave errors of 3.81%(±16.11%). By not projecting to the spectral forms of
these inputs, errors of 826.08%(±4153.32%) are obtained. Figure 7 shows the average per-
centage derivative calculation error for ∇k̂ of varying numbers of tracked weights over 100
runs. The proposed method of gradient calculation shows lower errors than the compared
method gradient calculation of ∇k when k̂ ∈ RN and all but the lowest number of tracked
weights of k̂ ∈R100. The introduction of interpolation leads to a higher introduction of error
into the calculated gradient errors, especially in the presence of a low number of tracked
weights.

4.4 Testing performance
Classification performance on the MNIST dataset is reported in Table 1, with progression
of testing accuracy over epochs given in Figure 8 comparing between the proposed gradient
calculations and those of [7]. The proposed graph CNN method does not obtain the 99.77%
accuracy rates of the state of the art CNN architecture presented by [4] on the full 28×28
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Figure 7: Gradient calculation errors for interpolation of various numbers of tracked weights.
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Figure 8: Test Set accuracy on the MNIST dataset on the regular and irregular 2D grid. An
increasing in testing accuracy is observed when utilizing the proposed gradient calculations
from equations 2 and 3.

grid. This is understandable, as standard CNNs are designed to operate in the regular Carte-
sian space, giving it a strong performance in the image classification problem. The main
benefit of the graph CNN is in it’s ability to handle the irregular spatial domain presented by
the subsampled MNIST grid by use of convolution in the graph spectral domain.

5 Conclusion

This study proposes a novel method of performing deep convolutional learning on the ir-
regular graph by coupling standard graph signal processing techniques and backpropagation
based neural network design. Convolutions are performed in the spectral domain of the graph



10 EDWARDS, XIE: GRAPH CONVOLUTIONAL NEURAL NETWORK

Table 1: Testing set accuracy of network (%)

Dataset [7] Proposed Graph CNN
Regular grid MNIST 92.69 94.23

Subsampled irregular grid MNIST 91.84 94.96

Laplacian and allow for the learning of spatially localized features whilst handling the non-
trivial irregular kernel design. Results are provided on both a regular and irregular domain
classification problem and show the ability to learn localized feature maps across multiple
layers of a network. A graph pooling method is provided that agglomerates vertices in the
spatial domain to reduce complexity and generalize the features learnt. GPU performance
of the algorithm improves upon training and testing speed, however further optimization is
needed. Although the results on the regular grid are outperformed by standard CNN archi-
tecture this is understandable due to the direct use of a local kernel in the spatial domain. The
major contribution over standard CNNs is the ability to function on the irregular graph is not
to be underestimated. Graph based CNN requires costly forward and inverse graph Fourier
transforms, and this requires some work to enhance usability in the community. Ongoing
study into graph construction and reduction techniques is required to encourage uptake by a
wider range of problem domains.
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