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Abstract. In this paper an approach is described to estimate 3D pose
using a part based stochastic method. A proposed representation of the
human body is explored defined over joints that employs full conditional
models learnt between connected joints. This representation is compared
against a popular alternative defined over parts using approximated limb
conditionals. It is shown that using full limb conditionals results in a
model that is far more representative of the original training data. Fur-
thermore, it is demonstrated that Expectation Maximization is suitable
for estimating 3D pose and better convergence is achieved when using full
limb conditionals. To demonstrate the efficacy of the proposed method it
is applied to the domain of 3D pose estimation using a single monocular
image. Quantitative results are provided using the HumanEva dataset
which confirm that the proposed method outperforms that of the com-
peting part based model. In this work just a single model is learnt to
represent all actions contained in the dataset which is applied to all sub-
jects viewed from differing angles.
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1 Introduction

There is currently much interest in being able to extract the pose of a human
from a single or sequence of images. A popular technique used to achieve this
is to represent the human body as a probabilistic graphical model, where the
nodes of the graph represent anatomical parts of the body and the edges rep-
resent the relationships between these parts [1–4, 12–14]. However, a limitation
with current part based methods is the use of the Loose Limbed model, which
approximates the joint between two connected parts using a soft connection.
This representation does not enforce the connecting joint between neighboring
parts to coincide and is employed as the likelihood of two neighboring parts be-
ing detected independently, with their connecting joints exactly aligned, is very
low. In this work a method is presented that uses ancestral sampling to generate
a set of hypothesis locations where the connecting joint between neighboring
parts is constrained to coincide.

Forcing joints between connected parts to coincide will address one the key
limitations with the current Loose Limbed approach and will result in a model
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that is better constrained and is a more intuitive representation of the human
body constructed of rigid parts with fixed joint locations. To achieve this, rather
than defining a model over parts/limbs as is usual in current Loose Limbed
approaches [1–4, 12, 14], we define a model where the hidden nodes of the graph
represent joint locations. This proposed representation is referred to as a Fixed
Joint model.

A further limitation with current Loose Limbed approaches is that typically
the conditional probability distribution used to represent the relationship be-
tween neighboring parts, referred to as a limb conditional in this work for brevity,
is approximated by learning a distribution over the relative state between con-
nected limbs [1–3, 14]. This is motivated by our knowledge of the human body;
a given joint has a fixed and known range over which it can move. However,
in order to learn approximate limb conditionals the original training data must
be converted into a relative form. This process eliminates much of the original
data’s structure, therefore any model learnt using this will fail to capture its
full complexity. In this work it is shown that learning a full conditional model
between connected parts provides a richer and much more accurate description
of the training set and therefore the object being modeled.

The principal reason that human pose estimation is difficult is the large num-
ber of degrees of freedom that the human body contains. Attempts to efficiently
search this space using a graphical part based representation of the human body
include Dynamic Programming [1] and Belief Propagation [4, 13] for 2D pose es-
timation and stochastic methods such as the Pampas algorithm [6], Variational
MAP [7] and Partitioned Sampling [8] for 3D pose estimation. These methods are
iterative and require that a model must first be defined to propagate the particle
set between iterations of the algorithm; how this model is defined is not intuitive
and often the covariance of this model is simply initially overestimated and then
shrunk at each iteration to force convergence [7, 9]. A motivation for using full
limb conditionals is that pose can then be efficiently estimated using Expecta-
tion Maximization (EM) and importance sampling. At each iteration samples
are drawn from the prior which are then weighted to approximate the posterior
distribution given the current observations, using this sample set the prior is
then reestimated. In the following iteration a new set of samples are drawn from
the reestimated prior and over a number of iterations the prior converges to a
solution; empirically this solution appears to be global. Using this method sam-
ples are always drawn from the prior and an extra model to propagate samples
between iterations is not necessary. A further advantage of this approach is that
it results in a compact parametric description of the posterior distribution. This
parametric representation is particularly advantageous in applications such as
tracking where drift between frames could be added deterministically by scaling
the resultant covariances.

In this work three principal claims are made: Firstly, compared to the Loose
Limbed representation the proposed Fixed Joint model results in a prior that is
far more representative of the original training set. Secondly, that the proposed
Fixed Joint model results in faster convergence of the EM algorithm compared
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to the Loose Limbed model. Thirdly, that the Fixed Joint model outperforms
that of the Loose Limbed model at estimating pose. These claims are supported
by both quantitative and qualitative results using the HumanEva data set [5].
Whilst the presented approach is general enough that it could readily be applied
to scenes captured from multiple views or employed in a tracking framework,
here it is applied to single images and it is assumed that the position of the root
node is fixed and known a priori. We employ this constrained scenario as the
focus of this paper is on highlighting the limitations of existing representations
and demonstrating the advantages of the proposed method through detailed
analysis and comparison of performances. This is best achieved by constraining
any experiments so that observed differences in performance can only be a direct
result of the methodology used. However, the presented approach is adequately
efficient such that uncertainty in the root node could be accommodated by sam-
pling the root position multiple times, however, this is currently left for future
work.

2 Pose Estimation

The problem of estimating pose of an articulated object can be defined over a
probabilistic graph where the set of n hidden nodes vi ∈ V represent the set
of parts used to represent the object and {vi, vj} ∈ ℰ represent the edges that
connect the nodes of the graph. Given a set of proposal values for each node
X = {xi, ..,xn} and a set of observations for each node Z = {zi, .., zn} the
posterior can then be calculated as

p(X∣Z, µ) =
∏

{i,j}∈ℰ
p(xi∣xj , µij)

∏

i∈V
p(zi∣xi) (1)

where xi is assumed to be the child of xj , p(xi∣xj , µij) are limb conditionals
which represent the model prior and µij is a connection parameter, and p(zi∣xi)
are observational likelihoods. Pose can then be estimated by finding the config-
uration X∗ that maximizes this equation. It is assumed that the graph used to
represent the articulated object is a tree and therefore contains no loops.

The focus of this paper is on the comparison between using a Loose Limbed
model defined over parts and a proposed Rigid Joint model defined over joint
positions. As discussed in the proceeding section, whilst the Loose Limbed model
approximates the limb conditional p(xi∣xj , µij) from Equation 1 with a model
learnt over xi in the frame of reference of xj denoted by p(xij ∣µij), the Rigid
Joint model uses full limb conditionals p(xi∣xj , µij) which we show to be both far
more representative of the original training set and result in faster convergence
of the EM algorithm. In the following Sections we describe the limb conditionals
learnt for each model, how samples can be generated from these models and how
Equation 1 is maximized using EM.

2.1 Model Representation

Loose Limbed Model The Loose Limbed model is based on that presented
in [2] which we briefly describe. The model is defined over parts and each part
has 6 degrees of freedom xi = (ri,Θi), where ri ∈ R3 and Θi ∈ SO(3) which
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represent the global position of the proximal joint of the ith part and its rotation
respectively, each part has a fixed length. The rotations are represented by unit
quaternions, therefore xi ∈ R7. Rather than learning a conditional distribution
over xi and xj directly a distribution is instead learnt over xij , where xij is the
position and orientation of the ith part described in the local frame of reference
of the jth part. Given a set of training data the distribution p(xij ∣µij) can be
learnt directly for each part using a GMM. Following [2] each limb conditional
is represented using three components.

Rigid Joint Model The proposed Rigid Joint model is defined over joint
positions, where the distance between neighboring joints is fixed. Conditional
models p(xi∣xj , µij) are learnt where xi is the orientation of the ith joint defined
in a global frame of reference (i.e. that of the root node). These models are also
learnt using a GMM.

To create a conditional model a joint distribution p(xi,xj ∣µij) is first learnt
from which the conditional distribution can be calculated during run time as
described in Section 2.2. A prior distribution over the position of each joint is
learnt over spherical coordinates (½, µ, Á), where ½ represents the length between
the joint and the joint to which it is connected, µ ∈ [0, 2¼] represents a rotation
around the xy-plane and Á ∈ [0, ¼] represents the elevation measured relative to
the z-axis. Since the length is fixed ½ is constant for each joint and we have only
two free parameters µ and Á, which describe the orientation of each joint mea-
sured in the global frame of reference (i.e. that of the root node). We represent
these two angles using polar coordinates (r, !), where the rotation ! = µ and
the radius r = Á, where r ∈ [0, ¼].

The limitation with this representation is that a discontinuity occurs at
r = ¼. To overcome this we also create a duplicate polar coordinate system
where r = ¼ − Á so that at the origin Á = ¼. Each coordinate system is referred
to using the suffixes 0 and ¼ respectively as this indicates the value Á at the
origin. Each position in the coordinate system also has a weight associated with
it such that those nearer the origin are weighted higher that those near the
outer edges (i.e. near the discontinuity) these weights are defined as w0 = r

¼
and as w¼ = 1 − w0. Hence, a measurement represented in 3D spherical co-
ordinates x = (½, µ, Á) is thus represented as a set of 2D vectors and weights
x = {x0, w0,x¼, w¼}, where x0 = (r0, !0). Using this representation a GMM
could be learnt for each coordinate system independently and weighted propor-
tional to the total weight of the training data used. These weights then describe
whether the data was distributed near to the origin of the coordinate system,
where it is better represented, or near the edge, where the discontinuity occurs
and it is poorly represented.

Given training data for two connected joints i and j, Xi = {[xi]1 , .., [xi]l}
and Xj = {[xj ]1 , .., [xj ]l}, where xi = {xi

0, w
i
0,x

i
¼, w

i
¼} and l is the number of

samples in the training set, a joint distribution is learnt by first concatenating
the two sets of training data together so that Xij = {[xij ]1 , .., [xij ]l} where
xij = (xi,xj). Using this data the joint probability distribution p(xi,xj ∣µij)
can be estimated, however, as each training point is represented by a set of two
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vectors and two weights, xi = {xi
0, w

i
0,x

i
¼, w

i
¼} and xj = {xj

0, w
j
0,x

j
¼, w

j
¼}, when

concatenating the data we must do so for each possible combination of the order-
ing of Á, i.e. xij = {xij

00,x
ij
0¼,x

ij
¼0,x

ij
¼¼} where for example xij

0¼ = {(xi
0,x

j
¼), w

ij
0¼}

and the corresponding scalar weights are simply multiplied together so that
wij

0¼ = wi
0w

j
¼. The consequence of this is that for each pair of connected joints

we have four sets of training data, a GMM is learnt for each independently. Each
GMM is assigned a weight proportional to the total weight of the training set

(e.g. W ij
0¼ =

∑l
k=1

[
wij

0¼

]
k
) so that GMM’s with more data clustered near the

origin have a higher weight since these will better represent the data. The prior
of each individual GMM component is then scaled by this weight.

The number of components used to represent each distribution in the model
is set to reflect the increasing complexity in the distribution at nodes located at
a further depth from the root node. To represent this we employ the following
scheme: Joints connected directly to the root node are given three components
and at every subsequent increase in depth a further two components are added.
Under our model the maximum number of components is assigned to the wrists
with nine components. Whilst this may immediately seem advantageous since
the Rigid Joint model is afforded a maximum of nine components compared to
the Loose Limbed’s three, it should be noted that the rigid model’s distribution
must represent a far larger space; it is likely the three component distribution of
the Loose Limbed model is far more representative of the training data once it
has been converted into a relative form. Our argument is that in the process of
converting the original training set so that a Loose Limbed model can be learnt
a large amount of information is being discarded from it.

2.2 Sampling

As the graphical model used to represent the articulated object is a tree and
the root node is assumed to be fixed, samples can be generated using ancestral
sampling [10]. Samples are drawn hierarchically starting from those nodes clos-
est to the root node, then at each step down the tree, moving away from the
root node, a further set of samples can be drawn conditioned on those samples
generated for the parent node. To efficiently search the pose space the num-
ber of particles are exponentially grown moving out from the root node. This
ensures that the location of less constrained joints are searched using more sam-
ples. For each sample xm

j , N child samples are drawn from the limb conditional

[xn
i ]

N
n=1 ∼ p(xi∣xm

j , µij), N is referred to as the growth rate. As very few par-
ticles are needed to describe the prior distribution for nodes near the root this
exponential growth is not problematic, for example setting N = 8 will result in
4096 samples being generated for each of the wrists. For efficiency all covariances
used to represent limb conditionals are assumed to be diagonal.

Loose Limbed Model As the Loose Limbed model only uses an approximated
limb conditional a sample xn

i can be generated from a parent sample xm
j simply

by drawing a sample xn
ij ∼ p(xij ∣µij), which can then be transformed into the
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global frame of reference through M(xn
i ) = M(xn

ij)M(xm
j ), where M(xn

i ) repre-
sents the 3D object-to-world transform. To draw a sample from this distribution
a GMM component k∗ is sampled from the marginal distribution p(mk

ij) = ¸k
ij ,

where the connection parameters mk
ij = {¹k

ij , §
k
ij , ¸

k
ij} define the mean, covari-

ance and weighting of the kth component of the GMM respectively, following
which a sample for xn

ij can be drawn from xn
ij ∼ N (¹k∗

ij , §
k∗
ij ).

Rigid Joint Model Given a sample for the jth node xm
j , a sample can be

drawn conditioned on this by first calculating the marginal likelihood of ob-
serving this for each component in the GMM. Given that all covariance matri-
ces are diagonal, i.e. §k

ij = diag(¤k
ii, ¤

k
jj), the marginal likelihood is given by

p(xm
j ∣mk

ij) = ¸k
ijN (xm

j ;¹k
j , ¤

k
jj). Once this has been calculated for all compo-

nents the resultant distribution is normalized to give the conditional distribu-
tion p(mk

ij ∣xm
j ). A GMM component can then be sampled from this distribution

k∗ ∼ p(mk
ij ∣xm

j ), from which a sample xn
i can be drawn from the selected com-

ponent xn
i ∼ N (¹k∗

i , ¤k∗
ii ). Notice that in the case of the Loose Limbed model

p(mk
ij ∣xm

j ) = p(mk
ij) i.e. is independent of x

m
j .

2.3 Rigid Joint Model: Observing a Joint

The problem in defining a model over joints as apposed to parts is that there does
not exist one-to-one correspondences between joints and observations; we can not
directly observe a joint only the parts to which it is connected. To accommodate
this we define a set of m observable parts pi ∈ P , where m ∕= n and n represents
the number of joints in the model. We further define vj ∈ pi as being the set
of joints defining the ith part and conversely pj ∈ vi as being the set of parts
of which the ith joint is a member. The set of observations made for the parts
are defined by Z = {zi, .., zm}. The observational likelihood for the ith part can
be written as p(zi∣{xj∈pi}), where this distribution is dependent on a number
of joint positions. Intuitively, this represents that for example the appearance
of the forearm must be dependent on the location of both the wrist and elbow.
To estimate p(zi∣xj) from p(zi∣{xj ,xk∈pi∣j}) the nodes xk∈pi∣j can be treated
as nuisance parameters and marginalized over. In practice this is cumbersome
to calculate and instead the following approximations are used: If the xk∈pi∣j
are child nodes to xj we calculate p(zi∣xj) using the expectation of the set of
particles drawn from xj as xk∈pi∣j . If they are parent nodes we use the sample
of xk∈pi∣j from which xj was drawn. For the torso we use the expectation of
the shoulder and hips since these joints are not directly connected and do not
share child/parent relationships. This method then allows an approximation of
the term p(zi∣xj) to be calculated.

We further need to account for that a joint may be a member of several parts,
for example the elbow defines both the upper arm and forearm. To accommodate
this the likelihood terms p(zi∣xj) are combined for all parts to which that joint
is a member pi ∈ vj . This can be calculated as

p(zi∈vj ∣xj) =
∏

i∈vj

p(zi∣xj). (2)
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This suggests that to infer the position of a joint all parts to which it is connected
must be observed. Whilst in this section we have described how the observation
likelihood is calculated for a joint we will write p(zi∈vj ∣xj) as p(zj ∣xj) so that
the same notation can be used when describing optimization of both the Loose
Limbed and Rigid Joint model in the following section.

2.4 Maximization

Maximizing the posterior is achieved using EM where a new prior is estimated at
each iteration given the posterior calculated using the old prior (M-step), a new
set of particles is then generated from the prior and the posterior re-estimated

(E-step). Given a set of M particles for the jth joint
[
xm
j

]M
m=1

each is assigned a
weight proportional to the marginal likelihood p(xm

j ∣zj). This can efficiently be
calculated for each node using a simplified form of the Sum-Product algorithm.
The outwards messages from the root node are represented by the generated set
of samples and as such only backwards messages must be computed. Due to the
ancestral sampling method used this can be efficiently calculated, the marginal
for sample xm

j is computed as

p(xm
j ∣zj) = p(zj ∣xm

j )
∏

i∈Cj

N∑
n=1

p(xn
i ∣zi) (3)

where i ∈ Cj is the set of nodes that are the children of the jth node and the
summation is performed over the set of N samples that were drawn conditioned
on the sample xm

j under the ancestral sampling method.

At each iteration simulated annealing is used to ensure the distribution con-
verges so that wm

j = p(xm
j ∣zj)¯ , where ¯ is calculated at each iteration so approx-

imately 60% of the particles would be discarded if resampling were performed
[9]. Given the set of weighted samples the prior can then be reestimated.

2.5 Limb Likelihoods

A part is represented by a rectangular patch and defined by the joints that it
is composed from (Rigid Joint) or the proximal/distal joint of the part (Loose
Limbed). We use two image cues, edges and color. Edge cues are exploited using
a set of M overlapping HOG features [11] placed along the edges of the part.
Each feature is represented as a single normalized histogram of the local image
gradients and are combined such that p(zj ∣xj)edge = 1

M

∏M
m=1 H(µ⊥), where

H(µ⊥) returns the value in the histogram bin that is perpendicular to the edge
of the proposed part.

Color is exploited by placing a bounding box at the location of the root node
and then learning a foreground model using the pixel values within the box
and a model for the background using pixels outside the box. The models are
learnt using a GMM. This creates a very crude and noisy foreground probability
map, the likelihood is then calculated as the average foreground probability
value encompassed by the part. The individual likelihoods for each cue are then
combined as p(zj ∣xj) = p(zj ∣xj)edgep(zj ∣xj)col.
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3 Experiments

Both a Rigid Joint and Loose Limbed model were learnt using the Train partition
of the HumanEva dataset using ≈ 4500 frames of data taken across all subjects
and actions. Samples drawn from the prior of each model can be seen in Fig. 1
along with the training data from which the models were learnt. It is clear in this
figure that the samples drawn from the Rigid Joint model much more closely
resemble that of the training data, the samples from the Loose Limbed model
are much more broad and shows less clear structure, this is particularly clear on
the feet.

(a) (b) (c)  (d) (e) (f)

Fig. 1. Comparing samples of the left foot (green) and right wrist (blue) generated by
each model representation and the training data. Side View: (a) Loose Limbed model
(b) Rigid Joint model (c) Training data. Frontal view: (d) Loose Limbed model (e)
Rigid Joint Model (f) Training data.

To compare the performance of both models a test set was created from
the Validation partition of the HumanEva dataset. This was composed of 100
randomly selected frames from each action category (Box, Gesture, ThrowCatch,
Walk, Jog) selected across all color views and all subjects, so that 500 frames were
used in total. The root node and orientation was set using the pelvis marker data
from the groundtruth provided and the scale was set as the maximum distance
between the head and the feet. This scale is often inaccurate (e.g. if the subject
was squatting) however, is used so all experiments are easily reproducible.

Both methods used the same settings so that the only difference in each exper-
iment was the model used. Quantitative results can be see in Fig. 2 where it can
be seen that the Rigid Joint representation outperforms the Loose Limbed model.
We also experimented between updating the model by calculating marginals us-
ing Equation 3 or simply using local image evidence (i.e. setting p(xm

j ∣zj) =
p(zj ∣xm

j )). As shown the use of marginals improves the error, this is because
these allow information about observations being made at the extremities of the
tree to influence the convergence of those parts nearer the root node.

In Fig. 3 the expected pose and samples drawn from the prior are presented
after each iteration for the example shown, as can be seen the Rigid Joint model
converges much faster than the Loose Limbed model. Notice also the slip between
the parts of the lower left leg in Fig. 3 (a) (v) this is as joint positions are not
constrained to coincide in the Loose-Limbed representation.

To illustrate why a conditional model converges more efficiently than an
approximated conditional model consider Fig. 4, which shows a hypothetical
multimodal distribution. Whilst the full limb conditional model can converge, the
relative limb conditional can not until its parent’s limb conditional has converged
to a single mode. In Fig. 5 an example is shown using a growth rate N = 2, this
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Fig. 2. Pose estimation errors as a function of growth rate (N) for 2D (a) and 3D
(b) pose estimation after ten iterations of the algorithm. Dashed lines represent Loose
Limbed model and solid lines Rigid Joint model. The green and purple line show the
error using full marginals and the blue and red line shows the error using only local
image evidence.

(a)

(i) (ii) (iii) (iv) (v) (vi) (vii)

(b)

Fig. 3. Example of convergence for Loose Limbed model (a) and Rigid Joint model (b).
(i) to (iv) shows iterations 1, 3, 5, 10 respectively. Samples for the left (red) and right
(green) wrist drawn from each prior are also shown as is the expected pose. (v) shows
the final expected pose. (vi) and (vii) show the final 3D reconstruction with samples
that have been drawn from the final model.

uses just a maximum of 16 samples for the wrists. However, as can be seen the
presented method still finds the correct solution, it is the performance using very
few samples that is particularly impressive and makes this approach of value.

4 Conclusions

A method has been presented to estimate 3D pose from single images using a
stochastic search and Expectation Maximization. A novel part based represen-
tation has been defined over joint positions and compared against an existing
method, it has been shown quantitatively that the presented method outper-
forms that of the Loose Limbed model. Furthermore, we have demonstrated
qualitatively that using full limb conditionals results in a model that is more
representative of the original training set and efficiently converges under the EM
algorithm. Whilst in this paper it has been assumed the root node is fixed the
approach can be generalized to account for uncertainty in this value by sampling
multiple root node positions and will be the focus of future work.
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