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Abstract—We propose an active contour model using an external force field that is based on magnetostatics and hypothesized

magnetic interactions between the active contour and object boundaries. The major contribution of the method is that the interaction of

its forces can greatly improve the active contour in capturing complex geometries and dealing with difficult initializations, weak edges

and broken boundaries. The proposed method is shown to achieve significant improvements when compared against six well-known

and state-of-the-art shape recovery methods, including the geodesic snake, the generalized version of GVF snake, the combined

geodesic and GVF snake, and the charged particle model.

Index Terms—Active contours, deformable model, object segmentation, magnetostatic forces
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1 INTRODUCTION

A CTIVE contour or snake based methods have been
widely used for shape recovery due to their natural

handling of shape variation, e.g. [1]–[3]. Their design
normally involves the consideration of the following
three fundamental issues: contour representation and
its numerical solution, object boundary description and
stopping function design, and initialization and conver-
gence.

1.1 Contour representation and numerical method

Contour representation involves the decision whether
to use a parametric or implicit representation. Paramet-
ric active contours are usually represented as polyno-
mials or splines, e.g. [4], [5], and interpolated using
landmarks. They suffer from topological issues as it
is difficult to determine the evolution of the contour
crossing points and its reparameterization after every
topological change, hence, predefined topology adap-
tations are usually necessary, e.g. [6]. The selection of
landmarks is also non-trivial and critically influences
shape description. Implicit representations, on the other
hand, do not explicitly interpolate the contours. Instead,
they embed the contour into another function, which is
then temporally adapted to affect snake deformations.
The Level Set method [7] is the most widely used tech-
nique to implicitly represent active contours that handle
topological changes. The snake is embedded in the zero
level set and its temporal evolution is achieved by
deforming the entire level set function. It can naturally
model contour propagation and topological changes,
however, it is generally slower than parametric methods
as the deformation of a higher dimensional function is
necessary. Very recently Morse et al. [8] proposed to
implicitly represent active contours using radial basis
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functions (RBFs) by placing RBFs at snake landmarks.
This then avoids manipulating a higher dimensional
function, however, it requires dynamic insertion and
deletion of landmarks. Similar to parametric represen-
tation, the resolution of the landmarks can affect the
accuracy of contour representation.

While choosing a representation scheme, one also
needs to select appropriate numerical methods to solve
the contour evolution equation. The Finite Element
Method [9] is the common technique used in parametric
snake models, while the Finite Difference Method [7]
is mostly used in implicit snake models to numerically
solve the partial differential equations (PDEs). Alter-
native approaches do exist, amongst them [10] which
adopted the stochastic dynamics of interface propagation
into the level set framework.

1.2 Object boundary description and stopping func-

tion design

These functions determine where the contours are ex-
pected to be attracted to and be stabilized at. Bound-
ary description using the image gradient is the most
commonly used technique e.g. [1], [2], [11]–[13], which
assumes object separation by way of intensity discon-
tinuities. This often results in broken edges and weak
boundaries due to the lack of global information. Tech-
niques such as anisotropic smoothing [14] can be used
to enhance and refine the boundaries.

On the other hand, region-based techniques such as
[3], [15]–[18], generally use more global information to
define object boundaries. Zhu and Yuille [15] proposed
a region competition approach by performing statisti-
cal tests while growing multiple regions independently
and using a minimum description length (MDL) criteria
to minimize the overlapping of the growing regions
competing for neighboring pixels. In [3], Paragios and
Deriche used a bank of isotropic Gaussian filters, LoG
filters, and Gabor filters to extract textural features mod-
eled using a mixture of Gaussians. Their region-based
snake segmentation then was based on the maximiza-
tion of a posteriori probabilities. Wang and Vemuri [19]



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 4, APRIL 2008 633

proposed an active contour model based on tensor field
segmentation using a piecewise constant region model.
These techniques are generally application dependent,
need some prior knowledge of the objects of interests,
and like other region segmentation methods are liable
to over-segment or under-segment the object.

There have also been attempts to bridge boundary
and region-based techniques, e.g. [19]–[22]. For example,
Chakraborty et al. [21] integrated region segmentation
and gradient based boundary information in a Bayesian
framework, while Xie and Mirmehdi [22] used diffused
region forces to prevent the snake from leaking through
weak edges. One of the main challenges for integrated
approaches is that the region and boundary information
may not locally correspond.

1.3 Initialisation and convergence

As snakes generally provide locally minimized solutions,
it is a great challenge to achieve initialization invariancy
and robust convergence, particularly for boundary based
methods. The problem is compounded when the snake
has to deal with complex topologies and concave shapes.

Methods that rely directly on the boundary gradient
inevitably have very limited capture range and are not
able to reach deeper concavities. Using the distance
transform to obtain a distance vector flow (DVF) was
one attempt to enlarge the capture range [9], but this
still has difficulties with concave shapes. Caselles et al.
[1] introduced the constant flow into the geometric active
contour model to speed up its convergence and to pull
or push the active contour towards object boundaries.
However, this only monotonically expands or shrinks
the contour. The weighted area functional addition to
the geodesic snake by Siddiqi et al. [11] also did not
provide a satisfactory solution to convergence on weak
edges [23]. Xu and Prince [2], [24] iteratively diffused the
edge gradient vector to significantly enlarge the capture
range and increase the ability to reach concavities. Their
snake was initialized across the object boundary due
to the bidirectional nature of the vector field, where
vectors point towards the object boundary from both
sides. This can prevent the snake from leaking through
small boundary holes or weak edges, but only to some
degree. Also, bidirectionality can cause their contours to
collapse on approach to the same object boundary. More
importantly, Xu and Prince’s GVF/GGVF active contours
fail to evolve at saddle points, i.e. when the contour is
tangent to the force vector. This can be demonstrated
using the four-disc problem in Fig. 1 where there are four
saddle points (indicated in dark red) and five stationary
points (in light green) in the GGVF vector map (final
results in Fig. 4). These critical points are commonly
found in real images when using GVF/GGVF force
fields, greatly restraining their application to real world
problems.

There have been several attempts to solve the con-
vergence issue. Paragios et al. [12] added the constant

Stationary Point:Saddle Point:

Fig. 1. The four-disc problem - from left: An image con-
tains four discs, the GGVF vector map, enlarged saddle

point (red square) and stationary point (green square).

flow to the GVF model which pushes the active contour
when it is close to tangent to the underlying vector.
This however can not deal with stationary points, e.g.
the center of the image in the four-disc problem in
Fig. 1. Li et al. [13] suggested the active contour be
split along stationary and saddle points but this strategy
is inappropriate when the active contour is initialized
inside or crosses the object boundary. Gil and Radeva
[25] proposed the curvature vector flow (CVF), derived
from a curvature dependent distance transform, to push
the contour into concavities. Their method only reduces
the number of stationary or saddle points and can not
completely eliminate them. Moreover, it requires there be
no gaps in the object boundary. Very recently, Li and Acton
[26] proposed convolving the image edge map with a
vector field kernel, which comprises radial symmetric
vectors pointing towards the center of the kernel. This
is equivalent to assigning an attraction force for each
pixel position, based on which the snake is evolved.
The authors have shown better initialization and noise
insensitivity. However, it is still a stationary vector field
which will suffer from the convergence issues discussed
above.

Combined optimization techniques have also been
used to improve initialization invariancy and conver-
gence ability. Boykov and Kolmogorov [27] considered
the segmentation problem as finding geodesics, similar
to [1], but using graph cuts to find the global minimum.
This exhibits less sensitivity to initialization, but graph
cuts tend to choose shorter cuts which may result in in-
accurate segmentation. Similar ideas have been explored
by others, e.g. see [28].

Recently, Jalba et al. [29] proposed a charged particle
model (CPM) based on electrostatics. The particles are
attracted towards object boundaries due to the poten-
tial forces while being repelled by each other. The au-
thors demonstrated that the particles could be initialized
randomly across the image and did not suffer from
convergence issues related to GVF/GGVF as particles
once attracted to the boundaries would move along the
boundary under the influence of the repulsive force.
However, as shown in [30], particles on weak edges will
be attracted to nearby strong edges resulting in broken
contours. The method also frequently involves particle
insertion and deletion, and is computationally expen-
sive. Yang et al. [30] migrated this particle model to a con-
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tour model by using similar, but conditionally imposed,
attraction and repellant forces. Their model showed
improvements on the original CPM, the geodesic, and
the GVF snakes.

-*-

The three issues discussed above are not always in-
dependent of each other. An appropriate snake repre-
sentation ensures the snake handles the deformations
properly, however, representation schemes that support
topological changes do not necessarily always achieve
the desired contour evolutions. Better boundary descrip-
tion can improve convergence ability by preventing the
contour from leaking through and good convergence
ability is paramount to not compromise any gains from
carefully chosen contour representation and boundary
extraction. On the other hand, good convergence prop-
erties can compensate certain inadequacies in boundary
description, e.g. bidirectional forces can stabilize con-
tours at weak edges. In this paper, we show that using
a novel contour evolution force can achieve significant
improvement in initialization invariancy and conver-
gence ability, even when using very simple boundary
descriptions directly based on the image gradient.

In [31], we proposed a snake external force field based
on magnetostatics. We hypothesized magnetic interac-
tions between the active contours and the object bound-
aries, resulting in a magnetic field that can push the
contours to object boundaries. A simplified snake model
was only applied to synthetic boundaries to illustrate
the convergence ability of the model. In this paper,
we present the full Magnetostatic based Active Contour
(MAC), including force field generation, edge preserving
magnetic field diffusion, and its fast implementation.
Furthermore, we present a comparative analysis of MAC
against several state-of-the-art deformable models.

We note recent independent work by Xiang et al.
[32] proposed a physically motivated active contour
model inspired by the elastic interaction between line
defects in solids. They used different degrees of image
smoothing by varying the Gaussian convolution kernel
and running independent snake segmentation for each
smoothed image. Final segmentation was obtained by
comparing these independent segmentations followed
by contour shortening based on curvature flow. Xiang
et al.’s simplified long range force between the object
boundaries and the active contour takes a similar form
to our magnetic force in [31]. However, the MAC model
is more intuitive, and uses different strategies to perform
initialization and to handle image noise.

The main contributions of this work can be summa-
rized as follows:

1) A novel external force using global pixel inter-
actions is introduced as a boundary based snake
model. This force field is generated based on hy-
pothesized electro-magnetic interactions between
image edge pixels. Unlike traditional boundary
based snakes which examine edge strength locally

to decide whether to keep evolving or to converge,
the MAC model utilizes edge pixel interactions
across the whole image which provides a more
global view of object boundary representation.

2) Significant improvements have been achieved with
the proposed force field upon boundary based snake
models. Comparative experimental results have
demonstrated superior performance in initializa-
tion invariancy and convergence ability, as well
as recovering broken boundaries and weak edges,
compared to several traditional and state-of-the-art
boundary based snake methods. This has been our
main objective.

3) The proposed boundary based snake method has
also shown comparable performance to much more
sophisticated region based approaches. The pro-
posed MAC model exhibits similar initialization
and convergence properties to region based tech-
niques, but imposes simpler assumptions and re-
quires less prior knowledge. MAC snake can also
recover shapes with broken boundaries or even
disconnected parts, which is generally difficult for
region based methods. However, the MAC model
is not intended to compete against or replace region
based methods, but provides a good alternative to
those methods for object segmentation, particularly
when prior knowledge is incomprehensive or dif-
ficult to obtain.

4) An edge preserving method is proposed to enhance
the snake performance in the face of noise interfer-
ence.

5) Fast, yet accurate, computational methods are pre-
sented for efficient implementation of the MAC
model, which is potentially beneficial for a variety
of methods and applications.

Section 2 gives a brief introduction to the six external
force fields we compare against. The proposed method
is then described in Section 3. Experimental results and
comparative studies appear in Section 4. Section 5 con-
cludes the paper.

2 BACKGROUND

Here we briefly review six boundary based deformable
models which we shall later apply to for comparison
against our proposed method. All the models come with
certain advantages and disadvantages. In what follows,
f is the gradient magnitude of image I , x is a pixel
position, N̂ is the unit inward normal of the evolving
contour, and κ denotes the curvature.

2.1 Distance vector flow (DVF) snake

The Euclidean distance transform D(x) is computed to
find the nearest distance to the object boundary for
each pixel position x. In [9], Cohen and Cohen used
the Chamfer distance, which approximates the Euclidean
distance, to derive this external force for the active
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contour. The DVF field is given as −∇D(x) and the
active contour is then stated as:

Ct = αg(x)κN̂ − (1 − α)(∇D(x) · N̂)N̂, (1)

where α is a real constant, and g(x) = 1/(1 + f(x)),
commonly known as the stopping function.

2.2 Geodesic snake

The image dependent constant flow can be formulated as
Ct = g(x)N̂. This shows each point on the contour mov-
ing in the direction of its normal at a speed proportional
to g(x). It monotonically shrinks or expands the contour
towards the object boundary and plays an important role
in both the geodesic snake model introduced by Caselles
et al. [1], and in later incremental improvements, such as
[11]. The geodesic snake is formally given as:

Ct = g(x)(ακ + c)N̂− (∇g(x) · N̂)N̂, (2)

where c is a constant controlling the contribution of the
constant flow. The second term of (2) acts like a doublet,
which attracts the snake closer to the object boundary.

2.3 Generalised gradient vector flow (GGVF) snake

The parametric GVF [24] and its generalized version
GGVF [2] introduced by Xu and Prince have been widely
used in active contour models as external forces, e.g.
[33]. The GGVF field, ṽ(x), is defined as the equilibrium
solution of the partial derivatives of:

vt(x) = p(|∇f(x)|)∆v(x) − q(|∇f(x)|)(v −∇f(x)), (3)

where the initial vector field v(x, t = 0) = ∇f(x), and
p(.) and q(.) are monotonically non-increasing and non-
decreasing functions respectively, controlling the amount
of diffusion. These two functions are selected such that
p(.) gets smaller as q(.) becomes larger with the desired
result that in the proximity of large gradients, there will
be very little smoothing and the vector field will be

nearly equal to ∇f(x), i.e. p(|∇f(x)|) = e−
|∇f(x)|

K and
q(|∇f(x)|) = 1 − p(|∇f(x)|), where K is a constant

and acts as a trade-off between field smoothness and
gradient conformity. The GGVF active contour can then
be defined as:

Ct = αg(x)κN̂ + (1 − α)(ṽ(x) · N̂)N̂. (4)

2.4 Geodesic GVF/GGVF (GeoGVF/GeoGGVF)

snake

In [12], Paragios et al. integrated the GVF with the
geodesic active contour model, referred to here as Ge-
oGVF. The GVF provides the bidirectional force to drive
the contours towards edges, while the constant flow
from the geodesic model poses conditional inflation
or deflation forces on the contour. The two forces are
mutually exclusive [12]:

Ct = g(x)
(

ακ + (1 − |H(x)|)ṽ(x) · N̂ + H(x)
)

N̂, (5)

where the weighting function H(x) is H(x) = sign(ṽ(x)·

N̂)e−δ|ṽ(x)·N̂|, and δ is a scaling factor. The additional
adaptive bidirectional constant force is designed to de-
termine the curve propagation when the GVF term
becomes inactive, e.g. at saddle points. GGVF generally
outperforms GVF [2], and as such we implement this
method with GGVF instead of GVF. We shall refer to it
as GeoGGVF.

2.5 Curvature vector flow (CVF) snake

Gil and Radeva [25] proposed a new distance trans-
form using a modified mean curvature flow. The curva-
ture vector flow was then computed from this distance
transform to attract contours into shape concavities1.
Their principal idea was to evolve the object boundaries
according to curvature flow till they were no longer
concave. The inward or outward propagation was de-
fined by monotonically non-negative or non-positive
curvature flow such that, ft = max(κ, 0)N̂ on inward
propagation, and ft = min(κ, 0)N̂ on outward prop-
agation. A distance map Dκ(x) was then obtained by
tracing back the evolution of the boundary from which
the curvature vector flow, −∇Dκ(x), was derived. The
CVF active contour is then:

Ct = αg(x)κN̂ − (1 − α)(∇Dκ(x) · N̂)N̂. (6)

It is worth noting that for the CVF snake, the object
boundary has to be closed, otherwise, pre-processing is
required to close any gaps.

2.6 Charged particle model (CPM)

CPM is based on the theory of charged particle dynam-
ics, consisting of a set of positively charged particles
moving in the image domain and interacting with nega-
tive fixed charges proportional to image gradients. These
positive particles are attracted towards the fixed charges
under the influence of a mesh-to-particle (Lorentz) force,

FL(cx) = q
4πε

∑

y∈Ω,y 6=x ey
R̂xy

R2
xy

and repelled by each

other by the repulsive particle-to-particle (Coulomb)

force, FC(cx) = q2

4πε

∑

x′∈Ω,x′ 6=x

R̂
xx′

R2
xx′

where q is a positive

charge assigned to free particle c at position x moving
in a 2D discrete domain Ω, ey is a fixed negative charge
assigned at position y, ε is the permittivity constant, and
R̂xy denotes the unit distance vector between x and y

with distance Rxy. The integrated force, Fi, acting on
the particle cx is:

Fi(cx) = w1FL(cx) + w2FC(cx) + βFd(cx), (7)

where Fd(cx) = −vcx is the damping force required
to attain a stable equilibrium state, vcx is the particle
speed, and w1, w2, β are weighting parameters for the
attraction, the repulsion, and the damping forces, respec-
tively. These three parameters need to be tuned such that

1. Note that the curvature vector flow is different from the well-
known curvature flow.
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w2 > w1 > β. CPM uses a multiscale process to ensure
the particles spread across the image. The particles are
then gradually attracted to boundaries according to (7)
and advance along the boundaries, with proper particle
addition and deletion during their movement. Once
the particles have stabilized, “curve” reconstruction is
necessary in order to obtain the object boundary repre-
sentation.

MAC, described next, shows significant improvements
on all the above techniques.

3 PROPOSED METHOD

As demonstrated in [2], [13], [23]–[25], bidirectionality
is a very useful feature for an external force field as it
facilitates more arbitrary, cross boundary initialization
and improves the snake’s performance towards weak
edges and broken boundaries. However, the vector force
fields in all these works are stationary. This means
almost inevitably, there exist critical points, such as
saddle points, that prevent the snake from continued
propagation towards object boundaries.

Combining multiple force fields each with its different
influences on a contour’s evolution is a common way
to improve snake evolution, e.g. [12], [30]. In both of
these works, an external force field is pre-computed as
the basis for manipulating snakes, i.e. the GVF in [12]
and the attraction force field in [30]. These force fields are
stationary and independent of the snake evolution. Later,
as their snake deforms, these force fields are modified
according to the snake’s position. In the case of [12]
a weighted balloon force, borrowed from the geodesic
snake, is used to influence the contour deformation.
However, the direction of the balloon force at each
contour position is merely a projection of the GVF vector
on to the snake normal. As shown later in Section 4, this
combination can not sufficiently resolve the problems
related to the vector field itself. In [30], an image depen-
dent competition force exerted by the snake itself as it
moves is combined with the stationary attraction force
to obtain a dynamic force field. However, the balance
between the attraction force and the competition force
in this technique is critical for successful convergence
and sometimes requires careful tuning.

Our approach is to define a novel, single, external bidi-
rectional force field which has the ability to dynamically
update itself while the contour evolves. This is signifi-
cantly different from other works and we reemphasize
that it does not involve the introduction of any extra
forces to mobilize the force field. In brief, we hypoth-
esize electric currents flowing through both the object
boundary and the active contour. The magnetic fields
generated by each of the currents will interact and cause
a force between them. This magnetic vector field behaves
as an external force to push or pull the contour towards
the object boundary. Although the magnetic field caused
by the image gradient is stationary, the force it imposes
on the snake is dependent on the snake’s evolution. Thus

the force field is dynamically changing along with the snake.
We show that by using this electromagnetic interaction
analogy the snake is then much less sensitive to its
initial position and much more robust towards complex
geometries and topologies. Next, we present the basic
theory of magnetostatics which is used to provide the
analogy for MAC. The Level Set method is then used to
implicitly represent and evolve MAC.

3.1 The magnetostatic field

Consider two points P and Q with charges, qP and
qQ, and velocity vectors uP and uQ respectively. The
magnetostatic force exerted upon qP due to qQ is [34]:

FQP = qPuP × BP , BP = µ0qQuQ ×
R̂QP

4πR2
QP

, (8)

where BP is known as the magnetic flux density at point
P due to the point charge at Q, µ0 is the permeability
constant, RQP is the distance between the two charges,
R̂QP is their unit distance vector, and × denotes the
cross product. The magnetic field H is then defined
as H = µ−1

0 BP . It is clear that qu can be viewed as
an elementary current introduced by a moving charge.
In order to obtain the magnetic field introduced by a
current, we consider infinitesimal current segments dlP
and dlQ at P and Q on loops C1 and C2 with electric
currents I1 and I2 respectively (see Fig. 2). The total
force on dlP due to current I2 is then:

dFP = I1dlP × BP , (9)

where BP is re-written as:

BP ≡
µ0

4π
I2

∮

C2

dlQ ×
R̂QP

R2
QP

, (10)

commonly known as the Biôt-Savart Law. It defines how
the magnetic flux density is obtained from a given cur-
rent. In Fig. 2, the red ‘+’ symbols denote the magnetic
field going perpendicularly into the image plane and the
blue ‘·’ symbols denote the magnetic field coming out
of the image plane. These symbols represent the overall
magnetic field due to current I2. The magnetic force dFP

at position P on C1 is in its outward normal direction.
Next, we make an analogy of these principles in our
active contour model.

3.2 The MAC model

Magnetostatic theory is applied to our active contour
model by charging both the object boundary and the
active contour with electric currents. The concept is
represented again in Fig. 2 by treating C1 as an active
contour and C2 as an object boundary. As we are in-
terested in the deformation of the contours, only the
forces exerted by the object boundary on the active
contour are needed. In other words, we shall ignore
magnetic forces introduced by the active contour. We
then obtain an estimation of the hypothesized direction
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Fig. 2. Magnetic force between two currents - see text for

details.

of the currents in the object boundary and the active
contour, and compute the resulting magnetic flux density
at each pixel position in the image using (10). Based on
this field the active contour drives towards the object
boundary according to (9).

The direction of current for the object boundary can
be computed using boundary orientation estimation. Let
Ix(x) and Iy(y) be the partial derivatives in x and y
for image I . This gradient vector field, (Ix(x), Iy(y)),
contains vectors that are locally perpendicular to edges.
Thus, the boundary orientation, O(x), can be conve-
niently obtained by a 90◦ rotation of the normalized
gradient vectors (Îx(x), Îy(x)):

O(x) = (−1)λ(−Îy(x), Îx(x)), (11)

where λ = 1 gives an anti-clockwise rotation in the
image coordinates, and λ = 2 provides a clockwise
rotation. This is then assigned as orientation of current
in the object boundary.

In a similar fashion, the direction of current for the
active contour is given based on the estimation of the
contour orientation. However, as we are using a level set
representation, the contour is already embedded in a 3D
surface Φ, obtained from the signed distance transform
on the contour. No extra preparation is therefore nec-
essary other than similarly rotating the gradient vector
∇Φ of the level set function either in a clockwise or anti-
clockwise direction. As a result, these rotated vectors
with hypothesized electric currents will interact with
each other according to (9) and (10) as illustrated in
Fig. 2. The rotated gradient vectors given in (11) attract
nearby contour segments that have the same current
direction and repulse those that have the opposite. This
means a value of 1 or 2 for λ results in opposing contour
propagation. We discuss this later in Section 4 where we
also show how to use both λ values simultaneously.

Next, we can work out the magnetic flux density
B(x) at each pixel position x due to the electric current
applied to the object boundary. Note only pixels on the
object boundary will contribute to the magnetic field. Let
S denote the set containing all the boundary pixels and
s denote a boundary pixel. So, given current If(s), the

magnetic flux density is computed as:

B(x) =
µ0

4π

∑

s∈S

If(s)Γ(s) ×
R̂xs

R2
xs

, (12)

where Γ(s) is the electric current vector at s and propor-
tional to the edge strength, that is, Γ(s) = (f(s)O(s), 0),
R̂xs is the unit vector from x to s, and Rxs is the distance
between them. Then, given the current IC applied to the
active contour C, its force field due to the magnetic field
is:

F(c) = ICΥ(c) × B(c), (13)

where Υ(c) denotes the electric current vector on the ac-
tive contour position c and is the rotated unit vector from
∇Φ. Note F(c) is always perpendicular to Υ(c), i.e. the
force is always imposed in the contour normal inward
or outward direction. Thus, the propagating contour will
not suffer from saddle and stationary point issues, e.g.
it will deal successfully with the four-disc problem. As
the snake is embedded in the level set function and no
longer considered as an explicit function, we also need to
extend the forces imposed on the snake itself across the
image domain in order to deform the level set function.
This can be achieved using a force extension method
such as [35], however, in this study we can simply treat
each level set in Φ as a snake and compute its forces
using (13). Thus, F(c) is extended to F(x), that is, across
the image, i.e. F(c) = (F(x), 0) where c = (x, 0).

Given the force field F(x) derived from the magnetic
interactions between the object boundary and the active
contour, the evolving active contour under this force
field is:

Ct = (F(x) · N̂)N̂. (14)

As contour smoothing is usually desirable, the standard
curvature flow is added to rewrite the full MAC contour
evolution formulation as:

Ct = αg(x)κN̂ + (1 − α)(F(x) · N̂)N̂, (15)

where g(x) is the stopping function as before. Its level
set representation then takes this form:

Φt = αg(x)∇ ·

(

∇Φ

|∇Φ|

)

|∇Φ| − (1 − α)F(x) · ∇Φ. (16)

From (1), (4), and (6), we can see that DVF, GGVF, and
CVF’s external force fields are static with direction and
magnitude based on spatial position only, hence the con-
tour in these cases can not propagate through stationary
or saddle points. In the geodesic model (see (2)) direction
is solely based on the active contour but magnitude is
based on the boundary, thus it can only monotonically
expand or shrink and can not recover broken boundaries
or be initialized across boundaries. The GeoGGVF (see
(5)) is dominated by the external GGVF force but is
conditionally influenced by a constant force imposed on
the contour, however as the direction of the constant
force is mainly determined by the external vector flow,
it still can not resolve the topological issues of the static
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Fig. 3. From left: estimated boundary orientation, magnitude of the magnetic field, initial active contour, initial external
force field, evolving contour, and its associated external force field. Final result is shown in the penultimate row of Fig.

4.

external force. In contrast to these models, MAC has
the distinctive feature in that its direction relies on both
spatial position and the evolving contour. The external
bidirectional force is dynamically adaptive based on
contour position (see 13), and equally importantly its
direction is always normal to the evolving contour. The
strength is determined by the magnitude of the magnetic
field, thus the snake can be initialized across the object
boundary and reach into concavities. Fig. 3 illustrates
MAC’s adaptive external force field.

3.3 Edge preserving magnetic force field diffusion

In keeping with other snake models based on image
gradients, MAC can also suffer from image noise. Here,
we perform anisotropic diffusion based on the idea in [2],
[24] for the GVF/GGVF snakes to refine the magnetic
force field when necessary. However, we modify the
diffusion functions in order to better preserve edges and
show that only diffusing a scalar field, rather than a
vector field, is sufficient. Thus, there is also a gain in
computational efficiency.

Note that the hypothesized magnetic forces are 3-
dimensional in nature but perpendicular to the image
plane, and we are only interested in the forces in the
image plane. So, the magnetic flux density in (12) only
has a non-zero component which is perpendicular to the
image plane and we only need to diffuse the flux density
along this direction. Thus, diffusing this component,
denoted as B(x), is equivalent to diffusing B(x) in the
image plane. The diffused field B̂(x), is the equilibrium
solution of:

Bt(x) = p(B(x))∆B(x) − q(B(x))(B(x) − B(x)), (17)

where B(x) is initially set to B(x), and p(B(x)) and
q(B(x)) are given as:

p(B(x)) = e−
|B(x)|f(x)

K , q(B(x)) = 1 − p(B(x)), (18)

Weighting the flux density magnitude with f(x) in the
diffusion term, p(B(x)), ensures there is as little diffusion
as possible at the object boundaries, while homogeneous
areas will generally have small flux density due to a lack
of support from edges, resulting in substantial diffusion.
Examples of these are given later in Section 4.

3.4 Implementation

Object boundary description may be obtained using any
standard edge detector, such as the Sobel filter as used
in this paper. Some erroneous edges can be removed by
dropping those with magnitude less than a very small
percentage, say 10% , of the maximum magnitude. This
also reduces later computational costs.

The main computational costs lay in two stages: evolv-
ing the level set function and computing the magnetic
flux density. The Narrow Band approach [7] is used in
order to save on costs associated with updating the level
set function. The summation involved in the magnetic
flux density computation (see (12)) is generally compu-
tationally expensive. However, this can be significantly
reduced by letting only edge pixels be involved in the
summation. More savings can be made by approximat-
ing the flux density based on interactions in a fixed radial
distance Rc, instead of across the whole image, i.e. by
replacing s ∈ Ωf(s) with s ∈ ΩRc

in (12). Rc should
be reasonably large to prevent null flux density. In this
paper, we used Rc = 100 throughout the experiments
and found it a good tradeoff between accuracy and
speed.

Alternatively, a slightly less precise but an even faster
approach can be used based on the relationship between
the magnetic field and the magnetic vector potential.
The magnetic flux density can be calculated based on
its magnetic vector potential A(x) [34]:

B(x) = ∇× A(x), A(x) =
µ0

4π

∑

s∈f(s)

If(s)
Γ(s)

Rxs

. (19)

The magnetic vector potential can be decomposed into
two orthogonal terms corresponding to the image coor-
dinates, (i, j), i.e. A(x) = (Ai(x), Aj(x)),

Ai(x) =
µ0

4π

∑

s∈f(s)

If(s)
γi(s)

Rxs

, Aj(x) =
µ0

4π

∑

s∈f(s)

If(s)
γj(s)

Rxs

,

(20)
where γi(s) and γj(x) are the two corresponding or-
thogonal components of Γ(s). Both of them take the
same form as the Coulomb force potential [36]. Thus, the
P3M method [36] can be used to efficiently approximate
the magnetic vector potential by computing short range
interactions exactly and long range interactions approx-
imately as used in [29], [30]. We also note that equations
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in (20) can each be viewed as a convolution with an
inverse distance kernel. This can then be very efficiently
solved in the frequency domain using FFT.

4 EXPERIMENTAL RESULTS

To objectively examine MAC’s initialization invariancy
and convergence ability, we first present results on vari-
ous shape geometries and topologies using synthetic im-
ages with well-defined object boundaries. These include
the four-disc problem, acute concavities, multiple objects
with complex geometry and topology, and imperfect
boundaries. More results, animations, and demonstra-
tion software can be found online2.

The CPM model does not in general have topologi-
cal issues when object boundaries are clearly defined,
since unlike contour models its particles are manipulated
individually. However, on real images where imperfect
object boundaries, such as weak edges, often occur, CPM
struggles to recover object shapes even after careful post-
reconstruction. Thus, in subsections 4.1, 4.2, and 4.3,
CPM is not considered. In 4.4, all methods reviewed ear-
lier in Section 2, including CPM, are compared against
each other in recovering objects with weak edges and
broken boundaries. Subsections 4.5 and 4.6 demonstrate
MAC’s ability in handling even more arbitrary initializa-
tions and noise interference. Then, in 4.7, comparative
analysis is performed on real images and more results
of the proposed MAC model are presented. In 4.8, MAC
is compared against region based methods, and the
experiments are concluded in 4.9 with a discussion on
parameter sensitivity and computational complexity.

4.1 The four-disc problem

Even though this is such a simple image and the active
contour models are all using level set representation,
convergence issues still arise. The solution becomes par-
ticularly challenging under certain initialization condi-
tions. The first two rows in Fig. 4 show comparative re-
covered shapes for the DVF, geodesic, GGVF, GeoGGVF,
CVF, and MAC models in columns (b) to (g) respectively.
When the initial contour was placed outside the four
discs (first row), only the geodesic snake and MAC could
accurately recover them. However, in a more arbitrary
cross-boundary initialization case (second row), only
MAC was successful. The saddle and stationary points
(see Fig. 1) prevented the other contours from recovering
the discs. The geodesic active contour in this case simply
disappeared after reaching the image borders.

4.2 Recovering acute concavities

Next, we consider the recovery of an acute concavity as
shown in the third and fourth rows in Fig. 4, again with
different initialization conditions. For the DVF, GGVF,
and GeoGGVF snakes, their stationary vector force fields

2. http://vision.cs.bris.ac.uk/AC/MAC/

exhibit stationary and saddle points, e.g. the saddle point
at the entrance of the concave shape which prevents the
snake converging to the object boundaries. Again, given
an arbitrary cross-boundary initialization, the geodesic
snake suffers severe problems and the constriction on the
left side of the concave shape causes difficulties for the
CVF active contour. MAC was the only active contour
model that could successfully recover the shape in both
initializations.

4.3 Handling complex geometries and topologies

When dealing with complex geometries, such as the
swirl shape and the text “PAMI” shown in the last two
rows in Fig. 4, MAC was the only model that managed
to fully recover the shapes. The latter example further
illustrates MAC’s ability in dealing with multiple objects
with complex topology.

Table 1 presents comparative results for the four-
disc problem and recovering concavity and complex ge-
ometries with different initializations. The accuracy was
measured by calculating the percentages of foreground
pixels that were actually segmented as foreground (FG)
and background (BG). The overall accuracy gives the
measure for correctly segmented pixels given the total
number of pixels in the image. The proposed MAC
model significantly outperforms other boundary based
snakes with a very high overall accuracy of 99.0% while
the rest were well below 80%.

4.4 Recovery of broken boundaries and weak edges

Fig. 5 shows an S-shaped object with numerous breaks
in its boundary. The geodesic and CVF snakes explicitly
require there be no gaps along the object boundary. Thus,
they will not be able to recover this S shape, no matter
how much care is taken with their initialization. The
GGVF and GeoGGVF snakes may be able to recover
the shape with very careful initialization (notice there
are several critical points due to the concave shape and
curved body). CPM will rely purely on post-processing
reconstruction as the particles alone can not close the
boundary gaps. However, MAC can successfully recover
the shape with any initialization condition, for example
a small square contour initialized at the tip of the S.

To further illustrate the importance of bidirectionality
and dynamic force fields, Fig. 6 shows a circular ob-
ject with a partially blurred boundary segment, com-
monly used for weak-edge analysis, e.g. in [22], [23].
The geodesic snake in row (a) leaks through the weak
edge due to the noisy stopping function. The GGVF
and GeoGGVF snakes can converge to the weak edge
with careful initialization due to their bidirectional force
fields, however a more arbitrary initialization as seen
in row (b) causes those snakes to collapse resulting
in failure. The CVF snake requires a binary edge map
without any gaps along the object boundary, which
makes its use impractical in cases such as this one. Row
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(a) (b) DVF (c) Geodesic (d) GGVF (e) GeoGGVF (f) CVF (g) MAC

Fig. 4. Comparing shape recovery on synthetic images (by columns) - (a) initial snakes; (b) recovered shape using

DVF, (c) geodesic, (d) GGVF, (e) GeoGGVF, (f) CVF, and (g) proposed MAC snakes.

TABLE 1
Comparative results on synthetic images (%).

DVF Geodesic GGVF GeoGGVF CVF MAC
Four-disc FG 100 100 100 99.2 100 99.3
outside BG 69.9 97.9 74.0 79.5 70.9 100
initialization Overall 83.0 98.8 85.2 88.0 83.5 99.7
Four-disc FG 1.3 100 1.5 0.3 1.1 100
cross BG 82.6 0 79.7 80.1 83.0 98.9
initialization Overall 47.3 43.4 45.8 45.5 47.5 99.4
Concavity FG 100 100 100 99.9 99.9 100
outside BG 70.1 100 71.1 74.4 96.8 96.4
initialization Overall 82.4 100 83.0 84.8 98.0 97.9
Concavity FG 36.9 100 37.2 32.4 56.8 98.7
cross BG 99.9 0 99.3 100 99.1 98.8
initialization Overall 73.7 41.0 75.3 74.9 90.2 99.3
Swirl FG 37.4 99.7 37.2 32.4 56.8 98.7
cross BG 93.1 0 92.6 96.0 96.6 98.4
initialization Overall 76.2 30.3 75.8 76.7 84.5 98.5
PAMI FG 2.9 100 1.1 0.6 2.0 99.6
cross BG 92.6 10.2 88.7 89.0 92.2 98.7
initialization Overall 61.8 41.0 58.7 58.6 61.2 99.0

Overall Average 70.7 59.1 70.6 71.4 77.5 99.0



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 4, APRIL 2008 641

Fig. 5. Recovering an object with broken boundaries - from left: initial shape with 23 boundary gaps, estimated
boundary orientation using chain codes, magnitude of the magnetic field, initial active contour, evolving contours, and

stabilized MAC.
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Fig. 6. Recovering an object with weak edges - (a) geodesic, (b) GGVF, (c) CPM, and (d) MAC snakes.

(c) shows CPM’s particle evolution starting from a grid-
like initialization across the whole image. In this case, the
particles do not stop even after reaching the boundary as
they are still under the influence of nearby boundaries.
Thus, particles can not usually stabilize at weaker edges
and move along towards stronger edges resulting in
gaps. The gaps shown in row (c) can be closed with some
post-processing, however in real images where weak
edges often appear, the discontinuity can be so severe
that it is beyond repair, as shown later in Subsection
4.7. MAC, on the other hand, does not suffer from these
issues and can successfully localize the object, as shown
in row (d).

4.5 Arbitrary initializations

In the previous examples, e.g. Fig. 4, we showed MAC’s
resilience to arbitrary initialization. Three more examples
are given in Fig. 7. In the first row, the swirl shape is
used with the initial snake just crossing the object. In the
next row, several circular snakes were evenly distributed
across the image domain. In the last row of Fig. 7, the
same uniformly distributed initialization was used to
recover the text “PAMI”, which contains multiple objects
and complex topology.

4.6 Noise sensitivity

The magnetic flux density diffusion described in Section
3.3 reduces MAC’s sensitivity to noise. We corrupted
the swirl shape image with Gaussian noise ranging
from 10% ∼ 50% of the pixels as shown in the first
row of Fig. 8. The same initialization used in Fig. 4
was applied while also applying the same degree of
flux density diffusion, i.e. K = 0.2 in (18). The results
presented in the next row in Fig. 8 show little discern-
able differences. The overall accuracy only degraded
slightly from 98.6% to 98.1%, while noise level increased
significantly. Fig. 9 compares two horizontal profiles of
before and after flux diffusion. The oscillation around
zero magnetic flux magnitude in the original profile
would introduce erroneous contours in the final snake
segmentation. However, the proposed diffusion method
removes undesirable noise but preserves true object
boundaries. Although the proposed model can clearly
handle a certain degree of noise interference, any snake
reliant on image gradients will inevitably be affected by
excessive noise corruption.

4.7 Experimental results on real images

Next, we show comparative results on real images con-
taining weak edges and complex topologies with acute
concavities. MAC was compared against all the methods
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Fig. 7. Arbitrary initializations in MAC- first two rows: swirl shape using different initializations to Fig. 4; third row:

complex shapes (“PAMI”) using uniformly distributed circular snakes. The first column shows the initial snakes; second
to fifth columns show intermediate stages; and the last column shows the recovered shapes.

Fig. 8. Shape recovery with noise - first row: noise corrupted images (10% → 50% Gaussian noise in steps of 10);

second row: recovered shapes. From left, overall accuracy compared to groundtruth: 98.6%, 98.4%, 98.4%, 98.2%, and
98.1%.

0 50 100 150 200 250
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Horizontal pixel position

M
a

g
n

e
ti
c
 f

lu
x
 m

a
g

n
it
u

d
e

0 50 100 150 200 250
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Horizontal pixel position

M
a

g
n

e
ti
c
 f

lu
x
 m

a
g

n
it
u

d
e

Fig. 9. Edge preserving magnetic flux diffusion - from left: A noise corrupted image with a highlighted scan line;

Magnetic flux magnitude profile before diffusion; Magnetic flux magnitude profile after diffusion.
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Fig. 10. Comparative study - results by row: (a) DVF, (b) geodesic, (c) GGVF, (d) GeoGGVF, (e) CPM, (f) MAC.

except the CVF snake, as CVF specifically requires closed
binary object boundaries which we found difficult to
obtain in our images. Fig. 10 shows a brain MRI image
and its comparative segmentation results. For the active
contour models, the snake was initialized across the left
and right hemispheres, while for the particle model a
grid of charges was used. The static vector force based
methods (DVF, GGVF, and GeoGGVF) failed to evolve
through the tortuous structures and collapsed to nearby
edges as shown in rows (a), (c), and (d). The geodesic
snake, in row (b), stepped across the weak edges but
also failed to localize the boundaries. The free charges
of CPM initially reached most of the object boundaries,
but later failed to stabilize at weaker edges resulting in
incomplete boundary description (row (e)). The MAC
contours succeeded in evolving through the narrow and
twisted structures as shown in row (f). Multiple regions
were captured simultaneously.

In Fig. 11, another comparative example is given but

with the initial snake placed inside the object of interest
without crossing the object boundaries. The DVF snake
failed to evolve further once it was tangent to the un-
derlying forces. GGVF and GeoGGVF suffered a similar
problem and although finer parameter tuning might
result in better results, the saddle and stationary points
inside the object would inevitably lead to failure for both
these snakes. CPM again struggled at weak edges neigh-
boring strong edges and produced only partial recovery
of the shape. Finally, MAC did not suffer from any of
these problems and localized the object successfully.

More results using the proposed MAC model are
shown in Fig. 12. None of the other methods we com-
pared against could give satisfactory results in any of
these cases, with some not even if they were very
specifically initialized.
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Fig. 11. Comparative study - results by row: (a) DVF, (b) geodesic, (c) GGVF snake, (d) GeoGGVF, (e) CPM, (f) MAC.

Fig. 12. More MAC examples on real images.
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Fig. 13. Segmenting an object with non-uniform intensity

and similar distribution to its background - From left:
the original test image, initial MAC snake, evolving MAC

snakes, and stabilized MAC snake.

4.8 Comparison to region based techniques

As discussed earlier in Section 1, region based tech-
niques, such as [3], [15]–[19], generally use more global
information in defining object boundaries. Common ap-
proaches include (i) global modeling of local statistics,
such as intensity and filtering responses, followed by
contour evolution based on object class probability [3],
[17], (ii) evolving contours based on local region as-
sumptions, e.g. piece-wise constant, and global energy
optimization [15], [16], [19], and (iii) expanding contours
subject to specific region uniformity criteria [18]. Also,
there are some recent works imposing model knowledge
while deforming contours e.g. [37]. This enhances the
snake performance towards weak edges, noise interfer-
ence, textured regions, and boundary occlusions. Due
to their region indication function, these snakes can be
initialized across object boundaries.

However, MAC as an image gradient based snake uses
much simpler assumptions and less prior knowledge. It
only assumes object boundaries collocating with inten-
sity discontinuity. Region criteria, such as uniformity, is
usually not universally applicable in object segmenta-
tion. Fig. 13 shows a simple object with non-uniform
intensity but very similar intensity distribution to the
background. The object boundary can be easily detected
by examining the intensity discontinuity regardless of
the similarities in regional statistics. Boundary based
snakes also generally require less parameter tuning. For
example, in the popular Mumford-Shah model, the scale
parameter can significantly change the segmentation
results. A lower value will allow more region boundaries
to appear which can result in over-segmentation, and
a higher value will produce a coarser segmentation
with a risk of under-segmentation [38]. As demonstrated
earlier, MAC can deal with broken boundaries and even
disconnected object parts (see Fig. 5 for an example),
which is difficult for region based techniques as object
boundary description in such methods requires regional
information support. One of the biggest advantages of
region based techniques is their initialization and conver-
gence ability. MAC has shown significant improvements
over boundary based snakes and has very similar per-
formance to region based techniques. Additionally, MAC
is much easier to implement and more computationally
efficient than most region based techniques.

Here, we provide a brief experimental comparison of
the MAC model with a region based snake proposed

in [17]. The intensity distribution was modeled using
Fuzzy C-means (here, we used Gaussian Mixture model
(GMM) for better accuracy). The posterior probability
was then used to propagate the contours (this is similar
to [3] but not using texture information). The level
set representation of the GMM region based snake is
formulated as:

Φt = ακ|∇Φ| +
β

1 − 2u(x)
|∇Φ| − ∇g(x) · ∇Φ, (21)

where u(.) is the posterior probability of the region of
interest. The first and third terms in (21) are designed
for local regularization. The second term which is de-
rived from the regional statistics is used to guide the
contour to expand or shrink. Fig. 14 shows an example
segmentation. Due to the nonuniformity, the GMM snake
failed to correctly segment the object. Note that MAC
was initialized across the boundary as well.

4.9 Parameter settings and computational complex-

ity

The parameters for the MAC model are α, λ, and K .
Parameter α appears in all level set based snakes and
is used to control the contribution from curvature flow
for smoothing. For most applications it can remain a
constant. Parameter λ determines the edge orientation
estimated as clockwise or anti-clockwise, one of which
results in localizing objects and the other in localizing
their background. This is application dependent and can
be determined by the user. However, we can evolve
two level sets simultaneously with the two possible λ
values. Fig. 15 gives an example of using dual level sets.
Different λ values produce two different magnetic flux
density fields with the same magnitude but reversed
directions across the image plane, according to (11) and
(12), which results in opposite forces on the snake and
hence two different contour evolutions (see Fig. 15).
Parameter K is only used when noise interference is
significant. In general, K = 0.2 is large enough to diffuse
noise corruption as demonstrated in Fig. 8. In most cases,
it may never be used.

MAC was developed in Java on a 2.8 GHz Pentium 4
running Linux. The main computational cost occurs at
two stages: computing the magnetic field and evolving
the level set embedded snake. The latter is similar to that
of the geodesic snake, but MAC converges faster when
near edges. For the former, a direct magnetic field com-
putation is relatively expensive, e.g. 107s for the 254×193
pixel image shown in Fig. 15. This reduced to 44s when
the magnetic interactions within a radial distance of
100 pixels only were computed. Alternatively, only 16s
was required when using the P3M method or as little
as 3s was needed for the FFT based method described
in Subsection 3.4. More computational efficiency can be
gained through code optimization and by implementing
in a compiled language such as C.
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Fig. 14. Comparison with region based snake - Top row: initial GMM region based snake, segmented regions while

evolving, and its stabilized segmentation; Bottom row: initial MAC snake, segmented regions while evolving, and

stabilized MAC segmentation.

Fig. 15. MAC with dual level sets - first row: Initial MAC snake, evolution of dual MAC contours, and stabilized snakes

in yellow and blue; second row: recovered shapes while evolving the first level set where λ = 1; third row: recovered

shapes while evolving the second level set where λ = 2.

5 CONCLUSIONS

We proposed an active contour model using a novel
external force field which is based on hypothesized
magnetic interactions between the object boundary and
the active contour. The MAC model can attract the
contour into deep concave regions and does not suffer
from saddle point and stationary point problems. Our
comparative study showed significant improvement in
initialization invariancy and convergence capability on
existing state-of-the-art techniques.

A fair computational performance comparison for all
the snakes mentioned in this paper is rather difficult,
if not naive, to contemplate. Not all the snakes are
successful on the same image and except for MAC,
all the other snakes require specific parameter tuning
and/or careful initialization. However, a simple com-
parison was made on a 256 × 256 image containing a
circular object which all the snakes could fully localize
with the same initialization. The computational times on
the same platform for the different snake models were:
28s for the DVF snake, 61s for the geodesic snake, 34s for
the GGVF snake, 75s for the GeoGGVF snake, 95s for the

CVF snake (including around 60s spent on constructing
its vector flow), and 38s for MAC.

The analogy of magnetic interaction between the ac-
tive contour and the object boundaries works well.
However, these interactions do not necessarily have to
obey physical laws. In other words, we may modify
the interactions in favor of our problem domain with-
out maintaining their physical meaning. For example,
R2

xs in (10) can be written in a general form as Rn
xs.

The value of n will then affect the degradation rate of
interaction forces in the image domain. By optimizing
a cost function, we can find an optimum value for n.
However, designing the cost function would involve
defining “optimum” snake segmentation, which is a very
difficult task and mostly application dependent. Also as
part of our future work, we plan to extend the MAC
model to deal with three dimensional data. The key
extension lies in the estimation of boundary orientation
in 3D.
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