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SUMMARY

In this paper, we present an approach combining both region selection and user point selection for user-
assisted segmentation as either an enclosed object or an open curve, investigate the method of image
segmentation in specific medical applications (user-assisted segmentation of the media–adventitia border
in intravascular ultrasound images, and lumen border in optical coherence tomography images), and then
demonstrate the method with generic images to show how it could be utilized in other types of medical
image and is not limited to the applications described. The proposed method combines point-based soft con-
straint on object boundary and stroke-based regional constraint. The user points act as attraction points and
are treated as soft constraints rather than hard constraints that the segmented boundary has to pass through.
The user can also use strokes to specify region of interest. The probabilities of region of interest for each
pixel are then calculated, and their discontinuity is used to indicate object boundary. The combinations of
different types of user constraints and image features allow flexible and robust segmentation, which is for-
mulated as an energy minimization problem on a multilayered graph and is solved using a shortest path
search algorithm. We show that this combinatorial approach allows efficient and effective interactive seg-
mentation, which can be used with both open and closed curves to segment a variety of images in different
ways. The proposed method is demonstrated in the two medical applications, that is, intravascular ultrasound
and optical coherence tomography images, where image artefacts such as acoustic shadow and calcifica-
tion are commonplace and thus user guidance is desirable. We carried out both qualitative and quantitative
analysis of the results for the medical data; comparing the proposed method against a number of interactive
segmentation techniques. Copyright © 2014 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Effectively separating objects of interest from background in images is of vital importance to many
medical applications. Automated techniques are appealing in terms of efficiency. More often than
not, prior knowledge about object appearance and/or shape is necessary to achieve meaningful
results. However, it is not always practical, or even possible, to obtain comprehensive prior infor-
mation and a sufficiently robust learning algorithm to deal with large and sometimes unpredictable
variations in real world images. An alternative approach to automated segmentation is to allow and
encourage user input and provide interactive segmentation results to suffice user demand. Often, one
dilemma is to balance user involvement and interaction flexibility, particularly given the ubiquitous
imaging device and ever-increasing amount of images in modern age. To effectively and efficiently
capture user intent is vitally important.
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The user interaction is conventionally made either by simple mouse click or drag operations on
the region of interest (ROI) or on the object boundary. An example is Intelligent Paint [1], which
is a simple interactive method that allows the user to identify all the regions inside an object. The
object region is interactively expanded by a simple click and drag operation. Then a homogeneous
area that has the same intensity profile is selected, which is very similar to those techniques adopted
in commercial software. Similarly, with Magic Wand, for example in Adobe Photoshop, the user by
simple clicks highlights all the homogeneous area that has the same intensity profile. The Intelligent
Scissors [2] and Live Wire [3] methods are among early methods to perform on the fly segmentation
by allowing the user to follow the object boundary, instead of region, through a few mouse clicks.
These methods are based on well-known shortest path algorithms, such as Dijkstra’s method, to
find the optimal shortest path between two user points. Shortest path methods have an advantage of
segmenting both open and close end objects. However, often only edge-based features are used to
find the shortest path, and more importantly usually those user points are treated as anchor points
that the segmented path has to go through.

With the help of powerful optimization techniques, the method of user interaction has been
expanded, for example, adding object/background strokes, at the same time simplifying user
involvement compared with painstakingly tracing the object boundary [3–9]. For example, the user
can simply draw multiple strokes inside and outside the object, then the segmentation model can
learn the distribution of pixel intensities for both object and background. These techniques usu-
ally are more suited for segmenting closed objects and not for open curve segmentation, but in the
proposed method we adapt the method so that it can be used with both open and closed objects.

Graph-cut algorithms are widely used to find optimal solution in interactive segmentation at poly-
nomial time complexity and usually for segmenting closed objects. Boykov and Jolly [4] introduced
a graph-cut-based interactive segmentation method by defining unary and pairwise costs of each
pixel. The unary cost is inversely proportional to the probability of each pixel to be in the object or
in the background, while the pairwise cost is based on the intensity difference between two neigh-
bouring pixels. Many methods have been introduced to extend this method, such as GrabCut [6]
and Lazy Snapping [10]. In the GrabCut, the authors proposed to use a Gaussian mixture model
to build a local colour model to enhance the unary cost. It reduces the user intervention by allow-
ing the user to define a rectangular window surrounding the object. Lazy Snapping is also based
on graph cut over a pre-segmented image using a watershed algorithm. K-means is used to cluster
the foreground/background colours and assign each pixel to the nearest cluster. The method also
has a boundary editing tool to refine the result. However, this method usually needs a multiple user
intervention to correctly cut out the object because of the simplicity in cost function.

Shortest path is another optimization technique that has been used in interactive segmentation,
for example [2, 3, 9]. These methods place the emphasis on boundary-based features; edge-based
features are used to define the cost between pixels. The user interactively identifies a starting point
of the path and iteratively adds more seeds around the outline of the object. On the other hand,
the intelligent paint method [1] allows the user to identify regions inside the object instead of the
boundary. The region is interactively expanded by simple click and dragging operations. Shortest
path has an advantage of segmenting both open and close end objects; however, many of them just
use edge-based features to find the shortest path, and the user points are generally treated as hard
constraints.

Incorporating shape prior to graph-based segmentation has also shown to improve the segmen-
tation result, for example [5, 11–13]. Veksler [5] introduced a star shape prior to graph cut, also
through user interaction. The user is required to specify the centre of ROI as the star point, and hence
all boundary points of ROI lie on the radial spikes from the star point. Additional points, specify-
ing foreground and background, are often necessary. A ballooning term is also used to discourage
bias toward small segment. However, the method can only segment the convex shapes. Gulshan et
al. [14] have extended the method to multiple stars by using geodesic paths instead of Euclidean
rays. Other interactive segmentation methods such as a transductive framework of Laplacian graph
regularizer [15] have been also introduced.

In this work, we propose an approach to combine two different types of user interactions, that
is, boundary-based interaction (utilizing the user input control points) and region-based stroke
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Figure 1. Edge-based detection in IVUS images. From left to right: initial image with user selections added,
resultant edge map obtained, and the segmentation produced (shown in red).

Figure 2. Examples of artefacts in OCT images. These are (from left to right) sew-up (shearing) error,
guide-wire reflection/shadow, stents, swirls, and speckles caused by blood in lumen occluding the

light source.

interaction, to segment the image. Unlike previous edge-based methods, we utilize a series of
soft constraints to guide the image segmentation. By switching to soft constraint, imprecise user
input is allowed, without adversely affecting the segmentation. To further augment this edge-based
approach, we allow the user to select regions for foreground interest with strokes. We show that this
allows effective combination of boundary and region-based features. The user points give the user
control over the segmentation process, allowing errors in segmentation to be easily prevented and
a more desirable result to be obtained; see Figure 1. We investigate two medical applications for
our proposed method: intravascular ultrasound (IVUS) imaging and optical coherence tomography
(OCT). Both of these modalities are catheter based and used in cardiology diagnosis, with IVUS
being more commonplace. These catheter-based approaches can be used to assess the severity of
any stenoses present, to categorize their morphology, and also allow for the measurement of ves-
sel diameter allowing the severity of any occlusions to be assessed by a clinician and the location
of any lesions, as well as many other clinical and therapeutic studies [16]. In most IVUS images, a
cross-section of the arterial wall is proceeded, with three regions: the lumen, the vessel (made up of
the intima and media layers), and the adventitia surrounding the vessel wall. The media–adventitia
border is the dividing layer representing the outer arterial wall. In IVUS images, the media can be
seen as a dark band, with no other distinct features. It is encapsulated by the adventitia, which is
a wide layer of fibrous connective tissue. OCT images are segmented to reveal the lumen border.
This is clearly visible for the most part, but in a similar fashion to IVUS images there are a number
of artefacts present. These are reflections/shadows caused by the guide wire, reflections/shadows
caused by stents, and other anomalies such as shearing (sew-up errors), presence of blood in lumen
etc.; see Figure 2 for some examples.

Because of the nature of these artefacts, automatic methods employed in these applications require
a significant amount of pre-processing [17, 18]: a large data set for training set [19] or a method
to remove the artefacts [20]. Our proposed method, by giving the user control to help the process,
removes the need for extensive pre-processing of our large data sets for training. The nature of
the IVUS and OCT images, with very pronounced artefacts, lend themselves well to this semi-
automatic approach, with most parts of the image being such that the automatic process will be
suitable, but by allowing user input, the difficult regions (such as shadows and various artefacts)

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1649–1666
DOI: 10.1002/cnm



1652 J.-L. JONES, X. XIE, AND E. ESSA

can be accommodated easily. Interactive segmentation that can efficiently and effectively transfer
user knowledge to segmentation is thus highly desirable in this application. It also allows us to
quantitatively evaluate our method, including both efficiency and accuracy.

The rest of the paper is organized as follows. Section 2 presents the proposed method, includ-
ing user input, superpixel segmentation, and multilayered graph segmentation. Experimental results
from segmenting medical data sets with ground truth are presented in Section 3. These show the
results for IVUS and OCT images and quantitive data. Also included are results for generic images.
Section 4 concludes the paper.

2. PROPOSED METHOD

The proposed method involves the user selecting a series of user control points on the image. These
represent the start and the end point for the segmentation, and the user-selected points act as the
attraction points in the shortest path search that results in the segmentation. These user-selected
points act in a fashion similar to an elastic band, pulling the segmentation toward them. In this way,
it is possible for the user to influence the segmentation process allowing them to preferentially select
features that they want. In order to enhance the image segmentation, the user can also select areas
for foreground using strokes.

An energy functional is then formulated on the basis of the combination of the attraction force that
is computed using distance transform and the discontinuity in foreground probability. By assum-
ing that the user points are in a sequential order (as without this the problem will be NP-hard
(Non-deterministic Polynomial-time hard) and computationally intensive), we construct a multilayer
graph with each layer encapsulating a single individual user point. Effectively, we create multiple
identical layers, all made up of duplicates of the image, for each user point added. The segmen-
tation problem is then transformed into searching the shortest path in this layered graph; that is,
the resulting segmentation is obtained through searching a minimum path in this stack of layers
in a manner similar to a 3D object. This layered approach allows the segmentation to be carried
out in polynomial time, instead of an NP-hard optimization problem, at the same time achieving
global minima.

2.1. User input

The proposed method allows two different types of user input: attraction points to indicate the edge
of the desired object and strokes to indicate the ROI. Figure 1 provides an example of segmentation
using the proposed method. Conventionally, user input to segmentation is focused on foreground
and background specification [4–7]. For example, in [6], the user interaction consists of dragging
a rectangle around the object of interest and in doing so the user specifies a region of background
that is modelled in separating the foreground object. Several other methods require the user to
specify points on the object boundaries instead [3, 8, 9] examples of other common methods are
shown in Figure 3. However, more often than not, these boundary-based user points are treated as
anchor points and the segmentation path has to go through them. This kind of hard constraint is not
always desirable. It does not allow imprecise user input, and it can lead to difficulties in combining
region-based and boundary-based approaches as discrepancy between different object descriptions
is generally expected. Notably, in [9] the authors introduced soft constraint user point by embedding
the user constraint in distance functions. The segmentation result is considered to be the shortest
path to loosely connect the user points. However, it is known to be a NP-hard problem. Hence, it
is assumed that the user points are placed in a sequential order and such a constraint reduces the
computational complexity to polynomial time. This user input constraint can be seen to be gener-
ally acceptable as it is intuitive to follow the outline of an object rather than skipping around. In this
work, we follow this approach to treat boundary-based user points. However, we also allow the user
to place region-based strokes. These strokes are used to model foreground probability, and the dis-
continuity in foreground probability indicates the presence of object boundary. We combine these
two types of user input with image features in an energy functional that is then optimized using
graph partitioning through finding the shortest path from the first to the last user points. Moreover,
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Figure 3. Examples of different segmentation methods on an IVUS image. From left: graph cut [4], seeded
star graph cut [5], GrabCut [6], and proposed method. Red curve shows the segmentation result; blue or
yellow for user points, background/foreground selections, and the initial window of the GrabCut. Green

shows the ground truth from manually labelled image.

we apply a superpixel segmentation in order to generate a much coarser, but irregular, multilayer
graph so that the computational cost is drastically reduced. It also provides a regional support at a
low level for the shortest path search in the graph.

2.2. Superpixel segmentation

Efficient search for the shortest path, for instance, using Dijkstra’s algorithm on a multidimensional
graph is not a trivial task. Many researchers attempted to speed up the Dijkstra’s algorithm by, for
example, using multilevel scaling [21] or restricting the search space [22] by deciding whether or
not the edge will be considered during the searching process. One mechanism that can be used to
minimize the amount of nodes on the graph is superpixel segmentation. Superpixel segmentation
is a process that groups a set of homogeneous neighbouring pixels together to reduce the complex-
ity of solving further image processing such as segmentation [1, 10] and object localization [23].
Superpixel segmentation algorithms vary from graph-based [24, 25] to gradient descent methods
[26, 27]. In this paper, we speed up the Dijkstra’s algorithm by using the mean shift method to over-
segment the image and thus create the superpixels. This over-segmented image is then used to create
the graph, by only considering the boundary of the superpixel regions as a potential path that can be
used to find the shortest path between two points; the whole process is thus far more efficient. Addi-
tionally, this superpixel segmentation provides low-level regional information to the graph search
which relies significantly on edge information.

Mean shift algorithm [26] is a non-parametric gradient descent method that iteratively shifts the
mean of the region toward the local maxima of the density for a given set of samples. Mean shifting
method is suitable for clustering data without any assumption of the cluster shape. It has been widely
used in many applications, such as segmentation [26] and tracking [28]. Given n data points (pixels)
of xi in the d -dimensional space Rd , the non-parametric probability function is defined by kernel
density estimator as the following:

f .x/ D
1

nhd

nX
iD1

K
�x � xi

h

�
; (1)

where h is the bandwidth parameter andK is the radially symmetric kernel such as Gaussian kernel
K.x/ D .2�/�d=2 exp

�
�1
2
kxk2

�
. The local maxima of density is located among the zeros of the

gradient jjrf .x/jj Š 0. So the mean shift can be derived as the following:

mh;G.x/.x/ D
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iD1 xiG

���x�xi
h

��2�
Pn
iD1G

���x�xi
h

��2� � x; (2)

where G.x/ D �K
0

.x/ and mh;G.x/.x/ is the difference between the weighted mean, using kernel
G, and x, the centre of the kernel. The mean shift vector points toward the maximum increase of
the density, and it converges at a nearby point where the density estimate has zero gradient.
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Figure 4. The use of superpixel segmentation to identify graph nodes in a single layer. Top row shows IVUS
example, bottom row natural image. From left to right: initial image, superpixel segmentation, and binary

representation of graph nodes.

Figure 4 provides an example of the mean shift segmentation. Mean shift is preserving the edge
features in the image. The black region, shown in the rightmost column of the figure, represents
areas on or close to edges in the superpixel segmentation and are used to construct the graph as
it is discussed in the next section. In order to prevent the segmentation being too jagged in IVUS
images (which are inherently more noisy than the real world examples used), it was necessary to
increase the amount of segmentation obtained in this stage (as can be seen when comparing the
middle column for the IVUS image and generic image).

2.3. Layered graph construction

In order to impose soft constraint for user point, we follow the approach proposed in [9] to construct
a layered graph so that given a set of attraction points we fit a curve to follow the edges in the image
and pass through the vicinity of the given points. The user points are assumed to be placed in a
sequential order, which is acceptable in most applications. The computational complexity, however,
is reduced from being NP-hard to polynomial time.

For each user point, Xi ; i 2 ¹1; 2; : : : ; kº, we create a new layer of directed graph. This is a
copy of the image layer, with the same edge-based weighting. In that way we have a series of
layers equal to the number of user points, n, plus an additional layer in order for the weighting of
the last user point to be used, as shown in Figure 5. This results in a multilayer directed graph,
G D .V;E/, where V is the set of vertices and E the set of weighted edges. For each pixel p,
there exits an edge e to each of its neighbouring pixels on the same layer, providing that they are
on the boundaries of the superpixels. Therefore, a pair of neighbouring pixels .p; q/ 2 V with a
corresponding edge e D .vp; vq/ also have an edge to the corresponding point on the superseding
layer e D .vpi ; vpiC1/, where i represents the current layer of the image. For each edge, we assign
a weight w to build a weighted graph .V;E/. These weights are calculated on the basis of whether
the edge is internal to a layer (wi ) or trans-layer (wx). By creating the graph in this way, an order is
established with the user points yet allowing for a global minimum to be found rather than a series
of pairwise local minima. Edges of zero weight are added from the start node s to each pixel in the
first layer and from the last layer kC 1 to the terminal node t . This has the effect of making the first
and the last user points elastic and not hard constraints. For example, if the first user point X1 is not
located on an edge, then in the overall minimization it would be of lower cost to enter the first layer
at the nearest point to X1 on a strong edge. In this way, all user points act as soft constraints.

If P is the set of pixels in the image, Ps is therefore the subset of pixels that also fall on the
boundaries of our super pixels, and pi and qi are pixels in layer i giving vpi as the vertex p in layer
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Figure 5. Example of 3D graph traversal. The stack of images on the right show how the graph is constructed
out of a number of layers corresponding to the number of user points nC 1. The algorithm finds the shortest
path through the layers, minimizing the costs of edges, boundaries, and distance from user points. The final

result of the segmentation is shown on the left.

i ; we can define the set of nodes V as

V D ¹s; tº [ ¹pi 2 Ps ^ 1 6 i 6 k C 1º (3)

and thus the set of edges as

E D

8̂
<̂
ˆ̂:

.s; vp1/jp 2 Ps [

.vpkC1 ; t /jp 2 Ps [

.vpi ; vqi /j.p; q/ 2 N ^ 1 6 i 6 k C 1 [

.vpi ; vpiC1/jp 2 Ps ^ 1 6 i 6 k C 1:
(4)

The segmentation is thus to find the shortest path from the start point s to the end point t ; see
Figure 5 across the 3D graph.

The edges on the directed layered graph are categorized as internal edges wi within individual
layers and interlayer edges wx . The weighting for these two types of edges is assigned differently.
The internal edges are assigned with two types of weights, that is, boundary-based edge weights
and region-based edge weights. The boundary-based edge weights are calculated on the basis of the
magnitude of image gradients, that is, using an edge detection function ge D 1=.1 C rI / where
I denotes the image or its smoothed version using, for instance, Gaussian filtering. Hence, for any
given edge between neighbouring pixels .vp; vq/, we assign a weight (we) according to

we..vp; vq// WD
1

2
jjp � qjj.ge.p/C ge.q//: (5)

The region-based edge weights are computed from foreground probabilities. The user strokes placed
in the foreground provide an estimation for foreground intensity distribution, which is then used to
evaluate each pixel in the image. The discontinuity in this generated probability map is then used to
compute the region-based edge weight in a similar fashion to image intensity, that is,

wf ..vp; vq// WD
1

2
jjp � qjj.gf .p/C gf .q//; (6)

where gf is the edge detection function based on probability values.
By combining in a weight derived from this discontinuity map, we add an extra level of robustness

to the method. As regions not selected as foreground will have an increased cost, if there exist
strong edges that may cause errors in our segmentation but are not selected as foreground, then the
likelihood of the segmentation following these edges is greatly reduced.
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The internal edge weight is thus the linear combination of the boundary-based weight and region-
based weight:

wi D we C wf : (7)

The attraction force imposed by user points is materialized through the interlayer edge weights wx .
We apply distance transform to the user points in each layer of the graph, and the interlayer edge
weight is assigned as wx D d.vpi ; vpj / where d denotes the distance transform function. This
distance weighting produces isolinear bands of weight around the user point, with increasing weight
to go through to the next layer as the distance from the user point increases.

2.4. Energy minimization

The energy function for any curve C in our method is a combination of three terms, that is, for any
arc C between two points pi and qj where the points are

C.p; q/ D wx C wi ; (8)

as wx can be written as

˛

kX
iD1

jjC.si / �Xi jj; (9)

and likewise wi can be written as

ˇ

L.C/Z

0

g.C.s//ds C

L.C/Z

0

gf .C.s//ds: (10)

This is all providing that the points are treated as being in a sequential order and that the
interconnections between layers are unidirectional. The overall energy function can then be
expressed as

E.C; s1; : : : ; sk/ D ˛
kX
iD1

jjC.si / �Xi jj

C ˇ

L.C/Z

0

g.C.s//ds

C

L.C/Z

0

gf .C.s//ds;

s:t:si < sj ;8i < j;

(11)

where ˛ and ˇ are real constants used to weigh the effects of the edge-based and distance-based
terms. Figure 6 shows how changing the ratio of these constants can be used to put more or less

Figure 6. Effect of changing ˛ and ˇ. The Image on the left shows the ratio of these two constants skewed
toward adding more emphasis on the user points, thus reducing the ‘elastic’ properties. The image on the

right shows the other extreme, with the user points being bypassed in favour of the stronger edge.

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1649–1666
DOI: 10.1002/cnm



INTERACTIVE MEDICAL IMAGE SEGMENTATION 1657

emphasis on the control points (even going so far as to remove the elastic property when the ratio is
skewed largely in favour of ˛ .

The first term is used to enforce the soft constraint by the user points, and it penalizes the paths
further away from the user points. The second term is the boundary-based data term that prefers
the path passing through strong edges, while the last term is the region-based data term that prefers
path travelling through abrupt changes in foreground probability. By using the layered graph con-
struction, the minimization of the energy functional is achieved by finding the shortest path from
the start point s to the end point t . The Dijkstra’s algorithm is used to calculate the shortest path in
the layered directed graph. Note that the interlayer edges are unidirectional so that the path cannot
travel back to previously visited layers.

The Dijkstra’s algorithm works on a directed graph G.V;E/ to find the shortest path between
two defined nodes; the algorithm divides the nodes of the graph into two sets: visited and unvisited
nodes. Once the node is marked as visited node, it will not be checked again. The algorithm starts
searching from the starting node s, assigns an initial tentative distance of zero to the starting node
and infinity to all other nodes, and then calculates the tentative distances for all neighbouring nodes;
these tentative distances are defined as the summation of the edge weightwi and the current distance
of the beginning node of that edge. The edge weight must be a non-negative value. The algorithm
will mark the node that has the minimum distance as a visited node. The algorithm will repeat the
process by calculating the tentative distance for all neighbouring nodes for all visited nodes and only
mark the node having the minimum distance as a visited node until the terminal node t is reached.
The running time of Dijkstra’s algorithm is O.jEj C jV jlogjV j/, where E is the number of edges
and V is the number of nodes.

3. EXPERIMENTAL RESULTS

To show the effectiveness of the proposed method, we test our method for two different medical
applications. The two medical applications use a medical data set of IVUS images that has ground
truth available for quantitative comparisons and a set of OCT images. The segmentation of images
in the medical application is very challenging as it generally requires anatomical prior knowledge,
as well as other expert knowledge in some cases, in order to sufficiently perform the segmenta-
tion task. This makes interactive segmentation the preferred approach to this application. Wherever
appropriate, we present comparisons with other interactive segmentation techniques. We also show
a more generic set of images to illustrate the versatility of our method and to highlight how it can
be used for other (medical) applications.

3.1. Intravascular ultrasound image segmentation

To study the efficiency and efficacy of the proposed method, we apply our method to a medical
image segmentation problem where expert prior knowledge in anatomy is necessary but also often
subjective. Here we need to interactively identify the media–adventitia border in IVUS images
where imaging artefacts are commonplace. Figure 12 provides several examples of IVUS images
(the ground truth of media–adventitia layer can be seen in green).

There have been many different approaches to the problem of segmenting IVUS images, for
example [16, 19, 29–32]. These can be broadly categorized into fully automatic methods or methods
that allow user interactions. In [29], the authors used contour detection and tracing with smoothness
constraint and circular dynamic programming optimization to segment the lumen border. It assumes
homogeneity of the lumen region and high contrast between lumen and artery wall. Katouzian
et al. [30] applied complex brushlet transform and constructed magnitudes-phase histograms of
coefficients that contain distinct peaks corresponding to lumen and non-lumen regions. The lumen
region is then segmented on the basis of K-means classification and a parametric deformable model.
Homogeneity of the lumen region is critical to the success of the method. Methods based on region
growing, for example [32], also suffer from such limitations, as artefacts and irregularities are very
common in IVUS images. Particularly for media–adventitia border, the region inside the border is
non-uniform as seen in Figure 7. Calcification in arterial wall leads to acoustic shadowing and high

Copyright © 2014 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. 2014; 30:1649–1666
DOI: 10.1002/cnm



1658 J.-L. JONES, X. XIE, AND E. ESSA

reflectance, as well as catheter and guild wire occlusion and artefacts. A stent placed against the
internal wall also produces strong features and acoustic shadows that break homogeneity. Incorpo-
rating user prior knowledge into segmentation hence is often necessary and has been shown to be an
effective approach. For instance, Essa et al. [19] incorporated a shape prior to graph-cut construc-
tion to regularize segmentation of media–adventitia border. However, these approaches generally
require significant amount of training data, and model re-training is often necessary in order to
adapt to new data sets. User initialization is an alternative approach to transfer expert knowledge
into segmentation, for example [3, 5–9, 33]. However, most user interactions are limited to either
boundary-based landmark placement or strokes indicating foreground and background regions. We
adopt the approach of combining two different types of user interactions, that is, boundary-based and
region-based, to segment media–adventitia border in IVUS. The user points are treated as soft con-
straint instead of hard constraint in most interactive segmentation methods. We show that this soft
user constraint allows effective combination of boundary and region-based features. The method is
evaluated on an IVUS data set with manually labelled ground truth and compared against state-of-
the-art techniques. Figure 8 illustrates the benefit of using user interaction to effectively influence
segmentation result. Through simple user input, the expert knowledge of the user can be put into
place while being augmented by the automatic process.

3.2. Optical coherence tomography image segmentation

We also compared our proposed method with other methods in OCT images (shown in Figure 9).
OCT is another catheter-based modality used in cardiology. In these images, we are segmenting the
luminal border rather than the media–adventitia border that was targeted in IVUS. We chose this as

Figure 7. Overview of an IVUS image and segmentation by the proposed method. (a) Original IVUS image.
(b) User input. (c) Segmentation result.

Figure 8. Effectiveness in imposing user prior knowledge. As in the natural image segmentation, the user can
select different edges by the use of user points. In this case, it can be seen that there are two possibilities for
the media–adventitia border in the image. By placing a couple of points, the user can steer the segmentation

along the path they desire.
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Figure 9. Comparison between ground truth (green) and (from left to right) star graph cut, seeded star
graph cut, single method (no regional constraints), and proposed method (red) for OCT images showing

segmentation of the lumen border.

Figure 10. Typical GrabCut segmentation results (red) on IVUS images. Ground truth is shown in green. It
can be clearly seen that the obtained results are considerably out from the ground truth.

OCT has far lower penetrance than IVUS images but yields a much higher resolution view of the
luminal border. This makes it favourable for assessing stent placement and other surface lesions.
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Table I. Quantitative comparison of the IVUS data set.

Method HD AOR Spec Sens Acc

Star graph cut Mean 60.57 81.22 89.22 89.86 89.29
STD 15.64 1.00 12.00 1.00 6.52

Star graph cut with F/B labelling Mean 43.81 86.05 90.39 93.99 92.17
STD 23.89 9.00 9.00 5.00 5.65

Single method without F/B labelling Mean 46.28 69.34 84.92 89.43 88.12
STD 9.73 9.24 5.82 10.53 8.76

Proposed method with F/B labelling Mean 33.57 89.93 94.21 93.14 94.41
STD 5.35 9.16 3.88 5.37 7.67

Bold font indicates best performance.
HD, Hausdorff distance (pixels); AOR, area overlap ratio (%); Spec, specificity (%); Sens,
sensitivity (%); Acc, accuracy (%); F/B, foreground and background.

Table II. Quantitative comparison of the OCT data set.

Method HD AOR Spec Sens Acc

Star graph cut Mean 21.55 91.75 98.09 96.73 97.41
STD 16.07 5.36 1.61 3.99 2.80

Single method without F/B labelling mean 21.47 91.66 98.01 97.11 97.56
STD 14.94 8.21 2.32 4.25 3.28

Proposed method with F/B labelling Mean 20.97 92.31 98.66 97.92 98.29
STD 15.84 4.99 1.76 3.60 2.68

Bold font indicates best performance.
HD, Hausdorff distance (pixels); AOR, area overlap ratio (%); Spec, specificity (%); Sens,
sensitivity (%); Acc, accuracy (%); F/B, foreground and background.

Figure 11. Comparison between ground truth (green) and single method [9] versus our proposed method
(red). Images on the left two columns show the single method, and the right two columns our proposed

method. Note that the user control points used remain the same for both the methods.
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Figure 12. Comparison between ground truth (green) and (from left to right) star graph cut [5], seeded star
graph cut [5], single method [9], and proposed method (red). Note that the user control points used remain

the same for both the single and proposed methods.
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Figure 13. Initialization dependency test. This test was carried out using the IVUS data. The number of user
points placed on the image was increased, and the effect of this on the observed metrics was recorded. It can
be seen that only after a very few number of user points have been added, the accuracy reaches a plateau,

which is an indication of good automation.

3.3. Quantitive results

In order to evaluate the results, we used a set of 248 IVUS images with ground truth. They were taken
from pull-backs on seven different patients. The ground-truth labelling was obtained through man-
ual labelling of the border of interest. These were then segmented using the proposed method, which
was compared with the method using only the edge detection and not the background/foreground
weighting (single method) [9] and star graph cut (both with single and multiple seed points) [5].
GrabCut segmentation was not used for the quantitative analysis, because as can be seen from
Figure 10 it performs very poorly in this application. The quantitive analysis was also carried out on
the results obtained from the OCT data. In this case, we were segmenting the luminal edge, which
is quite well defined and regular, so all methods saw an improvement in accuracy. The results were
obtained from a similar number of images as before (280) from seven different pull-backs.

The quantitative comparison is based on a number of metrics, including Hausdorff distance, area
overlap ratio, specificity, sensitivity, and accuracy. Table I shows the quantitative results obtained
from the IVUS data, and Table II shows the OCT data. The star graph-cut method performed
reasonably well with both foreground and background labelling. The implicit shape prior in star
graph construction proved to be a useful constraint in segmenting media–adventitia border that con-
forms well to this shape constraint. Comparable performance was achieved for the proposed method
without regional support example results shown in Figure 11. However, the full proposed method
outperformed the rest. Several typical segmentation results are shown in Figure 12.

To study the robustness of the proposed method, we carried out an initialization dependency test.
We tested our method with 15 user points as initialization. We then randomly remove one user point
each time for testing until we only have two points left for initialization. The overall results using
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five different metrics are shown in Figure 13. The proposed method achieved good performance
with just six user points. Considering in actual application where user input is far more experienced
than this random process, even less points may be needed.

3.4. Generic image segmentation

In order to demonstrate the versatility of the proposed method, we carried out segmentation of
generic real world images. We believe that our method could equally be used in other types of
medical image analysis, other than the two examples we provided. By showing the results of seg-
mentation of a series of real world images, we can further show the versatility and robustness of
this method.

The proposed method was evaluated using the Berkely Image Database [34]. This data set con-
tains images of various types. The methods were used to perform a selection/segmentation based on
features in the image that would be a realistic segmentation to be carried out (for example, object
selection, horizon selection etc.) The results from the proposed method were then compared with
other available methods, namely s � t graph cut [4], seeded star graph cut [5], GrabCut [6], and
layered graph search with only point-based interaction [9]. A selection of open and closed curve
segmentations were used to demonstrate and compare the results.

The proposed method showed a very favourable segmentation performance compared with the
methods we tested it against. The combination of a background/foreground separation, combined

Figure 14. Segmenting humans from complex scenes. From left: original image, graph cut [4], seeded
star graph cut [5], GrabCut [6], and proposed method. Red curve shows the segmentation result, blue for
the background strokes, green for foreground strokes, and yellow for star point and the initial window of

the GrabCut.
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Figure 15. Comparison between single method [9] and the proposed combined approach.

with the edge-based approach, gave the method a very robust segmentation, being able to segment
an object of interest from an image that other (single methodology based) techniques found difficult
to handle, for example if colours were closely related to the background or if there were many
conflicting edges. The advantage in being able to perform with open or closed curves is shown in
some of the images, for example dividing the image on the horizon or segmenting figures that extend
to the edge of the image. Figure 14 provides several comparative results in segmenting images of
humans from complex backgrounds.

Figure 15 demonstrates the advantages of the inclusion of regional data into the algorithm, in
comparison with [9]. In some cases, where there are edges other than those required, without the
regional selection, the segmentation can lose accuracy. By selecting the region specificity, in most
cases these edges can be ignored without the requirement for more user points, which would increase
the complexity of the graph.

4. CONCLUSION

We presented an interactive segmentation technique that combines boundary-based and region-
based object representations. We used this method to segment two sets of medical images (IVUS
and OCT). We adopted a layered graph representation to simplify computation and a superpixel
method to improve segmentation speed and efficiency. The proposed method was compared against
a number of recent methods and the standard graph-cut techniques, showing improved versatil-
ity and better results. Where other methods had difficulty with certain image types, the combined
approach was able to segment the desired information. We also show our method being used to seg-
ment generic real world images. This we believe shows how versatile the method is and how easily
it could be used for other (medical) applications.
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