
3422 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, VOL. 8, NO. 5, OCTOBER 2024

Graph Contrastive Learning for Tracking Dynamic
Communities in Temporal Networks

Yun Ai, Xianghua Xie , Senior Member, IEEE, and Xiaoke Ma

Abstract—Temporal networks are ubiquitous because complex
systems in nature and society are evolving, and tracking dynamic
communities is critical for revealing the mechanism of systems.
Moreover, current algorithms utilize temporal smoothness frame-
work to balance clustering accuracy at current time and clustering
drift at historical time, which are criticized for failing to charac-
terize the temporality of networks and determine its importance.
To overcome these problems, we propose a novel algorithm by
joining Non-negative matrix factorization and Contrastive learning
for Dynamic Community detection (jNCDC). Specifically, jNCDC
learns the features of vertices by projecting successive snapshots
into a shared subspace to learn the low-dimensional representation
of vertices with matrix factorization. Subsequently, it constructs
an evolution graph to explicitly measure relations of vertices by
representing vertices at current time with features at historical
time, paving a way to characterize the dynamics of networks at
the vertex-level. Finally, graph contrastive learning utilizes the
roles of vertices to select positive and negative samples to further
improve the quality of features. These procedures are seamlessly
integrated into an overall objective function, and optimization rules
are deduced. To the best of our knowledge, jNCDC is the first
graph contrastive learning for dynamic community detection, that
provides an alternative for the current temporal smoothness frame-
work. Experimental results demonstrate that jNCDC is superior to
the state-of-the-art approaches in terms of accuracy.

Index Terms—Dynamic community, graph contrastive learning.
non-negative matrix factorization, self-representation, temporal
networks.

I. INTRODUCTION

N ETWORKS effectively describe, model, and analyze
many complex systems from various disciplines, such as

social [1], [2], [3], ecological [4], and cancer networks [5],
[6], where each entity is denoted as a vertex, and an interac-
tion is represented by an edge. The ultimate goal of network
analysis is to extract potential and interesting graph patterns,
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that facilitate the understanding of structure and functions of
the underlying systems. For example, the critical abundance
thresholds in ecological networks proves that species that are
most likely to be extinctive are determined by another species
rather than morality rate, thereby providing solid principles for
environmental protection [4].

Clusters, also called modules and communities, are a typical
graph pattern (i.e., groups of vertices with the same or similar
features). Great evidence demonstrate that numerous networks
also present module structures (i.e., clusters are ubiquitous,
which correspond to dense subgraphs). For example, persons
of organizations with the same or similar aspiration are more
likely to establish partnership than those with opposite ideas [7].
Clusters of networks dramatically reduce the complexity of net-
works because the structure and functions of whole systems can
be approximately inferred from clusters. For instance, clusters
in gene networks are critical pathways, that serve as bio-markers
for cancer therapy [5]. Therefore, the detection of communities
in networks is a prominent task in network analysis.

Community detection corresponds to the classic graph cluster-
ing problem, which attempts to identify groups of vertices with
strong connectivity [8], [9], [10], [11], [12], [13], [14], [15],
[16]. Based on the strategies of algorithms, current community
detection methods are divided into two categories, namely,
topological structure optimization [9], [17], [18], [19], [20] and
feature learning based approaches [12], [21]. The former first
predefines topological indexes, such as modularity [9] and graph
cut [17], to quantify the connectivity of clusters. Subsequently,
these indexes are optimized to determine communities. These
algorithms are criticized for their sensitivity to network per-
turbation, whereas feature learning-based methods are devoted
to obtain the low-dimensional features of vertices. Typical al-
gorithms include matrix factorization and graph representation
learning [12], [21].

However, these algorithms are designed for static networks,
suggesting that the topological structure is irrelative to time.
Actually, complex systems in the real world are dynamic, where
the topology structure evolves time [22], [23], [24]. For exam-
ple, airlines systematically schedule their flights according to
the weather condition that is highly related to time, thereby
resulting in temporal flight networks, which are essential for
management [22]. Gene regulation networks are also evolving
as cancer progresses from initial to deleterious stages. In detail,
signal transduction signals are dysfunctional at the initial stages,
whereas pathways (clusters of genes) fail to execute their func-
tions at the late stages, resulting in gene deletion and recruitment
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during cancer progression [5], [6]. Temporal networks pave the
way to track evolving graph patterns, particularly dynamic clus-
ters, which are of great importance for revealing the mechanisms
of systems because these patterns are much more accurate to
depict structure of networks than static ones [23], [24].

Intuitively, temporal networks consist of a sequence of snap-
shots, where topology structure evolves, implying graph pat-
terns simultaneously by considering the structure within each
snapshot and the dynamics of subsequent snapshots. There-
fore, tracking dynamic communities in temporal networks is
considerably more challenging than detecting static commu-
nities, thereby presenting a significant obstacle in algorithm
design [25]. Furthermore, the most critical technique is the
characterization and quantification of dynamics of temporal net-
works, which are the foundation for tracking evolving commu-
nities. Balancing the connectivity of each snapshot (also called
clustering accuracy) and the dynamics (also called clustering
drift) of subsequent ones is also an urgent issue.

Thus, current algorithms address these two issues with various
strategies, which are the greatest difference of methods [26],
[27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38].
According to the principle for balancing clustering accuracy and
drift, the existing dynamic community detection methods can be
divided roughly into three categories, namely, coupling graph-,
two-stage-, evolutionary clustering-based methods. Coupling
graph-based methods [39] construct a single one by preserving
the dynamics of the original temporal networks and perform-
ing clustering on the constructed graph. These algorithms are
criticized for losing important information during preservation,
resulting in low accuracy. In essence, these algorithms replace
dynamic networks with static one, thereby ignoring the tempo-
rality of networks.

To allow for temporality of networks, two-stage-based meth-
ods independently address clustering accuracy and drift, where
they first perform graph clustering for each snapshot and then
reach the final clusters with consensus clustering [40], [41], [42].
Compared with coupling graph-based methods, these algorithms
not only avoid destroying the structure of temporal networks but
also facilitate the identification of dynamic clusters because any
conventional graph clustering can be directly applied. However,
independence of clustering accuracy and drift separates these
procedures, where clusters of two subsequent snapshots are very
unlikely to capture dynamics because connectivity is priori to
temporality. Hence, these algorithms have received criticism for
their poor performance.

Intrinsically, the coupling graph- and two-stage-based meth-
ods fail in terms of smooth clustering accuracy and drift, whereas
evolutionary clustering [26] overcomes this limitation with tem-
poral smoothness framework (TSF). More specifically, TSF
avoids separating clustering accuracy and drift by combining
these two items with a weighted linear function that serves
as the quantification function of dynamic communities. Many
algorithms are developed under the TSF model [30], [31], [43],
[44]. For example, DYNMOGA [30] sets clustering accuracy
and drift as two parallel objectives and performs multi-objective
optimization to identify dynamic communities. PisCES [43]
utilizes matrix factorization to identify dynamic communities,

where all snapshots are jointly integrated to capture the tempo-
rality of networks. In comparison to non-smoothness algorithms,
evolutionary clustering greatly enhances the performance of
methods for dynamic community detection, implying that it is a
good balance between connectivity and dynamics.

A. Motivation and Contribution

However, many problems for dynamic community detection
are unsolved. First, evolutionary clustering utilizes a linear
combination of clustering accuracy and drift by assuming that
dynamics are always the same. Actually, this assumption devi-
ates from the reality because the dynamics of various time differ
greatly. Thus, alternatives for TSF are needed critically. Second,
the available algorithms characterize and measure the dynamics
of clusters at the network or sub-network level, ignoring the
vertex-level dynamics and failing to fully depict the temporality
of networks. Recently, contrastive learning [45], [46], [47], [48]
remarkably improves quality of features with self-supervision
priori by exploiting positive and negative samples. The use of
contrastive learning to measure dynamics of temporal networks
is not attempted, which is one of the major motivation of this
study.

To tackle these problems, a novel joint learning algorithm
called jNCDC for tracking dynamic communities in temporal
networks is proposed. This algorithm integrates feature learn-
ing, evolution graph construction, and graph contrastive learn-
ing (Fig. 2). jNCDC utilizes non-negative matrix factorization
(NMF) to learn the features of vertices for successive snapshots
within a window. To avoid to balance clustering accuracy and
drift, jNCDC employs self-representation learning to construct
an evolution graph for each time, where vertices at current
time are represented by features at historical time. In this case,
the dynamics of networks are characterized at the vertex-level,
providing a more precise way to quantify the temporality of
networks. Graph contrastive learning enhances the quality of
features by selecting positive and negative samples from the
constructed evolution graph, thereby improving the performance
of algorithms for the clustering of temporal networks. Experi-
mental results show that jNCDC outperforms state-of-the-art
algorithms, indicating that graph contrastive learning is also
promising for tracking dynamic communities.

In summary, the main contributions of this study can be
summarized as follows:

– A novel strategy that represents vertices at current time by
using features at the previous time to characterize and quantify
temporality of networks is proposed. The evolution graph
for each time is constructed, paving a way to quantify the
dynamics of networks at the vertex-level.

– Graph contrastive learning for temporal networks is proposed.
It improves the quality of features by discriminating dynamic
and static vertices. As far as we know, it is the first attempt to
measure the dynamics of temporal networks with contrastive
learning, serving as a flexible framework for graph contrastive
learning.

– A joint learning algorithm called jNCDC is proposed.
This algorithm integrates feature learning, evolution graph
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construction, and graph contrastive learning into an optimiza-
tion problem. The experimental results show that it outper-
forms state-of-the-art baselines in terms of accuracy.

This paper is structured as follows. Section II provides an
overview of the related literature, while Section III outlines the
preliminary concepts. Sections IV and V present the algorith-
mic procedure and its results, respectively. Lastly, Section VI
concludes the study.

II. RELATED WORK

Temporal networks consist of multiple snapshots, where dy-
namic community detection simultaneously addresses clustering
accuracy at the current time (denoted as CS) and clustering
drift at the historical time (denoted as CT ). A large number
of algorithms address these two issues with various principles
that are loosely grouped into two main categories, namely,
independence strategies [40], [42], [49], [50], [51], [52] and
temporal smoothing-based methods [26], [30], [32], [33], [34],
[43], [53], [54], [55].

A. Progression of Algorithms With Independent Strategies

These independence-based algorithms simply extend static
community detection approaches, which are divided into two
classes, namely, one-stage- and two-stage-based methods. The
former first transform temporal networks into a single coupling
graph by adding time labels on edges and then performing graph
clustering on the constructed network with single-layer clus-
tering approaches [56], [57], [58], [59], [60]. HOP-NMF [59]
adopts an iterative network enhancement scheme to encode
higher-order proximity into the network, and then utilizes sym-
metric non-negative matrix decomposition of the network to
obtain the final community structure. JGSED [60] joint graph
construction, spectral embedding and spectral rotation to learn
the binary clustering indicator matrix to get community struc-
ture. Actually, these algorithms discard temporality to fit the
conventional graph clustering, thereby reducing complexity by
sacrificing the performance of methods because coupling graph
fails to preserve the temporality of communities. As such, these
methods are criticized for their poor preformance in terms of
detecting dynamic communities.

To avoid destroying network structures, two-stage-based
methods first performs static community detection indepen-
dently for each snapshot and then address the evolution of com-
munities at the subsequent snapshots. These algorithms differ
greatly in the principles of addressing evolution. For example,
DYNAMO [42] employs adaptive and incremental learning to
detect dynamic communities, whereas tNodeEmbed [51] utilizes
long short-term memory (LSTM) to learn temporality from
the static embedding of vertices. ePMCL [34] detects dynamic
communities based on genetic algorithm adaptive search for
optimal parameter combinations. Even though these algorithms
overcome the limitation of one-stage-based methods, they fail
to enhance the performance of detecting dynamic communities
because of the independence of clustering accuracy and drift,
where clusters are extracted for each time by solely optimizing

connectivity without considering temporality, causing evolution
of clusters at the continuous time can to not be observed.

B. Progression of Evolutionary Clustering Algorithms

To avoid the separation of CS and CT , temporal smoothing-
based methods balance these two issues (i.e., temporality is
incorporated into clustering). To balanceCS andCT , evolution-
ary clustering [26] employs TSF to detect dynamic communities
at each time via a weighted linear function as

Cost = θCS + (1− θ)CT. (1)

whereCS andCT are clustering accuracy and drift respectively,
and parameter θ ∈ [0, 1]. Notice that (1) is the traditional graph
clustering for static networks if θ = 1.

According to the principles of balancing strategies, current
algorithms are further grouped into two categories, namely,
global smoothing- [43], [53], [61] and local smoothing-based
approaches [26], [30], [31], [32], [33], [34], [35], [36], [37],
[38]. The difference between these two classes lies in window
size for historical snapshots for temporality. Specifically, the
global smoothing-based methods employ all snapshots to cap-
ture clustering drift, whereas the local ones only uses a small-size
window of historical snapshots. The typical global smoothing
method is PisCES [43], where all snapshots are jointly factorized
to measure temporality. It remarkably improves the performance
of detecting dynamic communities because the global strategy
provides a better way to model and characterize clustering drift.
However, these algorithms are time-consuming due to all the
snapshots involved and therefore cannot be applied to large-scale
networks.

To address time issue, the local smoothing-based methods
attack cluster drift with a few of subsequent historical snapshots
rather than all ones. Evolutionary clustering [26] proposes TSF
to balance CS and CT through a weighted linear function.
The difference among them lies in how to characterize and
model the dynamics of snapshots within a window. For example,
DYNMOGA [30] poses these two issues as two competitive
objectives and formulate the dynamic community detection
problem as a multi-objective optimization one. sE-NMF [36]
proves the equivalence of evolutionary clustering algorithms
and proposes semi-supervised evolutionary non-ngeative matrix
factorization for dynamic community detection. C-Blondel [38]
derives knowledge of the historical snapshots for clustering
drift, while jLDEC [33] learns graph representation and detects
dynamic community. ERCOT [62] describes clustering drift by
quantifying the importance of historical data to the current clus-
tering structure, while GCIA [63] aggregates information from
historical timestamp based on a gaming strategy. DMOPs [64]
designs a higher-order knowledge transfer strategy to capture
dynamic communities, while the constraint interval graph-based
approach [65] maintains the structural and temporal information
of the networks by constructing a constraint interval graph.
VGRGMM [66] constructs gated recurrent unit to capture de-
pendencies between vertices in the embedding space and com-
bines it with variational autoencoder (VAE) to simultaneously
learn dynamic network embeddings and community affiliations.
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These algorithms not only reduce running time but also achieve
excellent performance, demonstrating that local smoothness is
also promising for dynamic community detection. However,
local smoothing-based algorithms cannot make use the global
structure of temporal networks, thereby failing to fully capture
the dynamics of networks.

C. Limitations of Evolutionary Clustering

CS can be modeled in many different ways, such as nor-
malized graph cut [17] and modularity [9]. The most critical
technique is to characterize CT , and current algorithms under
TSF address it by exploiting difference in terms of features or
networks. However, several typical limitations for TSF in (1)
are summarized as

– First, parameter θ is difficult to determine. Current algorithms
fix the value of parameter θ in advance for all time, assuming
that dynamics of networks at each time is equal, thereby
deviating from reality of temporal networks. Thus, parameter
θ must reflect the dynamics of temporal networks for each
time.

– Second, CT is characterized at the global level, where dynam-
ics at the vertex-level are neglected. Actually, the evolution
of temporal networks usually occurs at the vertex-level, and
thus the dynamics of the network cannot be fully modeled and
captured.

– Finally, to the best of our knowledge, no previous research
has focused on utilizing the partial structural information of
temporal networks to detect communities. As in fact, evo-
lution among subsequent snapshots implies the existence of
preserved structure of networks, which can serve as semi-
supervised information to enhance the performance of algo-
rithms for clustering of temporal networks.

In this study, we design a novel method for detecting dynamic
community in temporal networks, to provide an alternative for
TSF. Furthermore, the self-supervised strategy is developed to
enhance the performance of algorithms by exploiting partial
information with contrastive learning.

III. PRELIMINARIES

A. Notations

For sake of convince, scalars, vectors, and matrices are rep-
resented by lower-case, bold lower-case, and capital letters,
respectively. Graph with n vertices (i.e., V = {v1, . . . , vn}), is
denoted asG = (V,E)with edge setE = {(vi, vj)|vi, vj ∈ V }.
W = (wij) is the adjacent matrix of G and element wij is the
weight on edge (vi, vj). The degree of vertex vi is defined as
di =

∑
j wij , andD = diag(d1, . . . , dn). The Laplacian matrix

of G is defined as L = D −W . Let ‖W‖ =
√∑

ij w
2
ij and W ′

be the Frobenius norm and transpose of matrix W . Let Wi.(wi.)
and W.j(w.j) be the i-th row and j-th column, respectively.
Tr(W ) =

∑
i wii is trace of matrix W . Temporal networks

consist of τ snapshots, denoted as G = {G[1], . . . , G[τ ]}, where
G[t] = (V,E[t]) is the t-th snapshot, and G[t] is derived from
G[t−1]. The adjacent matrix of G is W = {W [1], . . . ,W [τ ]}.

Fig. 1. Schematic example of dynamic communities: (a) Visualization of
G[t−1] and (b) two partitioning in G[t] with the dashed and solid lines, re-
spectively.

TABLE I
SYMBOL DESCRIPTION

Clustering ofGdividesV into groups with strong connectivity
inside and weak connectivity outside of groups. In other words,
communities {Ci}ki=1 such thatV =

⋃
Ci, andCi

⋂
Cj = ∅ for

(i �= j), where Ci is the i-th community and k is the number of
communities. {Ci}ki=1 can be represented with an index matrix
H ∈ Rn×k, where hij=1 if vi ∈ Cj , 0 otherwise. Dynamic

communities at time t of G are denoted as {C [t]
i }k[t]

i=1, where C [t]
i

simultaneously reflects topological structure of G[t] and G[t−1].
More specifically, connectivity of C

[t]
i is strong in G[t] and

G[t−1], where clustering accuracy reflects G[t], and clustering
drift addresses temporality of G[t−1]. A schematic dynamic
example is shown in Fig. 1, where panel A is the visualization
of G[t−1] with 5 vertices, and B contains two partitioning of
G[t] with different lines. Specifically, partitioning 1 corresponds
two communities {1, 2} and {3, 4, 5}, and partitioning 2 also has
two communities {2} and {1, 3, 4, 5}. These two partitioning are
equal in terms of clustering accuracy atG[t] because there is only
one edge across these two communities. However, partitioning
1 is better than partitioning 2 because vertices in community
{1, 3, 4, 5} are disconnected in G[t−1], i.e., vertex 1 is not
connected to vertices 3, 4, and 5 and does not belong to the
same community, implying that it fails to preserve the topology
structure of historical snapshot.

The main symbols are listed in Table I.
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Fig. 2. Overview of the proposed algorithm. It consists of feature learning, evolution graph construction, graph contrastive learning and clustering, where the first
procedure learns features of vertices at time t with joint NMF, evolution graph construction procedure represents vertices at time t by using features at time t− 1
with representation learning, graph contrastive learning is performed on the static and dynamic vertices to improve the quality of features and evolution graph.
Finally, clustering analysis is performed on the evolution graph to obtain communities at time t.

B. NMF and Contrastive Learning

Non-negative matrix factorization (NMF) [67] learns the par-
tial representation of the original data with two low-rank matri-
ces with non-negative constraint. Specifically, it approximates
matrix W by the product matrix B and F as

W ≈ BF, s.t. B ≥ 0, F ≥ 0. (2)

where B and F are the basis and feature matrix respectively.
Eq. (2) is solved by minimizing the reconstruction error, i.e.,

O = ‖W −BF‖2. (3)

The ultimate goal of contrastive learning [45], [46], [47] is to en-
hance the quality of features with the partial information. Specif-
ically, it deliberately selects both positive and negative samples,
optimizing measurements to discriminate negative samples in
the feature space [68], [69], [70]. In addition, graph contrastive
learning [48] narrows distance between similar vertices (positive
samples) and increases that dissimilar ones (negative samples),
i.e.,

J =
∑
i=1

∑
j∈Ni

− log
exp (sij)∑
p �=i exp (sip)

. (4)

where S ∈ Rn×n is the similarity matrix for vertices in G, and
Ni represents neighbors of vertex vi.

IV. ALGORITHM

We first formulate the objective function, then derive the
optimization of the proposed algorithm. Finally, we perform
algorithm analysis in this section.

A. Objective Function

As shown in Fig. 2, jNCDC consists of four major compo-
nents (i.e., feature learning, evolution graph construction, graph
contrastive learning, and clustering). Therefore, the objective

function of jNCDC is composed three costs, corresponding to
the first three components.

1) Feature Learning: On the feature learning issue,
NMF [67] is widely adopted to factorize matrix W [t] of G[t]

into two non-negative matrices B[t] and F [t] by minimizing
approximation, i.e.,

O(G[t]) = ‖W [t] −B[t]F [t]‖2. (5)

However, (5) has two limitations. First, W [t] just depicts the
1-order topological structure of vertices without exploiting high-
order interactions of vertices. Second, it ignores the temporality
of snapshot at time t. Recently, evidence proves that point-
wise mutual information (PMI) matrix outlines the high-order
structure, which offers a superior method for characterizing the
structures of networks [71]. Given snapshot G[t], the element
m

[t]
ij of PMI matrix M [t] is defined as

m
[t]
ij = max

{
logw

[t]
ij

∑
i

d
[t]
i − log

(
d
[t]
i d

[t]
j − κ

)
, 0

}
. (6)

where κ is a hyper-parameter controlling sizes of negative
sampling (usually, κ = 2 [72]). By replacing W [t] with M [t],
(5) is reformulated as

O(G[t]) = ‖M [t] −B[t]F [t]‖2. (7)

However, (7) ignores the temporality of snapshots within the
window around time t, thereby feature F [t] fails to capture the
dynamics of networks. This problem can be effectively solved
by factorizing matrices of subsequent snapshots. In this case, (7)
is re-written as

O
({

G[l]
}t+1

l=t−1

)
=

t+1∑
l=t−1

‖M [l] −B[l]F [l]‖2. (8)

Our previous study [36] demonstrates that joint factorization is
more precise to model the dynamics of networks by projecting
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snapshots G[l](l = t− 1, t, t+ 1) into a subspace. Here, we
adopt the same strategy, and (8) is modified as

O
({

G[l]
}t+1

l=t−1

)
=

t+1∑
l=t−1

‖M [l] −B[t]F [l]‖2. (9)

Furthermore, we anticipate that the vertex feature in F [t] will
maintain the local topological structure of G[t]. In other words,
vertex vi and vj are well connected in G[t], they are also close

to each in the feature space (i.e., Euclidean distance of f [t].i and

f
[t]
.j is small), vice versa. And, it can be formulated as trace

optimization as [73]

O(F [t]) =
∑
i,j

w
[t]
ij ‖f [t].i − f

[t]
.j ‖2 = Tr(F [t]L[t](F [t])′). (10)

2) Evolution Graph Construction: To model and quantify the
dynamics of temporal networks, current evolutionary clustering
algorithms [26], [36] measure CT by comparing difference
features at various time as

‖(F [t])′F [t] − (F [t−1])′F [t−1]‖2. (11)

But, (11) fails to fully measure the dynamics of temporal net-
works for two reasons. First, it quantifies the dynamics at the
global level, rather than at the vertex-level. In other words, (11)
is unable to differentiate between slight perturbation occurring
at a large sub-network versus intense evolution at a small group
of vertices, thus hindering downstream analysis. Second, the
interpretability of dynamics captured by (11) is relatively weak.

To address the above problems, jNCDC measures the dynam-
ics of networks at the vertex-level by exploiting relations among
successive features. More specifically, because G[t] is smoothly
evolved from G[t−1], there is a close relation between F [t] and
F [t−1]. Thus, jNCDC utilizes self-representation learning to
construct an affinity graph with F [t−1] and F [t] as with as

O(Z [t]) = ‖F [t] − F [t−1]Z [t]‖2. (12)

Z [t] is the affinity graph representing the relations of vertices
from F [t−1] and F [t], where z

[t]
ij denotes the weight of vj in

G[t−1] to represent vi in G[t]. Furthermore, z[t]ij is considered the

similarity between f
[t−1]
.j and f

[t]
.i . In this case, the evolution of

vertices can be reflected from Z [t]. Small z[t]ii implies that vi in
G[t] cannot be directly obtain from vi in G[t−1] (i.e., vi at time
t is dynamic), otherwise static.

What we want to point out is that Z [t] brings in two advan-
tages. First, the relations of vertices from successive features
are explicitly quantified, which ensures the characterization
of network dynamics at the micro-level, thereby providing a
better way to model and depict the temporality of networks.
Furthermore, for every vertex in G[t], Z [t] identifies the closely
related vertices in G[t−1], thereby enhancing the explanation of
network dynamics.

3) Graph Contrastive Learning: Contrastive learning im-
proves the quality of features by exploiting positive and negative
samples [45], [46], [47], and we also want utilizes it to capture

dynamics of networks (i.e., Z [t]). There are two critical tech-
niques involved: selecting positive and negative vertices, and
improving the features with partial information.

On the vertex selection concerning, our previous research [55]
illustrates that the role of vertices facilitates feature learning
in temporal networks. Analogously, vertices for each time t
are divided into two classes (i.e., dynamic and static one).
In details, the dynamics of vertex vi at time t is defined as
the sum of difference of weights on edges connecting to it,
Δ

[t]
i =

∑
j |w[t]

ij − w
[t−1]
ij |. Top (bottom) μ% of vertices are

selected as dynamic (static) ones (according to [55], μ = 5
is a good choice).

On the feature improvement concerning, jNCDC expects that
static vertices preserve the features at successive time (i.e, f [t−1]

.i

and f
[t]
.i are similar), which can be fulfilled by maximizing z

[t]
ii

with the loss function of contrastive learning for static vertex vi
as [46]

O
(
z
[t]
ii

)
= − log

exp
(
z
[t]
ii

)
∑

p exp
(
z
[t]
ip

) . (13)

Furthermore, Z [t] also characterizes the relations among ver-
tices. For each static vertex vi, we can select δ closest ones as
positive samples (denoted as N [t]

i ) in terms of values in z
[t]
i. .

Similarly, the loss function is formulated as

O(vi) =
∑

j∈N[t]
i

− log
exp

(
z
[t]
ij

)
∑

p �=i exp
(
z
[t]
ip

) . (14)

By combining (13) and (14), the loss function for static vertices
at time t (denoted as N [t][s]) is formulated as

O(N [t][s]) =
∑

i∈N[t][s]

(O(z
[t]
ii ) +O(vi)). (15)

Different from static vertices, for each vertex vi in dynamic
set N [t][d], it fails to be represented by f

[t−1]
.i (i.e., z[t]ii is close

to 0). Therefore, we select δ closest ones in G[t] as positive
samples, denoted as N [t]

i , and others as negative samples. The
loss function for N [t][d] is formulated as

O(N [t][d]) =
∑

i∈N[t][d]

∑
j∈N[t]

i

− log
exp

(
z
[t]
ij

)
∑

p exp
(
z
[t]
ip

) . (16)

By combining (15) and (16), the loss of graph contrastive learn-
ing is written as

Ogc(G
[t]) = O(N [t][s]) +O(N [t][d]). (17)

Eq. (17) consequently improves the quality of features by dis-
criminating positive and negative vertices, which narrows down
the distance of similar vertices and increases the distance of
dissimilar vertices.

By combining (9), (10), (12), (17), the objective function of
jNCDC is formulated as

O = O
(
{G[l]}t+1

l=t−1

)
+O(F [t]) + αO(Z [t]) + βOgc(G

[t])
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=

t+1∑
l=t−1

‖M [l] −B[t]F [l]‖2 + Tr(F [t]L[t](F [t])′)

+α‖F [t]− F [t−1]Z [t]‖2+β

⎛
⎝ ∑

i∈N[t][s]

⎛
⎝− log

exp
(
z
[t]
ii

)
∑

p exp
(
z
[t]
ip

)

+
∑

j∈N[t]
i

− log
exp

(
z
[t]
ij

)
∑

p �=i exp
(
z
[t]
ip

)
⎞
⎟⎠

+
∑

i∈N[t][d]

∑
j∈N[t]

i

− log
exp

(
z
[t]
ij

)
∑

p exp
(
z
[t]
ip

)
⎞
⎟⎠

s.t. B[t] ≥ 0, F [t] ≥ 0, Z [t] ≥ 0, B[t](B[t])′ = I.
(18)

where α and β determines the importance of evolution graph
construction and graph contrastive learning.

There are at least three difference between the proposed
algorithm and current algorithms, which are summarized as

– Current algorithms measure the dynamics of temporal net-
works by comparing either features or topological structure
of vertices at successive time, whereas jNCDC automatically
learns evolution graph.

– Graph contrastive learning for clustering of temporal networks
is first proposed, where the partial information of dynamic and
static vertices is fully exploited to characterize and measure
the dynamics of networks.

– Available methods utilizes TSF to balance CS and CT , while
jNCDC avoids it with joint learning framework.

B. Optimization

The objective function in (18) is non-convex because of
the graph contrastive learning item, which cannot be directly
optimized. Thus, an iterative approach is utilized where one
variable is optimized while keeping the others fixed. This pro-
cess continues until convergence or the maximum number of
iterations is reached.

1) Updating B[t]: By removing irrelevant items of B[t] and
fixing other variables, (18) in terms of B[t] is transformed as

O =

t+1∑
l=t−1

‖M [l] −B[t]F [l]‖2. (19)

The partial derivative of O in terms of B[t] is formulated as

∂O
∂B[t]

= 2B[t]
t+1∑

l=t−1

F [l](F [l])′ − 2
t+1∑

l=t−1

M [l](F [l])′. (20)

In accordance with the KKT conditions(Karush-Kuhn-Tucher),
by setting ∂O

∂B[t] = 0, its update rule is formulated as

B[t] = B[t] 	 [
∑t+1

l=t−1 M
[l](F [l])′]

[B[t]
∑t+1

l=t−1 F
[l](F [l])′]

. (21)

where 	 denotes element-wise product, [.]/[.] denotes element-
wise division.

2) Updating F [t]: By fixing other variables and removing
irrelevant terms to F [t], (18) is rewritten as

O = ‖M [t] −B[t]F [t]‖2 + Tr(F [t]L[t](F [t])′)

+ α‖F [t] − F [t−1]Z [t]‖2. (22)

The partial derivative of (22) in terms of F [t] is deduced as

∂O
∂F [t]

= 2(B[t])′B[t]F [t] − 2(B[t])′M [t]

+2F [t]L[t] + 2αF [t] − 2αF [t−1]Z [t]. (23)

where L[t] = D[t] −W [t]. In accordance with the KKT
conditions(Karush-Kuhn-Tucher), by setting the partial deriva-
tive of (23) to 0, the rules of F [t] is obtained as

F [t] = F [t] 	 [(B[t])′M [t] + αF [t−1]Z [t] + F [t]W [t]]

[(B[t])′B[t]F [t] + F [t]D[t] + αF [t]]
. (24)

3) Updating Z [t]: Matrix Z [t] is involved in representation
learning and contrastive learning, and (18) is deduced as

O= α‖F [t] − F [t−1]Z [t]‖2+β

⎛
⎝ ∑

i∈N[t][s]

⎛
⎝− log

exp
(
z
[t]
ii

)
∑

p exp
(
z
[t]
ip

)

+
∑

j∈N[t]
i

− log
exp

(
z
[t]
ij

)
∑

p �=i exp
(
z
[t]
ip

)
⎞
⎟⎠

+
∑

i∈N[t][d]

∑
j∈N[t]

i

− log
exp

(
z
[t]
ij

)
∑

p exp
(
z
[t]
ip

)
⎞
⎟⎠ . (25)

According to the linear additive property of the derivative,
∂Z[t](O) consists of two terms, i.e.,

∇Z[t] = α∇rs + β∇gc (26)

where ∇rs and ∇gc are the partial derivatives for representation
learning and contrastive learning, respectively. ∇rs is formu-
lated as

∇rs = −2(F [t−1])′F [t] + 2(F [t−1])′F [t−1]Z [t]. (27)

However,∇gc involves dynamic and static vertices, which can be
handled separately. For each static vertex vi ∈ N [t][s], if vertex
vj ∈ N [t]

i , the second item in (25) is re-written as

L = − log
exp

(
z
[t]
ii

)
∑

p exp
(
z
[t]
ip

) +
∑

j∈N[t]
i

− log
exp

(
z
[t]
ij

)
∑

p �=i exp
(
z
[t]
ip

)

= − z
[t]
ii + log

⎛
⎜⎝∑

p

exp
(
z
[t]
ip

)
+
∑

j∈N[t]
i

(−z
[t]
ij

+ log

⎛
⎝∑

p �=i

exp
(
z
[t]
ip

)⎞⎠
⎞
⎠ . (28)
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Algorithm 1: jNCDC Algorithm.
Require:
G: Temporal networks
α, β: Parameter for regularization items;

Ensure:
{C [t]

i }k[t]

i=1: Dynamic communities;
1: Construct PMI matrix M [t] for each time t;
2: Update B[t] according to Eq. (21);
3: Update F [t] according to Eq. (24;
4: Update Z [t] according to Eq. (26), Eq. (27), Eq. (32)

and Eq. (33) via Adam;
5: Go to step 2 until convergence;

6: Performing spectral clustering on Z[t]+(Z[t])′
2 .

7: return {C [t]
i }k[t]

i=1.

The partial derivative of z[t]ij is deduced as

∂L
∂z

[t]
ij

= −1 +
m exp

(
z
[t]
ij

)
∑

p �=i exp
(
z
[t]
ip

) +
m exp

(
z
[t]
ij

)
∑

p exp
(
z
[t]
ip

) . (29)

where m is the number of positive vertices.
If vertex vj /∈ N [t]

i , the second item of (25) is re-written as

L = − z
[t]
ii + log

(∑
p

exp
(
z
[t]
ip

))

+
∑

j∈N[t]
i

⎛
⎝log

⎛
⎝∑

p �=i

exp
(
z
[t]
ip

)⎞⎠
⎞
⎠ . (30)

The partial derivative of z[t]ij is formulated as

∂L
∂z

[t]
ij

=
m exp

(
z
[t]
ij

)
∑

p �=i exp
(
z
[t]
ip

) +
m exp

(
z
[t]
ij

)
∑

p exp
(
z
[t]
ip

) . (31)

And, for static vertices vi ∈ N [t][s], [∇gc]ij is derived as

[∇gc]ij =

⎧⎪⎪⎨
⎪⎪⎩
−1 + m exp
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p exp
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z
[t]
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(32)
Analogously, for dynamjc vertex vi ∈ N [t][d], [∇gc]ij is ob-
tained as

[∇gc]ij =

⎧⎪⎪⎨
⎪⎪⎩
−1 +

m exp
(
z
[t]
ij

)

∑
p exp

(
z
[t]
ip

) , if j ∈ N [t]
i ,

m exp
(
z
[t]
ij

)

∑
p exp

(
z
[t]
ip

) , otherwise.
(33)

Then we adopt Adam optimization strategy to update Z [t]. The
procedure of jNCDC is illustrated in Algorithm 1.

C. Algorithm Analysis

On the space complexity, the space for adjacency matrix of
G is O(n2τ). The space for basis matrix B[t] and feature matrix
F [t] is O(ndτ), where d is the number of dimension. The space
for affinity matrix Z [t] is O(n2τ). PMI matrix and Laplacian
matrix take space O(n2τ). Thus, the total space complexity for
jNCDC is O(n2τ) because of d � n, demonstrating that the
proposed method is efficient in terms of space complexity. On
the time complexity, matrix factorization requires timeO(n2dl),
where l is the number of iterations. The time for updating matrix
Z [t] is O(n2l). The time for spectral clustering is O(n3). Thus,
the time complexity of jNCDC is O(n3τ).

V. EXPERIMENTS

Parameter effect, accuracy, and ablation analysis of the pro-
posed algorithm are investigated to fully validate the perfor-
mance of jNCDC on the clustering of temporal networks.

A. Settings

A total of 10 benchmark temporal networks, comprising 6
artificial and 4 real world datasets, are selected for experiments.
SYN-FIX/SYN-VAR originated from the GN network [7] by in-
corporating dynamics, where the number communities in SYN-
FIX networks for each time is fixed but varies for SYN-VAR.
Greene dataset [74] contains 4 evolution events (i.e., Birthdeath,
Hide, Expansion, and Mergesplit), where the dynamics of net-
works is complicated.

In addition, 4 real-world temporal networks are included.
Cellphone1 consists of records from the 400 members of the
fictitious Paraiso movement covering a period of 10 days in June
2006, where each member is treated as a node, the call records
between members as an edge, and every day corresponds to a
snapshot. Email2 comprises emails among 1005 persons from an
institution, which contains 1,005 vertices, 332,334 edges, and 10
time. Wikipedia3 contains 8,400 nodes, 162,000 edges, and 10
time, Dublin4 is a social network for communication among in-
dividuals, which has 24,818 vertices, more than 400,000 edges,
and 4 time. The statistics of networks are summarized in Table II.

Normalized mutual information (NMI) [75] and accuracy
(ACC) are selected as measurements to quantify the performance
of algorithms. Eight MetaFac [27], PisCES [43], sE-NMF [36],
DYNMOGA [30], DPGM [76], ECD [77], LSNMF [78], and
jLMDC [79] are selected as baselines, which cover typical
evolutionary clustering. MetaFac is selected because it is the first
evolutionary clustering-based method for dynamic community
detection. PisCES and DPGM are chosen because they are global
smoothness-based algorithms with an excellent performance.
DYNMOGA and ECD are deliberately employed because they
are popular TSF-based algorithms. sE-NMF is also included
because it also makes use of matrix factorization to learn fea-
tures of vertices. LSNMF is selected is because it decomposes

1http://www.cs.umd.edu/hcil/VASTchallenge08/
2https://snap.stanford.edu/data/email-Eu-core-temporal.html
3http://networkrepository.com/edit-enwikibooks.php.
4http://networkrepository.com
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TABLE II
STATISTIC OF TEMPORAL NETWORKS

features of vertices into common and specific parts, where the
specific features of vertices are promising for the dynamics of
temporal networks. jLMDC is selected because it characterizes
the dynamics of temporal networks by exploiting the roles of
vertices, which enhances the performance of tracking dynamic
communities in temporal networks.

B. Parameter Analysis

The jNCDC algorithm has parameters (i.e., α, β, d, and
δ), where α and β are the parameters of the evolution graph
construction and graph contrastive learning, respectively; d is
the number of features; and δ is used to select neighbors to
construct the positive sample. d is selected using the instability
of matrix factorization [80]. For parameter δ, we set as n/k.

jNCDC involves parameters α and β, which determine the
importance of evolution graph construction and graph con-
trastive learning. Two artificial (Birthdeath and Expansion) and
two real-world temporal networks (Cellphone and Email) are
selected to investigate parameter effect. In detail, we inves-
tigate the effects of parameter variations on the performance
of jNCDC, where α ∈ [10−3, 10−2, 10−1, 0.5, 1, 10] and β ∈
[10−3, 10−2, 1, 10, 102].

Performance of jNCDC for various networks with different
parameter values is depicted in Fig. 3, where panel A is for
Birthdeath, B for Expansion, C for Cellphone, and D for Email
networks. From Fig. 3(a) and (b), it is easy to assert that the
NMI of the proposed algorithm is quite stable as parameter α
increases from 0.001 to 10 for the artificial networks. Moreover,
jNCDC is insensitive to parameter β because NMI changes
smoothly as β increases from 0.001 to 10. jNCDC is stable
because of two possible reasons. First, jNCDC take advantage
of contrastive learning to enhance quality of features, thereby
offerring an improved approach to characterize and quantify the
temporality of networks. Second, the proposed algorithm con-
structs an evolution graph to exploit the dynamics of networks at
the vertex-level, where the relations of vertices at successive time
are explicitly explored, shedding light on the intrinsic structure
of evolving communities.

Fig. 3. Parameter effect of jNCDC on various networks: (a) Birthdeath, (b)
Expansion, (c) Cellphone, and (d) Email.

Then, we further investigate parameter effect by replacing
artificial networks with real-world ones, which is shown in
Fig. 3(c) and (d). From these panels, it is easy to find that jNCDC
is sensitive to parameter α but insensitive to parameter β for
real-world networks. Specifically, jNCDC is quit stable when
parameter α ≤ 0.1. Moreover, the NMI of jNCDC decreases as
parameter α keeps increasing from 0.1 to 10. The reason is that
the objective function is primarily influenced by the evolution
graph when α is large. In this case, jNCDC fails to reach a
good balance between feature learning and temporality, thereby
decreasing the quality of features. There is a valid rationale to
explain why jNCDC is stable for parameter β.

Performing a thorough comparison between Fig. 3(a), (b) and
(c), (d) demonstrates that jNCDC is more stable in artificial
networks than real-world ones. The reason is that structure and
patterns in artificial networks are much easier to characterize
than those in real ones because evolution events in artificial
networks are regular. In this study, we set α = 0.1 and β =
1 for all experiments.

C. Performance on Artificial Temporal Networks

1) SYN-FIX/SYN-VAR Networks: For each type of artificial
networks, we generate 100 networks to remove the randomness
of evolution. All these algorithms are performed on these net-
works and the average NMI to measure performance of these
algorithms (mean ± standard deviation). The performance of
different algorithms on the SYN-FIX and SYN-VAR is shown
in Table III.

According to the result presented in Table III, jNCDC demon-
strates superior performance on SYN-FIX and SYN-VAR net-
works. Specifically, jNCDC, PisCES, MetaFac, LSNMF, and
jLMDC exhibited the best performance, followed by DYN-
MOGA and sE-NMF. In detail, the NMI of jNCDC, PisCES,
MetaFac, LSNMF, and jLMDC is 1.000, whereas it is 0.999
for DYNMOGA, 0.975 for sE-NMF, and is 0.967 for ECD.
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TABLE III
NMI OF VARIOUS ALGORITHMS ON TEMPORAL NETWORKS

DPGM algorithm has the worst performance on SYN-FIX net-
works with an average NMI of 0.921. Furthermore, on the
SYN-VAR networks, jNCDC achieves the best performance
with NMI 0.998. jLMDC, ECD, LSNMF, PisCES, DYNMOGA,
and sE-NMF are inferior to the proposed algorithm, where NMI
of jLMDC is 0.994, of ECD is 0.993, of LSNMF is 0.969, of
PisCES is 0.961, of DYNMOGA is 0.961, and NMI of sE-NMF
is 0.945. Notice that DPGM and MetaFac achieve the worst
performance on SYN-VAR networks.

DPGM achieves the worst performance because it is a proba-
bilistic model based on topological structure, which is practical
if and only if structure of dynamic communities is easy to
detect (i.e., there are much more edges within communities
than outside). In other words, it is very sensitive to network
perturbation. Notice that all these algorithms achieve a good
performance on the SYN-FIX/SYN-VAR networks because the
evolution events are simple and regular, which are easy to
characterize and capture. However, jNCDC is superior to these
baselines, implying that it is more accurate to describe and model
the dynamics of networks than state-of-the-art methods.

The superiority of the proposed algorithm can be attributed to
several factors. First, jNCDC utilizes the high-order topological
structure of networks, rather than the adjacent matrix, which
provides a better way to capture the dynamics of networks.
Second, jNCDC measures the dynamics of networks at the
vertex-level, rather than on the global level, by exploiting the
representation relations among vertices with features at the
successive time, which effectively avoids the accumulated effect
of subtle perturbation at the large-scale regions of networks.
Third, jNCDC introduces graph contrastive learning for cluster-
ing of temporal networks, where partial information of positive
and negative vertices leads to improved feature quality, thus
enhancing algorithm performance.

2) Greene Networks: SYN-FIX and SYN-VAR alone cannot
fully assess the performance of diverse algorithms due to two
primary factors. First, the evolution events are regular and fixed
for all time, indicating that these dynamic communities are
relatively easy to detect. Second, the sizes of networks are
limited (i.e., less than 300 vertices), thereby failing to testify the
performance of algorithms. To address this issue, Greene [74]
is a typical benchmark for tracking dynamic community, which
include four evolution events with 10,000 vertices.

Table III illustrates the performance of various algorithms on
the Greene networks. The results indicate that jNCDC achieves
the best performance across all four types of networks, suggest-
ing it as a superior way to model and depict network temporality.
Specifically, jNCDC, DYNMOGA, jLMDC, and LSNMF have
similar performance in the four evolutionary events. NMI of
jNCDC is 0.999 for Birthdeath, 0.999 for Expansion, 0.997
for Hide, and 0.998 for Mergesplit, respectively. The NMI of
jLMDC, DYNMOGA, and are close to that of jNCDC. However,
other algorithms, such as sE-NMF and PisCES, are inferior to
jNCDC. In detail, the NMI of sE-NMF is 0.961 for Birthdeath,
0.975 for Expansion, 0.968 for Hide, and 0.977 for Mergesplit.
However, the NMI of PisCES is inferior to sE-NMF, where NMI
is 0.941 for Birthdeath, 0.963 for Expansion, 0.955 for Hide and
0.968 for Mergesplit, respectively. DPGM is also the worst for
all four types of networks, indicating that probabilistic model
fails to characterize the distribution of dynamics in networks
because topology is incomprehensive.

PisCES is inferior to jNCDC because the global smoothness
strategy is effective if and only if the temporality of networks
is gentle. It also fails to precisely characterize the dynamics of
networks at a particular time, leading to decreased algorithm
performance for detecting dynamic communities in networks
with large τ . LSNMF achieves excellent performance because it
decomposes features into common features and specific features
and explicitly measures the specificity of vertex features to char-
acterize the dynamics of vertices. The reason for the excellent
performance of jLMDC is that it uses the roles of vertices to mea-
sure the dynamics of the network at the micro-level to describe
the evolution of the networks more accurately. Furthermore, the
global smoothing strategy is time-consuming, implying that it
is inapplicable to large-scale temporal networks. DYNMOGA
takes the multi-objective optimization to balance CS and CT ,
where Pareto solutions are difficult to solve.

Table III shows that jNCDC is promising in identifying dy-
namic communities because it outperforms all these baselines in
terms of accuracy, indicating that graph contrastive learning is
effective for characterizing the dynamics of communities. There
are several reasons accounting for the superiority of the proposed
algorithms. First, jNCDC abandons the well-known temporal
smoothness framework [26], which avoids the balance of CS
andCT . Second, the learning of features and characterization of
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TABLE IV
ACC OF VARIOUS ALGORITHMS ON TEMPORAL NETWORKS

temporality are smoothly merged into an overarching objective
function. Here, the features of vertices are learned with the guid-
ance of network temporality. As such, features simultaneously
reflect the connectivity of communities at the current time and
temporality from the historical snapshots. Third, evolution graph
is constructed with representation learning, where the relations
among vertices at successive time are explicitly quantified,
facilitating the identification of dynamic communities. Finally,
the positive and negative vertices serve as partial information to
promote the performance of jNCDC.

By replacing NMI with ACC, the performance of these al-
gorithms is consistent, as shown in Table IV, showing these
algorithms identify the truth dynamic communities. These re-
sults further validate the potential of contrastive learning in
capturing and identifying dynamic communities within temporal
networks.

D. Performance on Real-World Temporal Networks

The previous experiments prove the superiority of jNCDC
with artificial networks, and then we select these widely used
real-world networks to verify the applicability of the proposed
algorithm. In detail, four real-world temporal networks, namely,
Cellphone, Email, Wikipedia, and Dublin are selected, where
the number of vertices ranging from 400 to 25,000 as shown in
Table II. For real-world networks, we follow the strategy in [81]
to obtain the truth-ground communities.

NMI of various algorithms on real-world networks is shown
in Table III, where jNCDC is the best algorithm for all these
real networks. Specifically, the NMI of jNCDC is 0.699, 0.645,
0.314, and 0.450 for Cellphone, Email, Wikipedia and Dublin,
respectively, whereas that of jLMDC is 0.607, 0.581, 0.282,
0.412 and of MetaFac is 0.597, 0.560, 0.263, 0.405. To our
surprise, PisCES performs poorly in real networks. The possible
reason is that evolution events in real networks are irregular,
which are difficult to be characterized and captured with the
global smoothing strategy. What we want to point out is that
NMI of PisCES dramatically decreases as the number of vertices
increases, showing the global smoothing strategy is inapplicable
for large-scale networks. Notably, LSNMF performs well on
small datasets (Cellphone and Email), but its performance on
large datasets (Dublin and Wikipedia) is poor. The possible
reason is that large-scale temporal network changes are irregular,

LSNMF fails to fully utilize the temporality of the network
and cannot accurately depict the evolution of the community.
Furthermore, DYNMOGA and DPGM are inferior to others
because they are criticized for their failure to balance clustering
accuracy and drift.

Similar performance is shown in Table IV, showing that
jNCDC identifies truth communities. jNCDC achieves an ex-
cellent performance because of several reasons. First, current
algorithms quantify network dynamics based on the assumption
that they are constant over time, which does not reflect the
reality of temporal networks. jNCDC overcomes this limita-
tion with self-representation learning to construct the evolution
graph, where dynamics of snapshot at each time are precisely
learned. Furthermore, the learned evolution graph specifies the
relations of vertices between the previous and current time and
improves the interpretability of dynamics of networks. Second,
graph contrastive learning not only improves the quality of
features with partial supervision information but also exploits
the indirected relations among vertices in the evolution graph to
characterize the dynamics of networks at different resolutions.
Finally, jNCDC jointly learns feature learning, graph contrastive
learning, and evolution graph construction, where features re-
flect the topological structure and temporality of networks.

E. Ablation Study

Given that jNCDC joins feature learning, evolution graph
construction, and graph contrastive learning, an ablation study
must be conducted with an immediate intention to verify the
importance of these items. Therefore, two variants of jNCDC are
proposed. These variants are jNCDC-FL, and jNCDC-no-GCL,
where jNCDC-FL removes evolution graph construction and
graph contrastive learning, and jNCDC-no-GCL only deletes
graph contrastive learning.

The performance of the variants of jNCDC on various net-
works is shown in Fig. 4, where jNCDC significantly outper-
forms its variants for all 10 temporal networks. In detail, the
NMI of jNCDC is 1.000 for SYN-FIX, 0.998 for SYN-VAR,
0.999 for Birthdeath, 0.999 for Expansion, 0.997 for Hide,
0.998 for Mergesplit, 0.699 for Cellphone, 0.645 for Email,
0.314 for Wikipedia, and 0.450 for Dublin. However, that of
jNCDC-no-GCL is 0.905 for SYN-FIX, 0.945 for SYN-VAR,
0.933 for Birthdeath, 0.902 for Expansion, 0.906 for Hide, 0.902
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Fig. 4. Ablation study of among jNCDC, jNCDC-no-GCL, and jNCDC-FL
in terms of NMI.

for Mergesplit, 0.663 for Cellphone, 0.588 for Email, 0.229
for Wikipedia, and 0.415 for Dublin, which are 5%∼10% less
than jNCDC. Moreover, the NMI of jNCDC-FL is 0.942 for
SYN-FIX, 0.945 for SYN-VAR, 0.708 for Birthdeath, 0.786
for Expansion, 0.896 for Hide, 0.827 for Mergesplit, 0.644 for
Cellphone, 0.596 for Email, 0.199 for Wikipedia, and 0.319 for
Dublin respectively.

These results demonstrate that evolution graph and graph
contrastive learning are important for the performance of jNCDC
because removing either of them dramatically decreases per-
formance. There several possible reasons explain why these
items are critical. First, evolution graph provides supplemen-
tal information for features of vertices to characterize the dy-
namics of networks, which cannot be fulfilled only with the
low-dimensional features of vertices and topological structure
of temporality networks. Second, graph contrastive learning
utilizes the functions of vertices in temporal networks, where
the semantic information also provides additional information
to characterize the dynamics of networks, which is ignored by
current baselines.

VI. CONCLUSION

Temporal networks provide a more precise method for mod-
eling the evolution of complex systems than static ones. How-
ever, it present a remarkable challenge in identifying dynamic
communities. Compared with static communities, detecting
dynamic community is highly intricate in temporal networks
because it requires to balance clustering accuracy and clustering
drift. Current algorithms also make use of temporal smoothness
framework, which is criticized for the difficulty on the quantifi-
cation of temporality, as well as determination of its importance.
In this study, we propose the first graph contrastive learning
to address these two issues, where the dynamics of networks
are characterized at the vertex-level by learning an evolution
graph, and partial information is also incorporated with graph
contrastive learning. The results from our experiments reveal

that our algorithm is highly effective and outperforms existing
state-of-the-art methods.

In future research, we aim to address the following issues,
which are summarized as

– jNCDC only exploits the roles of vertices in temporal networks
by classifying them into static and dynamic ones, failing
to comprehensively explore semantic of temporal networks.
How to further investigate the roles of graph patterns in
temporal networks for graph contrastive learning is promising
for the characterization of dynamics of networks.

– Even though jNCDC is the first attempt to apply graph
contrastive learning to clustering of temporal networks, it is
executed on the constructed evolution graph, which is consis-
tent with the traditional strategy at some content. Exploring
methods is needed for directly applying contrastive learning
on original temporal networks, specifically in the selection of
positive and negative samples.

– jNCDC takes matrix factorization to extract low-dimensional
representation of vertices in temporal networks, which runs
the risk of ignoring the intricate structure. How to exploit
more sophisticated representation of vertices to characterize
dynamic communities is also interesting.
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